JPH01278475A - Complex sliding member of silicon carbide - Google Patents

Complex sliding member of silicon carbide

Info

Publication number
JPH01278475A
JPH01278475A JP63106139A JP10613988A JPH01278475A JP H01278475 A JPH01278475 A JP H01278475A JP 63106139 A JP63106139 A JP 63106139A JP 10613988 A JP10613988 A JP 10613988A JP H01278475 A JPH01278475 A JP H01278475A
Authority
JP
Japan
Prior art keywords
silicon carbide
weight
carbon
coke
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63106139A
Other languages
Japanese (ja)
Other versions
JPH0733287B2 (en
Inventor
Yoichiro Hayashi
洋一郎 林
Yoshiro Kusumi
美朗 久住
Wataru Abe
亘 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP63106139A priority Critical patent/JPH0733287B2/en
Publication of JPH01278475A publication Critical patent/JPH01278475A/en
Publication of JPH0733287B2 publication Critical patent/JPH0733287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a sliding member showing excellent sliding characteristics even under dry or boundary friction condition or high-load condition by blending silicon carbide with a specific amount of specific coke, specific amount of B- based substance and specific amount of carbon or specific organic material and sintering. CONSTITUTION:The complex sliding material of silicon carbide is obtained by sintering mixture powder consisting of 25-45wt.% coke having <=4wt.% residual volatile content, 0.5-5wt.% boron or boron compound, 2-4wt.% carbon or 6-10wt.% organic material to be carbonized, having 2-4wt.% carbon content after carbonization and the rest of silicon carbide. The sliding material shows excellent sliding characteristics under dry or boundary friction condition or high-load condition not to mention under liquid friction condition and high mechanical strength and has excellent abrasive properties, so the material is suitable as a bearing material under a liquid useful in water, chemical solution, etc.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は炭化ケイ素複合摺動部材、特に流体ポンプなど
に用いられる液中軸受として使用されて良好な性能を発
揮する炭化ケイ素複合摺動部材に関するものである。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to a silicon carbide composite sliding member, particularly a silicon carbide composite sliding member that exhibits good performance when used as a submerged bearing used in a fluid pump or the like. It is related to.

[従来技術] 従来、例えば流体ポンプや各種流量計の軸受として使用
される液中軸受としては炭素材料が使用されてきたが、
このものは摺動面に土砂やスラリーなどの異物の混入に
より、異常摩耗を生じる欠点を有することから、近年炭
化ケイ素焼結体が使用され始めている。液中軸受として
の炭化ケイ素焼結体は、低荷重条件では優れた摺動特性
を示すが、^荷車条件では摩擦係数が上昇し、摩耗針が
増大するという欠点、また、炭化ケイ素焼結体は通常、
研削盤にて所望の形状に機械加工を行うが、加工・にあ
たり切込mを多くとると、ビビリを生じて良好な仕上面
が得られ難いため、加工にあたっては切込量を小さくせ
ざるを得ないなどの加工性の問題がある。
[Prior Art] Conventionally, carbon materials have been used for submerged bearings used, for example, in fluid pumps and various flowmeters.
Since this type of material has the disadvantage of causing abnormal wear due to the contamination of the sliding surface with foreign matter such as dirt and slurry, silicon carbide sintered bodies have recently begun to be used. Silicon carbide sintered bodies used as submerged bearings exhibit excellent sliding properties under low load conditions, but under cart conditions the friction coefficient increases and the number of worn needles increases. is usually
The desired shape is machined using a grinder, but if the depth of cut (m) is too large during machining, chattering will occur and it will be difficult to obtain a good finished surface, so the depth of cut must be reduced during machining. There are problems with workability, such as poor yield.

さらにまた、流体ポンプの液中軸受は、たとえばポンプ
起動時や操作ミスによる空回しにより摺動向に潤滑剤の
役割を果たす液体が十分にいきわたらない、所謂乾燥も
しくは境界1!!m条件下で使用されることがあった。
Furthermore, the submerged bearings of fluid pumps are dry or borderline 1!, where the liquid that acts as a lubricant is not sufficiently distributed to the sliding movement due to idle running, such as when the pump is started or due to operational errors. ! It was sometimes used under m conditions.

上記炭化ケイ素焼結体からなる軸受は、乾燥もしくは境
界n擦条件下では、11!擦係数が上昇し、摩耗量が増
大するため、壁1動面に完全な液体潤滑膜を形成する、
所謂液体潤滑条件トでの使用に限られるという欠点があ
った。
The bearing made of the above-mentioned silicon carbide sintered body is rated at 11! under dry or boundary rubbing conditions. As the coefficient of friction increases and the amount of wear increases, a complete liquid lubricant film is formed on the moving surface of the wall.
It has the disadvantage that it can only be used under so-called liquid lubrication conditions.

上述した炭化ケイ素焼結体からなる軸受の欠点を解決す
るものとして、例えば特開昭60−141676号(以
下「従来技術I」という)や特公昭62−46508号
(以下「従来技術■」という)が提案されている。
In order to solve the above-mentioned drawbacks of bearings made of silicon carbide sintered bodies, for example, Japanese Patent Application Laid-open No. 141676/1982 (hereinafter referred to as "prior art I") and Japanese Patent Publication No. 46508/1982 (hereinafter referred to as "prior art II") are proposed. ) has been proposed.

