JPH0436441A - High strength and high toughness stainless steel and its manufacture - Google Patents
High strength and high toughness stainless steel and its manufactureInfo
- Publication number
- JPH0436441A JPH0436441A JP13970090A JP13970090A JPH0436441A JP H0436441 A JPH0436441 A JP H0436441A JP 13970090 A JP13970090 A JP 13970090A JP 13970090 A JP13970090 A JP 13970090A JP H0436441 A JPH0436441 A JP H0436441A
- Authority
- JP
- Japan
- Prior art keywords
- austenite
- stainless steel
- toughness
- strength
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 22
- 239000010935 stainless steel Substances 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 41
- 238000010438 heat treatment Methods 0.000 claims abstract description 32
- 230000009466 transformation Effects 0.000 claims abstract description 27
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 21
- 238000005097 cold rolling Methods 0.000 claims abstract description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 6
- 238000003483 aging Methods 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 4
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 abstract description 9
- 238000005260 corrosion Methods 0.000 abstract description 6
- 230000007797 corrosion Effects 0.000 abstract description 6
- 229910000831 Steel Inorganic materials 0.000 description 19
- 239000010959 steel Substances 0.000 description 19
- 238000012360 testing method Methods 0.000 description 13
- 230000032683 aging Effects 0.000 description 12
- 238000005096 rolling process Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 238000005482 strain hardening Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000005728 strengthening Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 4
- 238000004881 precipitation hardening Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 229910001005 Ni3Al Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
「発明の目的」
(産業上の利用分野)
本発明は、耐食性と共に高強度を有し、張出し性などの
靭性が要求されるステンレスばねや極薄の内周刃カッタ
ー(IDブレード)等に用いられる高強度・高靭性ステ
ンレス鋼およびその製造方法に関するものである。Detailed Description of the Invention "Objective of the Invention" (Industrial Application Field) The present invention is applicable to stainless steel springs and ultra-thin internal blade cutters that have high strength as well as corrosion resistance and require toughness such as stretchability. The present invention relates to high-strength, high-toughness stainless steel used in (ID blades), etc., and a method for manufacturing the same.
(従来の技術)
従来、Hv450を越える高強度を発現するステンレス
ばね綱には次の3種類が挙げられる。(Prior Art) Conventionally, there are three types of stainless steel spring ropes that exhibit high strength exceeding Hv450:
■セミオーステナイト系ステンレス鋼
■セミオーステナイト系析出硬化型ステンレス■マルテ
ンサイト系析出硬化型ステンレス調理ち、■は溶体化処
理状態でオーステナイト相を呈し、圧延などの冷間加工
により一部をマルテンサイト相に変態させるもので、強
度と靭性に優れており、これらは5US301.5US
304に代表される。■ Semi-austenitic stainless steel ■ Semi-austenitic precipitation-hardening stainless steel ■ Martensitic precipitation-hardening stainless steel When cooked, ■ exhibits an austenitic phase in the solution treatment state, and a portion of the martensitic phase changes through cold working such as rolling. It has excellent strength and toughness, and these are 5US301.5US
304 is typical.
ところがHv450を越える高強度を得るためには冷間
加工量を大きくする必要があり製造上の圧延機の能力を
大きくしなければならないなどの問題点がある。またこ
の場合靭性が低下してしまう不利がある。However, in order to obtain a high strength exceeding Hv450, it is necessary to increase the amount of cold working, and there are problems such as the need to increase the capacity of the rolling mill for manufacturing. Further, in this case, there is a disadvantage that toughness decreases.
■は■と同様に溶体化処理後の冷間加工によりオーステ
ナイト相とマルテンサイト相の2相組織とし、その後さ
らに時効処理によって析出硬化させるもので、強度と靭
性に優れていて、これらは5US630.5US631
に代表される。しかしながら所定の強度と靭性を得るた
めには溶体化処理温度、冷間加工量、加工温度、時効処
理温度、時効処理時間などの厳密な調整が必要である。Similar to ■, the two-phase structure of austenite phase and martensite phase is formed by cold working after solution treatment, and then further precipitation hardened by aging treatment, and has excellent strength and toughness, and these are 5US630. 5US631
represented by. However, in order to obtain predetermined strength and toughness, it is necessary to strictly adjust the solution treatment temperature, the amount of cold working, the working temperature, the aging treatment temperature, the aging treatment time, etc.
またたとえこれらの条件を一定にできたとしても溶解時
の成分変動やマクロ偏析などにより製品特性にばらつき
を生じてしまう。Furthermore, even if these conditions can be kept constant, variations in the product properties will occur due to component fluctuations during melting, macro segregation, etc.
