JPH01283828A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01283828A
JPH01283828A JP63113008A JP11300888A JPH01283828A JP H01283828 A JPH01283828 A JP H01283828A JP 63113008 A JP63113008 A JP 63113008A JP 11300888 A JP11300888 A JP 11300888A JP H01283828 A JPH01283828 A JP H01283828A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicon layer
semiconductor substrate
impurity
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63113008A
Other languages
Japanese (ja)
Inventor
Mikio Ota
太田 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63113008A priority Critical patent/JPH01283828A/en
Publication of JPH01283828A publication Critical patent/JPH01283828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To arrange the constitution such that accumulation of charge does not occur in a gate electrode at ion implantation of impurity during transistor formation by forming a polycrystalline silicon layer which contains impurity in high concentration only at the rear side of a semiconductor substrate. CONSTITUTION:An oxide film 102 for element isolation, a gate insulation film 103, and impurity diffusion regions 104 and 105 are formed on a semiconductor substrate 101, and further polycrystalline silicon layers 106 and 107 are formed on the obverse and the reverse, respectively. Next, substance 108 which contains impurity such as spin-on-glass, etc., is applied on the polycrystalline silicon layer 107 and bardened. Subsequently, the semiconductor substrate is heat-treated and impurity is diffused in the polycrystalline silicon layer 107 to make it conductive, and then diffusion source 108 is removed so as to expose the polycrystalline silicon layer 107. Since the polycrystalline silicon layer 107 has conductivity this way, charge generated in a gate electrode 109 at ion implantation flows out to the outside, and it can avoid giving adverse effect on the gate insulation film 103.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は半導体装置、特に異極ゲートトランジスタを有
するCMOS型半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a method for manufacturing a semiconductor device, particularly a CMOS type semiconductor device having a different-polar gate transistor.

〔従来の技術〕[Conventional technology]

従来の異極トランジスタを有するCMOS型半導体装置
の製造方法の1例を第2図に示す。
FIG. 2 shows an example of a conventional method for manufacturing a CMOS type semiconductor device having different polarity transistors.

工程(1)・・・第2図(a) 素子分離用酸化膜202、ゲート絶縁1[1203、低
濃度N型不純物拡散領域204及び低濃度P型不純物拡
散領域205が形成された半導体基板201の表面及び
裏面に多結晶シリコン層206を形成する。
Step (1)...FIG. 2(a) Semiconductor substrate 201 on which element isolation oxide film 202, gate insulation 1 [1203, low concentration N-type impurity diffusion region 204, and low concentration P-type impurity diffusion region 205 are formed] A polycrystalline silicon layer 206 is formed on the front and back surfaces.

工程(2)・・・第2図(b) 半導体基板の表面に形成された多結晶シリコン206を
バターニングしゲート電極配線207を形成する。
Step (2)...FIG. 2(b) The polycrystalline silicon 206 formed on the surface of the semiconductor substrate is patterned to form a gate electrode wiring 207.

工程(3)・・・第2図(c) Nch)ランジスタ形成領域をレジストでカバー L 
P c h トランジスタ形成領域にBo等のP型不純
物211をイオン注入し、ソース・ドレイン領域208
を形成し、同時にゲート電時にゲート電極配線207も
同濃度の不純物を拡散する。
Step (3)...Figure 2(c) Nch) Cover the transistor formation area with resist L
A P-type impurity 211 such as Bo is ion-implanted into the P ch transistor formation region, and the source/drain region 208 is
At the same time, when the gate electrode wiring 207 is applied, impurities of the same concentration are diffused into the gate electrode wiring 207.

工程(4)・・・第2図(d) Pchトランジスタ形成領域をレジストでカバーLNc
h)ランジスタ形成領域にP+等のN型不純物212を
イオン注入し、ソース・ドレイン領域210を形成し、
同時にゲート電極配線209にも同濃度の不純物を拡散
する。
Step (4)...Figure 2(d) Covering the Pch transistor formation area with resist LNc
h) Ion-implanting an N-type impurity 212 such as P+ into the transistor formation region to form a source/drain region 210;
At the same time, impurities of the same concentration are diffused into the gate electrode wiring 209 as well.

以上の工程により同一基板上にPchとNchとで異な
る導電型のゲート電極を有するCMOS型半導体装置が
形成される。
Through the above steps, a CMOS semiconductor device having gate electrodes of different conductivity types for Pch and Nch is formed on the same substrate.

