JPH01281436A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH01281436A
JPH01281436A JP63111016A JP11101688A JPH01281436A JP H01281436 A JPH01281436 A JP H01281436A JP 63111016 A JP63111016 A JP 63111016A JP 11101688 A JP11101688 A JP 11101688A JP H01281436 A JPH01281436 A JP H01281436A
Authority
JP
Japan
Prior art keywords
liquid crystal
nonlinear resistance
switching
resistance element
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63111016A
Other languages
Japanese (ja)
Inventor
Mitsutaka Nishikawa
西川 光貴
Katsumi Suzuki
克己 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63111016A priority Critical patent/JPH01281436A/en
Publication of JPH01281436A publication Critical patent/JPH01281436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To prevent cracking of glass during the course of cooling and to improve yield by forming a nonlinear resistance element for switching of a MIM element the insulating film of which consists of the anodized film of Ta and annealing the anodized film of the Ta by an induction heating system. CONSTITUTION:The nonlinear resistance element for switching is the MIM (metal Insulator Metal) element the insulating film of which consists of the anodized film of the Ta. The anodized film of the Ta is annealed by the induction heating method. The annealing of the anodized film is thereby enabled and 2-5% fraction defective of glass crack is decreased to 0 without deterioration the current-voltage characteristics of the MIM nonlinear resistance element and without increasing the fluctuation in the characteristics thereof.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶表示装置に関わり、詳しくはスイッチング
用非線形抵抗2端子素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal display device, and more particularly to a nonlinear resistance two-terminal element for switching.

〔従来の技術〕[Conventional technology]

アクティブマトリックス型液晶表示装置におけるスイッ
チング用非線形抵抗2端子素子であるM工Mは、それぞ
れ2つの電極に挾まれた絶縁層が高電界で電流を流す性
質を利用しており非線形は電流−電圧特性のメカニズム
は5chottkyやPools−?renks1機構
等によって説明されている。これらの素子構造例の断面
図を第1図に示す。
MM, which is a nonlinear resistance two-terminal element for switching in active matrix liquid crystal display devices, utilizes the property that an insulating layer sandwiched between two electrodes allows current to flow in a high electric field, and the nonlinearity is a current-voltage characteristic. The mechanism is 5chottky and Pools-? This is explained by the renks1 mechanism, etc. A cross-sectional view of an example of these element structures is shown in FIG.

一番簡便で通常実施されているものはガラス基板上に’
raをスパッタリングで形成し、フォトリングラフィで
パターニングする。Taはドライエツチングでもウェッ
トエツチングでも良い。通常はOF、 −) 0.のエ
ツチングガスを用いたドライエツチング法が用いられる
。このバターニングされたTa膜を陽極酸化する。陽極
酸化用の溶液は1%のクエン酸を用いる例が多い。この
陽極酸化後ρそれぞれQ素子特性のバラツキを少なくす
る意味で、抵抗体を使ったアニール炉でアニールする。
The simplest and most commonly implemented method is on a glass substrate.
ra is formed by sputtering and patterned by photolithography. Ta may be etched by dry etching or wet etching. Usually OF, -) 0. A dry etching method using etching gas is used. This buttered Ta film is anodized. 1% citric acid is often used as the solution for anodizing. After this anodization, ρ is annealed in an annealing furnace using a resistor in order to reduce variations in Q element characteristics.

この膜が絶縁層となる。This film becomes an insulating layer.