■は溶体化処理状態でマルテンサイト相を呈し、圧延な
どの冷間加工により加工硬化させ、その後時効処理によ
って析出硬化させるもので、強度に優れており、この代
表例としてはε−Cuの析出を利用した特開昭56−1
30459がある。しかしこれらの綱は本質的に張出し
などの靭性に乏しく、高強度を得ようとすればさらに靭
性の低下が顕著になる。この問題点を解決するために冷
間加工後に一部のマルテンサイトをオーステナイトに逆
変態させる方法が捷案されている鉄鋼協会発行「鉄と鋼
」(CAMP−ISIJ、Vo12. Nch6(19
89)639)。■ exhibits a martensitic phase in the solution treatment state, is work hardened by cold working such as rolling, and then precipitation hardened by aging treatment, and has excellent strength. A typical example of this is the precipitation of ε-Cu. Unexamined Japanese Patent Publication No. 56-1 using
There is 30459. However, these ropes inherently lack toughness such as overhang, and the reduction in toughness becomes even more pronounced when trying to obtain high strength. In order to solve this problem, a method of reversely transforming some martensite into austenite after cold working has been devised, published by the Iron and Steel Institute of Japan, "Tetsu to Hagane" (CAMP-ISIJ, Vo12. Nch6 (19
89)639).
しかしながらこの場合には靭性は改善されるものの強度
が低下してしまい、Hν450以上は得られない。However, in this case, although the toughness is improved, the strength is reduced and Hv450 or higher cannot be obtained.
(発明が解決しようとする課題)
上記のような従来技術によるものではHv450以上の
高強度を有し、しかも高靭性をもったステンレス鋼を得
難い。(Problems to be Solved by the Invention) It is difficult to obtain stainless steel with high strength of Hv450 or higher and high toughness using the conventional techniques as described above.
又製造上作業性に劣り、あるいは著しく靭性に劣る。In addition, the workability in manufacturing is poor, or the toughness is significantly poor.
本発明はこのような従来のものにおける問題点を解決し
ようとするもので、張出しなどの靭性に冨み、Hv45
0以上の高強度をもったステンレス鋼を適切に得しめ、
又その容易な製造方法を提供しようとするものである。The present invention is an attempt to solve the problems with the conventional products, and has a high toughness such as overhang, Hv45
Properly obtain stainless steel with high strength of 0 or more,
It is also an object of the present invention to provide an easy manufacturing method.
「発明の構成」
(課題を解決するための手段)
1、 C: 0.020〜0.080wt%、Si
: 0.5〜2.0wt%、Mn : 0.1〜3.0
wt%、Cr : 10.0〜17.0wt%、Ni
: 5.0〜9.0svt%、Cu : 0.3〜2.
5 wt%、Ti : 0.1〜1.5饅t%、N :
0.005〜0.040wt%を含有し、残部が鉄お
よび不可避的不純物から成り、しかも2〜20%のオー
ステナイトと残部がマルテンサイト組織からなることを
特徴とする高強度・高靭性ステンレス鋼。"Structure of the invention" (Means for solving the problem) 1. C: 0.020-0.080wt%, Si
: 0.5-2.0wt%, Mn: 0.1-3.0
wt%, Cr: 10.0-17.0wt%, Ni
: 5.0-9.0svt%, Cu: 0.3-2.
5 wt%, Ti: 0.1-1.5 t%, N:
A high-strength, high-toughness stainless steel containing 0.005 to 0.040 wt%, the balance consisting of iron and inevitable impurities, and further comprising 2 to 20% austenite and the balance consisting of a martensitic structure.
2、 C: 0.020〜0.080iyt%、Si
: 0.5〜2.0wt%、Mn : 0.1〜3.
0wt%、Cr : 10.O〜17.0wt%、Ni
: 5.0〜9.0wt%、Cu : 0.3〜2.
5 iyt%、Ti : O,1〜1.5ht%、N
: 0.005〜0.040wt%を含有し、残部が鉄
および不可避的不純物から成り、溶体化処理状態でマル
テンサイト組織を呈するステンレス鋼を冷間圧延し、次
いで600〜1000℃での逆変態熱処理により2〜2
0%のオーステナイトを生成させ、その後400〜60
0℃での熱処理により時効硬化させることを特徴とする
高強度・高靭性ステンレス鋼の製造方法。2. C: 0.020-0.080iyt%, Si
: 0.5-2.0wt%, Mn: 0.1-3.
0wt%, Cr: 10. O~17.0wt%, Ni
: 5.0-9.0wt%, Cu: 0.3-2.
5 iyt%, Ti: O, 1-1.5ht%, N
: A stainless steel containing 0.005 to 0.040 wt%, the balance consisting of iron and unavoidable impurities, and exhibiting a martensitic structure in a solution treatment state is cold rolled, and then reverse transformation at 600 to 1000 °C 2-2 depending on heat treatment
Generate 0% austenite, then 400-60%
A method for producing high-strength and high-toughness stainless steel, which is characterized by age hardening by heat treatment at 0°C.
3、冷間圧延率を30〜95%とすることを特徴とする
前記2項に記載の高強度・高靭性ステンレス鋼の製造方
法。3. The method for producing high-strength and high-toughness stainless steel according to item 2 above, characterized in that the cold rolling rate is 30 to 95%.