[発明が解決しようとする課題] しかし前述の従来の技術では、半導体基板の裏面が、不
純物を含まないことにより非常に高い抵抗値を有する多
結晶シリコン層で絶縁されているため、イオン注入の際
、ゲート電極に正電荷が蓄積し、一定値を越すと基板に
流入し、その際ゲート絶縁膜を破壊ないし劣化させるこ
とになる。その結果、半導体装置の機能が損われる、あ
るいは信頼性が低下するという課題を有する。
[Problems to be Solved by the Invention] However, in the conventional technology described above, the back surface of the semiconductor substrate is insulated with a polycrystalline silicon layer that does not contain impurities and has a very high resistance value, so ion implantation is difficult. At this time, positive charges are accumulated in the gate electrode, and when they exceed a certain value, they flow into the substrate, causing destruction or deterioration of the gate insulating film. As a result, there is a problem that the functionality of the semiconductor device is impaired or the reliability is reduced.

本発明はこのような課題を解決するもので、その目的と
するところは、異極トランジスタを有する半導体装置を
信頼性を損なわず、また高い収率で製造することが可能
な半導体装置の製造方法を提供するところにある。
The present invention is intended to solve these problems, and its purpose is to provide a method for manufacturing a semiconductor device that can manufacture a semiconductor device having a different polarity transistor at a high yield without impairing reliability. It is in a place where we provide.

[課題を解決するための手段] 本発明による半導体装置の製造方法は、素子分離用酸化
膜、ゲート絶縁膜、及び不純物拡散領域等が形成された
半導体基板の表面及び裏面に多結晶シリコン層を形成す
る工程、前記多結晶シリコン層が形成された半導体基板
の裏面に不純物を含んだ薄膜を形成する工程、前記半導
体基板に加熱処理をした後前記不純物を含んだ薄膜を含
んだ薄膜を除去する工程を含むことを特徴とする。
[Means for Solving the Problems] A method for manufacturing a semiconductor device according to the present invention includes forming a polycrystalline silicon layer on the front and back surfaces of a semiconductor substrate on which an oxide film for element isolation, a gate insulating film, an impurity diffusion region, etc. are formed. forming a thin film containing impurities on the back surface of the semiconductor substrate on which the polycrystalline silicon layer is formed; removing the thin film containing the impurity-containing thin film after heat-treating the semiconductor substrate; It is characterized by including a process.

【実 施 例J 本発明による異極ゲートを有する半導体装置の製造方法
の1例を第1図(a)〜(d)に示す。
Embodiment J An example of a method for manufacturing a semiconductor device having a different polarity gate according to the present invention is shown in FIGS. 1(a) to 1(d).

以下工程別に説明する。Each step will be explained below.

工程l・・・第1図(a) 半導体基板101上に周知の技術を用いて素子分離用酸
化膜102、ゲート絶縁膜103、低濃度N型不純物拡
散領域104、低濃度P型不純物拡散領域105を形成
し、さらに表面及び裏面に多結晶シリコン層106,1
07を形成する。
Step 1...FIG. 1(a) An oxide film 102 for element isolation, a gate insulating film 103, a low concentration N-type impurity diffusion region 104, and a low concentration P-type impurity diffusion region are formed on a semiconductor substrate 101 using a well-known technique. 105 is formed, and polycrystalline silicon layers 106, 1 are further formed on the front and back surfaces.
07 is formed.

工程2・・・第1図(b) 前記基板表面に形成された多結晶シリコン層107上に
SOG (スピン、オン、グラス)等の不純物を含んだ
物質を回転塗布しベークにより硬化させる。
Step 2...FIG. 1(b) A substance containing impurities such as SOG (spin, on, glass) is spin-coated onto the polycrystalline silicon layer 107 formed on the surface of the substrate and hardened by baking.

工程3・・・第1図(c) 前記裏面にのみ拡散源を形成された半導体基板に加熱処
理を行ない、半導体基板の裏面に形成された多結晶シリ
コン層107に不純物を拡散し導電性とした後、前記拡
散源108を除去し、多結晶シリコン層107を露出さ
せる。
Step 3...FIG. 1(c) Heat treatment is performed on the semiconductor substrate on which a diffusion source is formed only on the back surface, and impurities are diffused into the polycrystalline silicon layer 107 formed on the back surface of the semiconductor substrate to make it conductive. After that, the diffusion source 108 is removed to expose the polycrystalline silicon layer 107.