この後スパッタリングでOrの層を形成する。これもO
rだ限るものではなく、他の金屑でも良い。’Orもフ
ォトリングラフィで必!形状にバターニングする。これ
でM工M素子部が形成され、次に画素の電極となる透明
導電膜、一般的には工TO(Indium Tin 0
xide )  がスパッタリングされ、これも周知の
フォトリングラフィとエツチングで必要形状にバターニ
ングされる。これらの素子基板を用い液晶パネルに組み
立て使用される。
Thereafter, a layer of Or is formed by sputtering. This is also O
It is not limited to metal scraps, and other metal scraps may also be used. 'Or is also a must for photoringraphy! Buttering into shape. This forms the M element, and then the transparent conductive film that becomes the pixel electrode, generally made of Indium Tin 0 (TO).
xide) is sputtered, and this is also patterned into the required shape by well-known photolithography and etching. These element substrates are assembled into a liquid crystal panel.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の技術では陽極酸化後の熱処理方法では、
ガラス基板まで加熱される。すなわち、抵抗体からの熱
の輻射対流のため、本来アニールしたい部分以外も加熱
されることKなる。したがって、その温度が400℃〜
500℃のため、炉から取り出し冷却中にガラス基板が
割れてしまうという欠点があった。炉中でゆっくりと冷
却した場合は、特性が出す、すぐに大気に取り出すため
、冷却中にガラスが割れてしまうと推測される。
However, in the conventional technology, the heat treatment method after anodizing
Even the glass substrate is heated. That is, due to the radiant convection of heat from the resistor, areas other than those originally desired to be annealed are also heated. Therefore, the temperature is 400℃ ~
Since the temperature was 500°C, there was a drawback that the glass substrate would break during cooling after being removed from the furnace. If it is cooled slowly in a furnace, it is assumed that the glass will break during cooling because it will be immediately released into the atmosphere.

本発明は出来る限り素子部のみ加熱しガラスは加熱しな
いことを発案し、基板であるガラスが冷却途中で割れな
い様にし、歩留りの向上に役立てることを目的とする。
The present invention proposes to heat only the element part and not the glass as much as possible, and aims to prevent the glass that is the substrate from breaking during cooling, and to improve the yield.

〔課題を解決するための手段〕[Means to solve the problem]

複数の行電極と対向基板上にこれに交差して配置された
複数の列電極を備え、これら両電極の交差部にマトリッ
クス状に形成された画素部にスイッチング用非線形抵抗
素子と液晶を電気的に直列に接続して配置したアクティ
ブマトリククス型液晶表示装置において前記スイッチン
グ用非線形抵抗素子の絶縁膜がTaの陽極酸化膜からな
るM工M素子のそのTaf7)@極酸化膜を誘動加熱方
式罠てアニールしたことにより、上述の問題点を解決す
る。
It is equipped with a plurality of row electrodes and a plurality of column electrodes arranged on a counter substrate so as to intersect with these electrodes, and a nonlinear resistance element for switching and a liquid crystal are electrically connected to a pixel section formed in a matrix at the intersection of these two electrodes. In an active matrix type liquid crystal display device which is connected in series with the switching nonlinear resistance element, the insulating film of the switching nonlinear resistance element is made of an anodic oxide film of Ta. By trapping and annealing, the above-mentioned problems are solved.

〔実施例〕〔Example〕

まず、ガラス基板上に、Taを5000又スパツタした
。スパッタ条件は従来と同様な方法で良い。A’rガス
圧10 μyaTorr 、入力電力2KWのRFスパ
ッタ条件下で実施した。次にレジストを所定の寸法に露
光現像し、Taをドライエツチングした。ドライエツチ
ングは0F4(60%)+0□(40%)550SOO
M の流量でエツチングした。Taのドライエツチング
はウェット法でも良いし、ドライエツチングの条件は、
他の条件でも良い。
First, 5,000 layers of Ta were sputtered onto a glass substrate. The sputtering conditions may be the same as conventional methods. The process was carried out under RF sputtering conditions of A'r gas pressure of 10 μyaTorr and input power of 2 KW. Next, the resist was exposed and developed to a predetermined size, and Ta was dry etched. Dry etching is 0F4 (60%) + 0□ (40%) 550SOO
Etching was performed at a flow rate of M. Dry etching of Ta can be done by wet method, and the dry etching conditions are as follows:
Other conditions may also be used.