(作用)
上記したような本発明について、その化学的成分組成範
囲についてwt%(以下車に%という)によって説明す
ると、以下の如くである。(Function) The chemical composition range of the present invention as described above is explained in terms of wt% (hereinafter referred to as %) as follows.
C: 0.020〜0.080%。C: 0.020-0.080%.
Cは、オーステナイト生成元素であり、逆変態処理後の
オーステナイトの生成と母相のマルテンサイトの強化に
作用する。これを発現させるためには0.020%以上
必要であり、これを下限とする。しかしながら過剰な添
加は冷間加工の変形能を低下させ製造が困難となること
から上限を0.080%とする。C is an austenite-forming element, and acts on the formation of austenite after the reverse transformation treatment and the strengthening of the matrix martensite. In order to achieve this, 0.020% or more is required, and this is set as the lower limit. However, excessive addition reduces deformability during cold working and makes manufacturing difficult, so the upper limit is set at 0.080%.
Si:0.5〜2.0%。Si: 0.5-2.0%.
Siは、固溶強化能が大きく母相強化に作用することか
ら0.5%以上が必要であり、これを下限とする。しか
し過剰に含有すると脆化するため上限を2.0%とし、
脆化をなからしめる。Si has a large solid solution strengthening ability and acts on strengthening the matrix, so 0.5% or more is required, and this is the lower limit. However, if it is contained in excess, it becomes brittle, so the upper limit is set at 2.0%.
Eliminate embrittlement.
Mn:0.1〜3.0%。Mn: 0.1-3.0%.
Mnは、オーステナイト生成元素であり、逆変態処理後
のオーステナイトの生成に作用する。この作用を適切に
得るため0.1%以上が必要であり、これを下限とする
。一方3.0%を越える添加では効果が飽和し、しかも
溶体化処理状態でオーステナイトが安定に存在するよう
になり強度不足となるため上限を3.0%とすることが
必要である。Mn is an austenite-forming element and acts on the formation of austenite after reverse transformation treatment. In order to properly obtain this effect, 0.1% or more is required, and this is set as the lower limit. On the other hand, if the addition exceeds 3.0%, the effect will be saturated, and moreover, austenite will exist stably in the solution treatment state, resulting in insufficient strength, so it is necessary to set the upper limit to 3.0%.
Cr: 10.O〜17.0%。Cr: 10. O~17.0%.
Crは、耐食性に作用し、ステンレス鋼としての耐食性
を得るためには10.0%以上必要であり、これを下限
とする。しかし17.0%を越える添加では溶体化処理
状態でオーステナイトが安定に存在するようになり強度
不足となるため上限を17.0%とし、強度を確保する
。Cr acts on corrosion resistance, and in order to obtain corrosion resistance as stainless steel, 10.0% or more is required, and this is set as the lower limit. However, if the addition exceeds 17.0%, austenite will stably exist in the solution treatment state, resulting in insufficient strength, so the upper limit is set at 17.0% to ensure strength.
Ni : 5. O〜9.0%。Ni: 5. O~9.0%.
Niは、オーステナイト生成元素であり、逆変態処理後
のオーステナイトの生成に作用する。この作用を有効に
得しめるため5.0%以上が必要であり、またCrと競
合して達成するためにも5.0%以上必要であって、こ
れを下限とする。しかし9.0%を越えて添加しても効
果が飽和し、経済的でないことになり、また溶体化処理
状態でオーステナイトが安定に存在するようになり強度
不足となるため上限を9.0%とすることが必要である
。Ni is an austenite-forming element and acts on the formation of austenite after reverse transformation treatment. In order to effectively obtain this effect, 5.0% or more is required, and in order to compete with Cr, 5.0% or more is also required, and this is taken as the lower limit. However, even if it is added in excess of 9.0%, the effect will be saturated and it will not be economical. Also, austenite will stably exist in the solution treatment state, resulting in insufficient strength, so the upper limit is set at 9.0%. It is necessary to do so.
Cu:0.3〜2.5%。Cu: 0.3-2.5%.
Cuは、オーステナイト生成元素であり、逆変態処理後
のオーステナイトの生成と、時効処理による析出硬化に
作用する。この作用を適切に発現させるためには0.3
%以上必要であり、これを下限とする。しかしながら2
.5%を越える添加では熱間加工性が劣化するため上限
を2.5%とすることが必要である。Cu is an austenite-forming element, and acts on the formation of austenite after reverse transformation treatment and precipitation hardening through aging treatment. In order to properly express this effect, 0.3
% or more is required, and this is the lower limit. However, 2
.. Addition of more than 5% deteriorates hot workability, so it is necessary to set the upper limit to 2.5%.
Ti : 0.1〜1.5%。Ti: 0.1-1.5%.
Tiは、固溶強化による母相強化と時効処理による析出
硬化に作用する。これらの作用を発現させるためには0
.1%以上が必要であるから、これを下限とする。又1
.5%を越える添加では著しく脆化するため上限を1,
5%とする。Ti acts on matrix strengthening through solid solution strengthening and precipitation hardening through aging treatment. In order to express these effects, 0
.. Since 1% or more is required, this is set as the lower limit. Again 1
.. Addition of more than 5% will cause significant embrittlement, so the upper limit should be set at 1.