工程4・・・第1図(d) 基板表面に露出している多結晶シリコン層106を周知
の技術でバターニングして配線を兼ねるゲート電極10
9を形成する。
Step 4...FIG. 1(d) The polycrystalline silicon layer 106 exposed on the substrate surface is patterned using a well-known technique to form a gate electrode 10 which also serves as a wiring.
form 9.

以下前述の従来の技術と同様に低濃度N型不純物拡散領
域104及び低濃度P型不純物拡散領域105にそれぞ
れ別個に不純物をイオン注入し、Pch及びNchトラ
ンジスタを形成する。その際、基板裏面に電比している
多結晶シリコン層107が不純物を拡散され導電性をも
っているため、イオン注入の際に基板表面、特にゲート
電極109に生じた電荷が多量に蓄積されることなしに
半導体装置外部へと流出し、ゲート絶縁膜103に悪影
響を与えることが回避できる。
Thereafter, similarly to the conventional technique described above, impurity ions are implanted into the low concentration N-type impurity diffusion region 104 and the low concentration P-type impurity diffusion region 105, respectively, to form Pch and Nch transistors. At this time, since the polycrystalline silicon layer 107 that is electrically connected to the back surface of the substrate has impurity diffused and has conductivity, a large amount of charge generated on the substrate surface, especially the gate electrode 109, during ion implantation may be accumulated. It is possible to avoid leakage to the outside of the semiconductor device and adversely affect the gate insulating film 103.

尚、本実施例では拡散源を半導体基板の裏面にのみ形成
する手段を示したが、それが装置の能力上不可能な場合
、PSG等のように不純物を含んだ酸化膜を基板の周囲
全体に形成した後、エツチング等で基板上面に形成され
た部分を除去し、裏面にのみ拡散源を形成することも可
能である。
In this example, a method of forming the diffusion source only on the back surface of the semiconductor substrate was shown, but if this is not possible due to the capability of the device, an oxide film containing impurities such as PSG may be formed all around the substrate. It is also possible to form the diffusion source only on the back surface by removing the portion formed on the top surface of the substrate by etching or the like.

[発明の効果] 以上述べたように本発明によれば半導体基板の裏面にの
み不純物を高濃度に含む多結晶シリコン層を形成するこ
とにより、トランジスタ形成時の不純物のイオン注入の
際、半導体基板の裏面と外部(イオン注入装置の一部)
との導通を可能にし、ゲート電極に電荷の蓄積が生じる
のをさけることが可能となり、その結果ゲート絶縁膜に
悪影響を与えずに異極トランジスタを有する半導体装置
の形成が可能になるという効果を有する。
[Effects of the Invention] As described above, according to the present invention, by forming a polycrystalline silicon layer containing a high concentration of impurities only on the back surface of a semiconductor substrate, the semiconductor substrate is back side and outside (part of ion implanter)
This makes it possible to avoid charge accumulation in the gate electrode, and as a result, it is possible to form a semiconductor device having a different polarity transistor without adversely affecting the gate insulating film. have

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明による半導体装置の製造
方法の実施例を示す主要断面図であり、第2図(a)〜
(d)は従来の技術による半導体装置の製造工程を示す
主要工程断面図である。 101.201・・半導体基板 102.202・・素子分離用酸化膜 103.203・・ゲート絶縁膜 104.204・・低濃度N型不純物拡散領域105.
205・・低濃度P型不純物拡散領域106.206・
・多結晶シリコン層 107・・・・・・多結晶シリコン層 108・・・・・・不純物拡散源 109・・・・・・ゲート電極を兼ねる配線207.2
09・・ゲート電極を兼ねる配線208.210・・ソ
ース、ドレイン領域211・・・・・・P型不純物 212・・・・・・N型不純物 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 上 柳 雅 誉(他1名)$ 2 図
1(a) to 1(d) are main cross-sectional views showing an embodiment of the method for manufacturing a semiconductor device according to the present invention, and FIGS.
(d) is a main process sectional view showing a manufacturing process of a semiconductor device according to a conventional technique. 101.201...Semiconductor substrate 102.202...Oxide film for element isolation 103.203...Gate insulating film 104.204...Low concentration N-type impurity diffusion region 105.
205...Low concentration P type impurity diffusion region 106.206...
・Polycrystalline silicon layer 107...Polycrystalline silicon layer 108...Impurity diffusion source 109...Wiring 207.2 that also serves as a gate electrode
09...Wiring that also serves as gate electrode 208.210...Source, drain region 211...P-type impurity 212...N-type impurity and above Applicant Seiko Epson Corporation Agent Patent Attorney Kamiyanagi Masa Homare (1 other person) $ 2 Figure