このパ★−ニングされたTaを1%クエン酸に浸漬し陽
極酸化法により酸化した。最終電圧は35vとした。こ
の酸化膜の厚みはエリプリメータで測定したところ約5
00Xであった。
This panned Ta was immersed in 1% citric acid and oxidized by anodic oxidation. The final voltage was 35v. The thickness of this oxide film was measured with an elliplymeter and was approximately 5.
It was 00X.

次に、li!極酸化した基板を誘動加熱方式で加熱アニ
ールした。使用周波数は10KH2,時間は5分間とし
た。雰囲気は大気中で行なったがN。
Next, li! The extremely oxidized substrate was annealed using an induction heating method. The frequency used was 10KH2 and the time was 5 minutes. The test was carried out in the atmosphere, but N.

ガス等の不活性ガス、0.の酸化性ガスでも良い。加熱
後すぐに1大気中にガラス基板を取り出した。この方法
でガラス基板を100枚流動したが、ガラス割れは皆無
であった。従来の抵抗体を用いたアニール炉では、約2
〜5%の割れの発生率であったことから、本発明の’r
a膜のみ加熱する方法が有効であることが明確となった
。加熱時間は5分間に限られるものではなく、1分でも
60分でも良いが、作業性、素子のバラン±を考慮し5
分間とした。
Inert gas such as gas, 0. An oxidizing gas may also be used. Immediately after heating, the glass substrate was taken out into the atmosphere. Although 100 glass substrates were flown using this method, there was no glass cracking. In an annealing furnace using a conventional resistor, approximately 2
Since the occurrence rate of cracking was ~5%, the 'r of the present invention
It became clear that the method of heating only the a-film was effective. The heating time is not limited to 5 minutes, and may be 1 minute or 60 minutes, but in consideration of workability and element balance, the heating time is 5 minutes.
It was set as 1 minute.

次に、従来と同様にOr[をスパッタした。Next, Or[ was sputtered as in the conventional method.

厚みは1500にとした。このOrを所定の寸法にレジ
ストでバターニングし、諸層インク製MPM−E50を
用いエツチングした。次に画素電極の工TOをスパッタ
リングで形成し、フォトリングラフィを用い、硫酸20
%、塩酸20%の水溶液で所定の寸法にエツチングした
The thickness was set to 1500. This Or was patterned with a resist to predetermined dimensions, and etched using MPM-E50 manufactured by Moroya Ink. Next, the pixel electrode was formed using sputtering, and using photolithography, sulfuric acid 20
% and a 20% aqueous solution of hydrochloric acid to a predetermined size.

本実施例のM工M素子部の電流−電圧特性を測定したと
ころ、従来の電流−電圧特性とほぼ一致しバラツキも従
来と同様であり画質の劣化もなかった。
When the current-voltage characteristics of the M element part of the M process of this example were measured, they were almost the same as the conventional current-voltage characteristics, the variation was the same as the conventional one, and there was no deterioration in image quality.

〔発明の効果〕 以上述べた様に、本発明によれば、M工M非線形抵抗A
(子の電流−;こ圧特性を劣化されることなく、またそ
の特性のバラツキも大きくすること゛なく、陽極酸化膜
のアニールが可能となり、従来2〜5%のガラス割れ不
良率を0にすることが可能となった。
[Effects of the Invention] As described above, according to the present invention, the M nonlinear resistance A
(Child current) It is now possible to anneal the anodic oxide film without deteriorating the pressure characteristics or increasing the dispersion of the characteristics, reducing the glass cracking defect rate from 2 to 5% to 0. It became possible to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いたM工M素子部の断面図例であり
、本発明を分り易くするために例示した図である。 11・・・・・・・・・基板(透明ガラス)12・・・
・・・・・・下部電極(Ta)13・・・・・・・・・
絶縁層(TaOx)1 4 ・・・ ・・・ ・・・ 
」二 部 ηI 右ン?15・・・・・・・・・画素電
極 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 銘木喜三部(他1名)M1回
FIG. 1 is an example of a cross-sectional view of the M element part of the M process used in the present invention, and is a diagram illustrating the present invention in order to make it easier to understand. 11...Substrate (transparent glass) 12...
・・・・・・Lower electrode (Ta) 13・・・・・・・・・
Insulating layer (TaOx) 1 4 ... ... ...
” Part 2 ηI right? 15・・・・・・Pixel electrode and above Applicant Seiko Epson Co., Ltd. Agent Patent attorney Kisanbe Meiki (1 other person) M1 time