5%.
N : O,OO5〜0.040%。N: O, OO5-0.040%.
Nは、オーステナイト生成元素であって、逆変態処理後
のオーステナイトの生成に作用し、また母相のマルテン
サイトの強化にも作用する。これらの作用を発現させる
ため0.005%を下限とするが、また過剰な添加はT
iと結合して強化に寄与しないTiNとなり、介在物と
して存在し冷間加工の変形能を低下させ製造が困難とな
ることから上限を0.040%とすることが必要である
。N is an austenite-forming element, and acts on the formation of austenite after reverse transformation treatment, and also acts on the strengthening of martensite, which is the parent phase. In order to express these effects, the lower limit is set at 0.005%, but excessive addition may cause T
It is necessary to set the upper limit to 0.040% because it combines with i and becomes TiN which does not contribute to strengthening, exists as an inclusion, reduces deformability during cold working, and makes manufacturing difficult.
本発明に用いられる綱は上述の成分元素以外の残部は基
本的にFeであるが脱酸を目的としたAl、脱硫を目的
としたCaやREM 、熱間加工性の改善を目的とした
Bの他、不可避不純物を含有させることができる。The steel used in the present invention basically consists of Fe for the purpose of deoxidizing, Ca and REM for desulfurization, and B for improving hot workability. In addition, unavoidable impurities can be included.
本発明によるものは母相のマルテンサイトによる硬質な
基地の中に高延性のオーステナイトを微細に分散させて
靭性を確保する。即ちこのオーステナイトを2%以上と
することにより該靭性を適切に得しめ、又その上限を2
0%とすることによって母相マルテンサイトによる高強
度を確保する。The steel according to the present invention secures toughness by finely dispersing highly ductile austenite in a hard matrix of martensite as the parent phase. That is, by setting this austenite to 2% or more, the toughness can be appropriately obtained, and the upper limit can be set to 2% or more.
By setting it to 0%, high strength due to the matrix martensite is ensured.
以上の化学的成分範囲の綱はその組織が溶体化処理状態
でマルテンサイトMi織を呈し、このことは冷間圧延の
作業性を向上させることに作用する。Steel having the above chemical composition range exhibits a martensitic Mi weave structure in the solution treatment state, and this serves to improve the workability of cold rolling.
すなわち溶体化処理状態でオーステナイト組織である鋼
の場合には加工硬化が大きく圧延作業が困難であり、し
かも加工誘起マルテンサイトは変態のコントロール、具
体的には圧延温度などの厳密な管理が必要であるのに対
して、溶体化処理状態でマルテンサイトMi織では圧延
温度の特別な管理が不要であり圧延作業がより容易にな
る。In other words, in the case of steel that has an austenitic structure in the solution-treated state, the work hardening is large and rolling is difficult, and work-induced martensite requires strict control of transformation, specifically the rolling temperature. On the other hand, the martensitic Mi woven fabric in the solution treatment state does not require any special control of the rolling temperature, making the rolling operation easier.
その製造方法について説明すると、冷間圧延は母相のマ
ルテンサイトの強化に作用し、また次工程での逆変態熱
処理で生成するオーステナイトを微細に生成させ安定化
させる。さらに逆変態により生成したオーステナイトを
均一に分散形成させるために不可欠である。これらの作
用を有効に発現させるためには30%以上の圧延率とす
る必要があり、これを下限とする。一方95%以上の圧
延率は実用的に困難であるからこれを上限とする。To explain the manufacturing method, cold rolling acts to strengthen the matrix martensite, and also stabilizes the austenite produced by the reverse transformation heat treatment in the next step by producing fine particles. Furthermore, it is essential for uniformly dispersing and forming austenite produced by reverse transformation. In order to effectively exhibit these effects, it is necessary to set the rolling ratio to 30% or more, and this is set as the lower limit. On the other hand, since it is practically difficult to achieve a rolling ratio of 95% or more, this is set as the upper limit.
より実用的には60〜90%の圧延率が望ましい。More practically, a rolling ratio of 60 to 90% is desirable.
また圧延温度についても特に規定しないが、時効析出を
防止するため400℃以下が好ま<、200℃以下が更
に好ましい。Further, the rolling temperature is not particularly specified, but is preferably 400°C or less, and more preferably 200°C or less in order to prevent aging precipitation.