Claims (1)

【特許請求の範囲】[Claims]  素子分離用酸化膜、ゲート絶縁膜、及び不純物拡散領
域等が形成された半導体基板の表面及び裏面に多結晶シ
リコン層を形成する工程、前記多結晶シリコン層が形成
された半導体基板の裏面に不純物を含んだ薄膜を形成す
る工程、前記半導体基板に加熱処理をした後、前記不純
物を含んだ薄膜を除去する工程を含むことを特徴とする
半導体装置の製造方法。
A step of forming a polycrystalline silicon layer on the front and back surfaces of a semiconductor substrate on which an oxide film for element isolation, a gate insulating film, an impurity diffusion region, etc. are formed, and a step of forming an impurity layer on the back surface of the semiconductor substrate on which the polycrystalline silicon layer is formed. A method for manufacturing a semiconductor device, comprising the steps of forming a thin film containing impurities, and removing the thin film containing impurities after heat-treating the semiconductor substrate.
JP63113008A 1988-05-10 1988-05-10 Manufacture of semiconductor device Pending JPH01283828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63113008A JPH01283828A (en) 1988-05-10 1988-05-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63113008A JPH01283828A (en) 1988-05-10 1988-05-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01283828A true JPH01283828A (en) 1989-11-15

Family

ID=14601124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63113008A Pending JPH01283828A (en) 1988-05-10 1988-05-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01283828A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308790A (en) * 1992-10-16 1994-05-03 Ncr Corporation Selective sidewall diffusion process using doped SOG
US5312512A (en) * 1992-10-23 1994-05-17 Ncr Corporation Global planarization using SOG and CMP
US5322805A (en) * 1992-10-16 1994-06-21 Ncr Corporation Method for forming a bipolar emitter using doped SOG
US5340770A (en) * 1992-10-23 1994-08-23 Ncr Corporation Method of making a shallow junction by using first and second SOG layers
US5418179A (en) * 1988-05-31 1995-05-23 Yamaha Corporation Process of fabricating complementary inverter circuit having multi-level interconnection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418179A (en) * 1988-05-31 1995-05-23 Yamaha Corporation Process of fabricating complementary inverter circuit having multi-level interconnection
US5308790A (en) * 1992-10-16 1994-05-03 Ncr Corporation Selective sidewall diffusion process using doped SOG
US5322805A (en) * 1992-10-16 1994-06-21 Ncr Corporation Method for forming a bipolar emitter using doped SOG
US5312512A (en) * 1992-10-23 1994-05-17 Ncr Corporation Global planarization using SOG and CMP
US5340770A (en) * 1992-10-23 1994-08-23 Ncr Corporation Method of making a shallow junction by using first and second SOG layers
US6010963A (en) * 1992-10-23 2000-01-04 Hyundai Electronics America Global planarization using SOG and CMP

Similar Documents

Publication Publication Date Title
JP3181695B2 (en) Method for manufacturing semiconductor device using SOI substrate
US4517731A (en) Double polysilicon process for fabricating CMOS integrated circuits
JPH01283828A (en) Manufacture of semiconductor device
JPH02271673A (en) Semiconductor device
JP2730535B2 (en) Method for manufacturing semiconductor device
EP0712152A1 (en) Semiconductor device and method for its manufacture
JPS63181378A (en) Manufacture of semiconductor device
JPS61251166A (en) Manufacture of semiconductor device
JPH0328833B2 (en)
JPS60140862A (en) Semiconductor memory device
JPH01283827A (en) Manufacture of semiconductor device
JPH01283826A (en) Manufacture of semiconductor device
JPH0479336A (en) Production of semiconductor device
JPS60133755A (en) Manufacture of semiconductor device
JP3147374B2 (en) Semiconductor device
JP2556618B2 (en) Method for manufacturing field effect semiconductor device
JPH04363019A (en) Manufacture of semiconductor device
JPH04338650A (en) Semiconductor device and manufacture thereof
JPS6254959A (en) Manufacture of mis semiconductor device
JPH02174236A (en) Manufacture of semiconductor device
JPS63300564A (en) Manufacture of semiconductor device
JPH04179162A (en) Semiconductor device and manufacture thereof
JPS6161548B2 (en)
JPH01278773A (en) Manufacture of semiconductor integrated circuit
JPH0621464A (en) Thin film mos transistor