Claims (1)

【特許請求の範囲】[Claims] 複数の行電極と対向基板上にこれに交差して配置された
複数の列電極を備え、これら両電極の交差部にマトリッ
クス状に形成された画素部にスイッチング用非線形抵抗
素子と液晶を電気的に直列に接続して配置したアクティ
ブマトリックス型液晶表示装置において、前記スイッチ
ング用非線形抵抗素子の絶縁膜がTaの陽極酸化膜から
なるMIM(MetalInsulatorMetal
)素子のそのTaの陽極酸化膜を誘動加熱方式にてアニ
ールしたことを特徴とする液晶表示装置。
It is equipped with a plurality of row electrodes and a plurality of column electrodes arranged on a counter substrate so as to intersect with these electrodes, and a nonlinear resistance element for switching and a liquid crystal are electrically connected to a pixel section formed in a matrix at the intersection of these two electrodes. In the active matrix liquid crystal display device, the insulating film of the switching nonlinear resistance element is an MIM (Metal Insulator Metal Insulator) made of an anodic oxide film of Ta.
) A liquid crystal display device characterized in that the Ta anodic oxide film of the element is annealed by an induction heating method.
JP63111016A 1988-05-07 1988-05-07 Liquid crystal display device Pending JPH01281436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63111016A JPH01281436A (en) 1988-05-07 1988-05-07 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63111016A JPH01281436A (en) 1988-05-07 1988-05-07 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH01281436A true JPH01281436A (en) 1989-11-13

Family

ID=14550260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63111016A Pending JPH01281436A (en) 1988-05-07 1988-05-07 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH01281436A (en)

Similar Documents

Publication Publication Date Title
JPH01281436A (en) Liquid crystal display device
KR100505515B1 (en) Two-terminal type-linear element, manufacturing method thereof and liquid crystal display panel
JP2795883B2 (en) Nonlinear element in liquid crystal display
JPS62164025A (en) Production of electrooptic device
JPH01281435A (en) Liquid crystal display device
JPH01283525A (en) Liquid crystal display element
JPH075451A (en) Short circuit preventive film and its production
JPH0345932A (en) Production of active matrix liquid crystal display panel
JP3285383B2 (en) Liquid crystal display device and manufacturing method thereof
JPS61186929A (en) Liquid crystal display device
JP3882863B2 (en) Manufacturing method of two-terminal nonlinear element
JPH0764117A (en) Production of liquid crystal display device
JPS5838923A (en) Manufacture of liquid crystal display substrate
JPH01281437A (en) Liquid crystal display device
JPS58168032A (en) Manufacture of electrooptic device
JPH0720499A (en) Nonlinear element and its production and element substrate for electro-optical device having the nonlinear element as well as electro-optical device
JPH07225400A (en) Production of liquid crystal display device
JPS6239821A (en) Manufacture of double-layer interconnection substrate
JPH06101254B2 (en) Method for forming translucent conductor film
JPH0348824A (en) Production of mim type nonlinear switching element
JPH0346633A (en) Production of nonlinear element
JPH08262497A (en) Liquid crystal display device and its production
JPH08286198A (en) Liquid crystal display device and its production
JPH10150233A (en) Manufacture of thin film diode
JPH06289433A (en) Mim type nonlinear element andits production