冷間圧延後の逆変態熱処理は母相のマルテンサイトを部
分的にオーステナイトに逆変態させ硬質な基地の中に高
延性のオーステナイトを微細分散させることで靭性を付
与することに作用する。これを発現させるためには2%
以上のオーステナイト量を確保する必要があり、加熱温
度とともに逆変態オーステナイト量が増加することから
600℃以上に加熱することが必要であるのでこれを加
熱温度の下限とする。しかし1000℃を越えた温度に
加熱すると加熱時の逆変態オーステナイトは不安定とな
って熱処理後オーステナイトは分散残留しないことから
これを上限とする。添附図面第1図はこのことを示した
ものであり、600〜1000℃の範囲で部分的にオー
ステナイトが生成し、この範囲で靭性の指標となるパン
チテスト仕事量を4kgf・寵とすることができる。熱
処理時間は特に規定しないが逆変態したオーステナイト
の加工組織回復を防止するために10分以下が好ましく
、10秒以上5分以下が更に好ましい。The reverse transformation heat treatment after cold rolling works to impart toughness by partially transforming the matrix martensite into austenite and finely dispersing highly ductile austenite in the hard matrix. In order to make this happen, 2%
It is necessary to ensure the above amount of austenite, and since the amount of reverse transformed austenite increases with heating temperature, it is necessary to heat to 600° C. or higher, so this is set as the lower limit of the heating temperature. However, if heated to a temperature exceeding 1000° C., the reversely transformed austenite during heating becomes unstable and the austenite does not remain dispersed after heat treatment, so this is set as the upper limit. Figure 1 of the attached drawings shows this. Austenite is partially formed in the range of 600 to 1000°C, and in this range it is possible to set the punch test workload, which is an indicator of toughness, to 4 kgf. can. Although the heat treatment time is not particularly specified, it is preferably 10 minutes or less, more preferably 10 seconds or more and 5 minutes or less in order to prevent recovery of the processed structure of the reversely transformed austenite.
なお逆変態オーステナイト形成熱処理後に形状矯正を兼
ねた冷延率10%以下の軽度の圧延を行うことは全体的
な強化に一層有効である。Note that it is more effective for overall strengthening to perform light rolling at a cold rolling rate of 10% or less, which also serves as shape correction, after the heat treatment for forming reverse transformed austenite.
上述の逆変態熱処理後400〜600℃で行う時効熱処
理はε−CuとNi3TiあるいはNi3A lを析出
させ時効硬化させることに作用する。これを発現させる
ためには400℃以上に加熱することが必要であり、こ
れを加熱温度の下限とする。しかしながら600℃を越
えた温度に加熱すると上述したような部分的なオーステ
ナイトの逆変態が起こると共に過時効処理となって時効
硬化能は低下してしまい、強度が低下することからこれ
を上限とするべきである。The aging heat treatment performed at 400 to 600° C. after the above-mentioned reverse transformation heat treatment acts to precipitate ε-Cu and Ni3Ti or Ni3Al and age harden it. In order to bring this about, it is necessary to heat to 400° C. or higher, and this is the lower limit of the heating temperature. However, when heated to a temperature exceeding 600°C, partial reverse transformation of austenite occurs as described above, and the age hardening ability decreases due to over-aging treatment, resulting in a decrease in strength, so this is the upper limit. Should.
(実施例)
本発明によるものの具体的な実施例について説明すると
以下の如くである。(Example) Specific examples of the present invention will be described below.
実施例1゜
次の第1表に示すような化学成分を有するA〜Fの7種
の鋼を溶製した。鋼A−Eが本発明の規定する条件を満
足する綱であり、綱F、Gは比較鋼である。Example 1 Seven types of steel A to F having chemical compositions as shown in Table 1 below were melted. Steels A-E are steels that satisfy the conditions prescribed by the present invention, and steels F and G are comparative steels.
第1表
上記した名調は常法により熱間圧延してから酸洗、冷間
圧延、溶体化処理を繰返した試料を60%の冷延率で冷
間圧延し、板厚0.1 mの鋼板とした。これらのもの
は次いで750℃で1分間の逆変態熱処理をなし、50
0℃で10分間の時効熱処理を施した。比較例としては
逆変態熱処理を省略し、500℃で10分間の時効熱処
理のみを施した。Table 1 The above-mentioned tone was obtained by cold rolling a sample that had been hot rolled by a conventional method and then repeatedly subjected to pickling, cold rolling, and solution treatment at a cold rolling reduction of 60%, with a thickness of 0.1 m. steel plate. These items were then subjected to reverse transformation heat treatment at 750°C for 1 minute, and
Aging heat treatment was performed at 0°C for 10 minutes. As a comparative example, reverse transformation heat treatment was omitted and only aging heat treatment was performed at 500° C. for 10 minutes.
得られた各鋼板の強度を求めるためにビッカース硬度を
測定し、靭性の指標となる張出し性を求めるために小型
パンチテストを行い破断に到るまでの仕事量を測定し、
併せてX線回折によりテスト前の逆変態オーステナイト
量を測定した結果は次の第2表に示す如くである。The Vickers hardness was measured to determine the strength of each steel plate obtained, and a small punch test was conducted to determine the extensibility, which is an indicator of toughness, and the amount of work required to reach breakage was measured.
In addition, the amount of reversely transformed austenite before the test was measured by X-ray diffraction, and the results are shown in Table 2 below.
第2表
第2表から明らかなように本発明鋼であるA〜Efal
に750℃で1分間の逆変態熱処理を施した場合はオー
ステナイトを10%以上含み、いずれもHv>453以
上の高強度を示し、しかもパンチテストの仕事量は5k
gf−m以上の優れた値を示している。これに対し逆変
態熱処理を省略した場合にはオーステナイトを含まず、
高強度となるもののパンチテストの仕事量は2kgf−
日収下である。As is clear from Table 2, A to Efal, which are the steels of the present invention,
When subjected to reverse transformation heat treatment at 750℃ for 1 minute, it contains more than 10% austenite and shows high strength with Hv>453 or more, and the work amount in the punch test is 5k
It shows an excellent value of gf-m or higher. On the other hand, if the reverse transformation heat treatment is omitted, no austenite is included,
Although the strength is high, the amount of work in the punch test is 2kgf-
It is below the daily income.
比較鋼であるF@に逆変態熱処理を施した場合にはパン
チテスト仕事量は大きいものの強度は高々Hシー364
であり、逆変態熱処理を省略した場合には高強度となる
もののパンチテスト仕事量が2kgf−wr以下となっ
てしまう。F鋼はCrとNが本発明の範囲を越えており
オーステナイトが安定な綱である。このため逆変態熱処
理によりオーステナイト量が著しく増加することに起因
し軟化してしまう。また冷間圧延による加工硬化を利用
して高強度化とした場合には靭性が著しく低下してしま
う。G綱に逆変態熱処理を施した場合にはパンチテスト
仕事量は大きいものの強度は高々Hv−398であり、
逆変態熱処理を省略しても強度は)1v450程度であ
る。この場合にはパンチテスト仕事量も2kgf−wm
以下となってしまう。G鋼はCuとTiが本発明の範囲
を満たさない綱であるため、時効硬化量が小さいことに
起因して高強度とならない。When the comparison steel F@ is subjected to reverse transformation heat treatment, the punch test work is large, but the strength is at most H Sea 364.
Therefore, if the reverse transformation heat treatment is omitted, the strength will be high, but the punch test work will be less than 2 kgf-wr. F steel is a steel with Cr and N exceeding the range of the present invention and austenite being stable. Therefore, the amount of austenite increases significantly due to the reverse transformation heat treatment, resulting in softening. Furthermore, when work hardening by cold rolling is used to increase the strength, the toughness is significantly reduced. When reverse transformation heat treatment is applied to G steel, the punch test work is large, but the strength is at most Hv-398,
Even if the reverse transformation heat treatment is omitted, the strength is about 1v450. In this case, the punch test workload is also 2kgf-wm.
The result will be the following. Since G steel is a steel whose Cu and Ti do not satisfy the range of the present invention, it does not have high strength due to a small amount of age hardening.
実施例2゜
前記した第1表における本発明鋼Aについて、その冷延
率と逆変態熱処理温度を種々に変化させて処理した後、
500℃で1分間の時効熱処理を行った場合のビッカー
ス硬度、パンチテスト仕事量、オーステナイト量を求め
た結果をまとめて示すと、次の第3表の如(である。Example 2 The invention steel A shown in Table 1 above was treated by variously changing its cold rolling rate and reverse transformation heat treatment temperature.
The results of Vickers hardness, punch test work, and austenite amount obtained when aging heat treatment was performed at 500° C. for 1 minute are summarized in Table 3 below.
第3表
第3表から明らかなように本発明条件を満たす隘1〜5
のものにおいてはHv>450、パンチテスト仕事量>
9kgf−mであり、オーステナイトを5%以上含む。Table 3 As is clear from Table 3, Nos. 1 to 5 satisfy the conditions of the present invention.
For those with Hv>450, punch test workload>
9 kgf-m and contains 5% or more of austenite.
これに対しぬ6〜8ではいずれもHv<450、パンチ
テスト仕事量<3.5kgf−wである。このことは階
6では逆変態熱処理温度が1060℃で本発明の範囲を
越え、一方N117〜8では冷延率が20%以下と本発
明の範囲を下回るため高強度を達成できないばかりでな
く、オーステナイト量が1.5%以下となり、靭性も付
与できない。On the other hand, in cases 6 to 8, Hv<450 and punch test workload<3.5 kgf-w. This means that for floor 6, the reverse transformation heat treatment temperature is 1060°C, which is beyond the range of the present invention, while for N117 to 8, the cold rolling rate is 20% or less, which is below the range of the present invention, so not only can high strength not be achieved. The amount of austenite is 1.5% or less, and toughness cannot be imparted.
「発明の効果」
以上説明したような本発明によるときは、冷間圧延作業
性に優れたマルテンサイト系のステンレスにおいて延性
に冨むオーステナイトを適切に導入せしめ、耐食性と共
に高強度を有し、張出し性などの高靭性を具備したステ
ンレス鋼を提供し、又その好ましい安定した製造を可能
ならしめるものであるから工業的にその効果の大きい発
明である。"Effects of the Invention" According to the present invention as explained above, highly ductile austenite is appropriately introduced into martensitic stainless steel that has excellent cold rolling workability, and has corrosion resistance and high strength, and This invention is industrially very effective because it provides stainless steel with high toughness such as toughness and enables its preferable and stable production.
図面は本発明の技術的内容を示すものであって、本発明
の実施例における綱Aについて逆変態熱処理温度と硬度
、オーステナイト量、パンチテスト仕事量の関係を示し
た図表である。
然してこの図表において、○は逆変態処理後、・は時効
処理後の測定結果を示すものである。The drawing shows the technical content of the present invention, and is a chart showing the relationship between reverse transformation heat treatment temperature, hardness, austenite content, and punch test work for wire A in an example of the present invention. However, in this chart, ◯ indicates the measurement results after reverse transformation treatment, and ◯ indicates the measurement results after aging treatment.
Claims (1)
〜2.0wt%、Mn:0.1〜3.0wt%、Cr:
10.0〜17.0wt%、Ni:5.0〜9.0wt
%、Cu:0.3〜2.5wt%、Ti:0.1〜1.
5wt%、N:0.005〜0.040wt%を含有し
、残部が鉄および不可避的不純物から成り、しかも2〜
20%のオーステナイトと残部がマルテンサイト組織か
らなることを特徴とする高強度・高靭性ステンレス鋼。 2、C:0.020〜0.080wt%、Si:0.5
〜2.0wt%、Mn:0.1〜3.0wt%、Cr:
10.0〜17.0wt%、Ni:5.0〜9.0wt
%、Cu:0.3〜2.5wt%、Ti:0.1〜1.
5wt%、N:0.005〜0.040wt%を含有し
、残部が鉄および不可避的不純物から成り、溶体化処理
状態でマルテンサイト組織を呈するステンレス鋼を冷間
圧延し、次いで600〜1000℃での逆変態熱処理に
より2〜20%のオーステナイトを生成させ、その後4
00〜600℃での熱処理により時効硬化させることを
特徴とする高強度・高靭性ステンレス鋼の製造方法。 3、冷間圧延率を30〜95%とすることを特徴とする
請求項2に記載の高強度・高靭性ステンレス鋼の製造方
法。[Claims] 1. C: 0.020 to 0.080 wt%, Si: 0.5
~2.0wt%, Mn:0.1~3.0wt%, Cr:
10.0-17.0wt%, Ni: 5.0-9.0wt
%, Cu: 0.3 to 2.5 wt%, Ti: 0.1 to 1.
5 wt%, N: 0.005 to 0.040 wt%, the balance consists of iron and inevitable impurities, and 2 to
A high-strength, high-toughness stainless steel characterized by 20% austenite and the remainder martensitic structure. 2, C: 0.020-0.080wt%, Si: 0.5
~2.0wt%, Mn:0.1~3.0wt%, Cr:
10.0-17.0wt%, Ni: 5.0-9.0wt
%, Cu: 0.3 to 2.5 wt%, Ti: 0.1 to 1.
A stainless steel containing 5 wt%, N: 0.005 to 0.040 wt%, the remainder consisting of iron and unavoidable impurities, and exhibiting a martensitic structure in a solution treatment state is cold rolled, and then heated at 600 to 1000°C. 2 to 20% austenite is produced by reverse transformation heat treatment at
A method for manufacturing high-strength and high-toughness stainless steel, characterized by age hardening by heat treatment at 00 to 600°C. 3. The method for manufacturing high-strength and high-toughness stainless steel according to claim 2, characterized in that the cold rolling rate is 30 to 95%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13970090A JPH0436441A (en) | 1990-05-31 | 1990-05-31 | High strength and high toughness stainless steel and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13970090A JPH0436441A (en) | 1990-05-31 | 1990-05-31 | High strength and high toughness stainless steel and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0436441A true JPH0436441A (en) | 1992-02-06 |
Family
ID=15251388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13970090A Pending JPH0436441A (en) | 1990-05-31 | 1990-05-31 | High strength and high toughness stainless steel and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0436441A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006136952A (en) * | 2004-11-10 | 2006-06-01 | Tokusen Kogyo Co Ltd | Electrode wire for electric discharge machining |
JP2010516890A (en) * | 2007-01-17 | 2010-05-20 | オウトクンプ オサケイティオ ユルキネン | Method for manufacturing austenitic steel articles |
CN103695796A (en) * | 2013-12-12 | 2014-04-02 | 钢铁研究总院 | High-strength and high-toughness stainless steel and preparation method thereof |
CN104032225A (en) * | 2014-06-21 | 2014-09-10 | 钢铁研究总院 | High-strength high-toughness stainless steel screw material |
CN106011678A (en) * | 2016-06-17 | 2016-10-12 | 浙江大学 | High-strength and high-toughness stainless steel and processing method thereof |
CN106676430A (en) * | 2016-12-19 | 2017-05-17 | 苏州金威特工具有限公司 | Stainless steel |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51141710A (en) * | 1975-06-02 | 1976-12-06 | Nisshin Steel Co Ltd | Stainless steel for spring having good forming property after cold wor king and high hardness after aging |
JPS5357114A (en) * | 1976-11-04 | 1978-05-24 | Nisshin Steel Co Ltd | Stainless steel for springs excellent in forming workability * manufacturing efficiency and age hardening ability |
JPS56139663A (en) * | 1980-04-03 | 1981-10-31 | Nisshin Steel Co Ltd | Precipitation hardening martensite stainless steel for steel belt |
JPS60152660A (en) * | 1984-01-23 | 1985-08-10 | Nisshin Steel Co Ltd | Precipitation hardening martensitic stainless steel |
JPS62256949A (en) * | 1986-04-30 | 1987-11-09 | Nisshin Steel Co Ltd | Stainless steel for blade substrate |
-
1990
- 1990-05-31 JP JP13970090A patent/JPH0436441A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51141710A (en) * | 1975-06-02 | 1976-12-06 | Nisshin Steel Co Ltd | Stainless steel for spring having good forming property after cold wor king and high hardness after aging |
JPS5357114A (en) * | 1976-11-04 | 1978-05-24 | Nisshin Steel Co Ltd | Stainless steel for springs excellent in forming workability * manufacturing efficiency and age hardening ability |
JPS56139663A (en) * | 1980-04-03 | 1981-10-31 | Nisshin Steel Co Ltd | Precipitation hardening martensite stainless steel for steel belt |
JPS60152660A (en) * | 1984-01-23 | 1985-08-10 | Nisshin Steel Co Ltd | Precipitation hardening martensitic stainless steel |
JPS62256949A (en) * | 1986-04-30 | 1987-11-09 | Nisshin Steel Co Ltd | Stainless steel for blade substrate |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006136952A (en) * | 2004-11-10 | 2006-06-01 | Tokusen Kogyo Co Ltd | Electrode wire for electric discharge machining |
JP2010516890A (en) * | 2007-01-17 | 2010-05-20 | オウトクンプ オサケイティオ ユルキネン | Method for manufacturing austenitic steel articles |
EP2106453A4 (en) * | 2007-01-17 | 2017-01-11 | Outokumpu Oyj | Method for manufacturing an austenitic steel object |
CN103695796A (en) * | 2013-12-12 | 2014-04-02 | 钢铁研究总院 | High-strength and high-toughness stainless steel and preparation method thereof |
CN104032225A (en) * | 2014-06-21 | 2014-09-10 | 钢铁研究总院 | High-strength high-toughness stainless steel screw material |
CN106011678A (en) * | 2016-06-17 | 2016-10-12 | 浙江大学 | High-strength and high-toughness stainless steel and processing method thereof |
JP2018538438A (en) * | 2016-06-17 | 2018-12-27 | 浙江大学Zhejiang University | High strength and toughness stainless steel and processing method thereof |
CN106676430A (en) * | 2016-12-19 | 2017-05-17 | 苏州金威特工具有限公司 | Stainless steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4838961A (en) | Method of manufacturing high strength blank a bolt | |
US6312529B1 (en) | Steel compositions and methods of processing for producing cold-formed and carburized components with fine-grained microstructures | |
JPS61295356A (en) | High strength stainless steel | |
JP4207137B2 (en) | High hardness and high corrosion resistance stainless steel | |
US3347663A (en) | Precipitation hardenable stainless steel | |
JPH0436441A (en) | High strength and high toughness stainless steel and its manufacture | |
JP4846916B2 (en) | Hot rolled steel with extremely high elastic limits and mechanical strength, especially useful for manufacturing automotive vehicle parts | |
US4259126A (en) | Method of making razor blade strip from austenitic steel | |
JP2010189719A (en) | Age-hardening type stainless steel sheet for spring | |
JPH064889B2 (en) | Method for manufacturing thick ultra high strength steel | |
JPH0320408A (en) | Production of high tensile steel stock excellent in toughness at low temperature | |
JPS625986B2 (en) | ||
JPH0830253B2 (en) | Precipitation hardening type martensitic stainless steel with excellent workability | |
JP2680350B2 (en) | Method for producing Cr-Mo steel sheet having excellent toughness | |
CN115466902A (en) | Niobium-containing economical high-plasticity duplex stainless steel with excellent intergranular corrosion resistance and manufacturing method thereof | |
JP2024500865A (en) | Martensitic stainless steel with improved strength and corrosion resistance and its manufacturing method | |
CN116018421A (en) | High strength austenitic stainless steel having excellent productivity and cost reduction effect and method for producing the same | |
JP3204080B2 (en) | Method for producing precipitation-hardened martensitic stainless steel with excellent cold forgeability | |
JP2000063947A (en) | Manufacture of high strength stainless steel | |
JPH07110970B2 (en) | Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking | |
JPS6357745A (en) | High-strength stainless steel excellent in workability | |
JP2007113068A (en) | Spring material made of high strength and high corrosion resistant stainless steel having excellent bendability | |
JP3032395B2 (en) | Stainless steel for high-strength spring, high-strength stainless spring, and method of manufacturing the same | |
US2854330A (en) | Stainless steel and method | |
JP2780104B2 (en) | High-efficiency production method of tough steel |