この従来技術■は1〜48i 吊%のグラファイト元素
状炭素、有効訊の焼結助剤および残りの量の炭化ケイ素
からなるもので、1〜48重昂%のグラファイト元素状
炭素を添加することにより、乾燥もしくは境界r!!擦
条件下での使用を可能としだものである。また、従来技
術■は、コークス−炭化ケイ素複合焼結体に係わるもの
で、該焼結体の耐酸化性を向上さけたものである。
This prior art (2) consists of 1 to 48 weight percent graphite elemental carbon, an effective amount of sintering aid, and the remaining amount of silicon carbide, by adding 1 to 48 weight percent graphite elemental carbon. , dry or border r! ! It can be used under rubbing conditions. Furthermore, prior art (1) relates to a coke-silicon carbide composite sintered body, and is intended to improve the oxidation resistance of the sintered body.

[発明が解決しようとする問題点] しかしながら、上述した従来技術工からなる炭化ケイ素
複合焼結体は、乾燥゛もしくは境界摩擦条件下で優れた
活動特性を示す反面、機械的強度が低く、僅かの衝撃で
焼結体にかけが生じるなど取り扱い上の問題がある。
[Problems to be Solved by the Invention] However, although the silicon carbide composite sintered body made of the above-mentioned prior art exhibits excellent activity characteristics under dry or boundary friction conditions, it has low mechanical strength and has only a slight There are handling problems such as cracking of the sintered body due to the impact.

また、従来技術■からなるコークス−炭化ケイ素複合焼
結体を摺動部材に適用した場合には、特に耐アブレッシ
プ竹に劣り、土砂の流入が余儀なくされる水中ポンプ用
の軸受としては使用しがたいという欠点がある。
In addition, when the coke-silicon carbide composite sintered body made from conventional technology (2) is applied to sliding members, it is particularly inferior to abrasion resistant bamboo, and cannot be used as bearings for submersible pumps that are forced to allow the inflow of earth and sand. It has the disadvantage of wanting to

本発明は上記問題点を解決し、ポンプ起動時の乾燥もし
くは境界摩擦条件下あるいは高荷重条件下でも優れたI
II 11特性を示し、かつ高い機械的強度を示す、特
に液中軸受に適用して好適な炭化ケイ素複合摺動部材を
得ることを目的とする。
The present invention solves the above-mentioned problems, and provides excellent I/O even under dry or boundary friction conditions when starting the pump or under high load conditions.
The object of the present invention is to obtain a silicon carbide composite sliding member that exhibits II 11 characteristics and high mechanical strength, and is particularly suitable for application to submerged bearings.

[問題点を解決するための手段] 本発明者等は上記目的を達成するため種々研究した結果
残留揮発分4重量%以上を有するコークス25〜45重
量%、ホウ素もしくはホウ素化合物0.5〜5重量%、
炭素2〜4重憬%もしくは炭化後の炭素含量が2〜4重
母%になる炭化可能な有機材料6〜10重昂%並びに残
部炭化ケイ素からなる混合粉末を焼結してなる炭化ケイ
素複合焼結体は、液体潤滑条件下ではもちろんのこと、
乾燥もしくは境界n1f)条件下においても、また高荷
重条件下においても優れたlFl!JIl特性を示し、
かつ高い機械的強度を示すことを見出し、この知見に基
ぎ本発明をなすに至った。
[Means for Solving the Problems] In order to achieve the above object, the present inventors conducted various studies and found that coke having a residual volatile content of 4% by weight or more and 25 to 45% by weight, boron or a boron compound of 0.5 to 5% weight%,
Silicon carbide composite sintered by sintering a mixed powder consisting of 2 to 4% by weight of carbon or 6 to 10% by weight of a carbonizable organic material whose carbon content after carbonization is 2 to 4% by weight, and the balance silicon carbide. Of course, under liquid lubrication conditions,
Excellent lFl even under dry or borderline n1f) conditions and under high load conditions! exhibits JIl characteristics,
It was also discovered that the material exhibits high mechanical strength, and based on this knowledge, the present invention was accomplished.

本発明で主成分をなす炭化ケイ素粉末はα型、β型のど
ちらでも使用することができ、平均粒径5ミクロン以下
の粉末が使用される。
The silicon carbide powder which is the main component in the present invention can be used in either the α type or the β type, and the powder with an average particle size of 5 microns or less is used.

本発明で用いるコークスとしては、揮発分を有する、い
わゆる生コークスで、石油系、石炭系又は樹脂系のいず
れでもよいが、特に高強度の製品を得るには4重量%以
上の残留揮発分を含むのが好ましい。
The coke used in the present invention is so-called raw coke that has a volatile content, and may be petroleum-based, coal-based, or resin-based, but in order to obtain particularly high-strength products, residual volatile content of 4% by weight or more is required. It is preferable to include.

コークスの混合割合は、混合粉末総量に対して25〜4
5手M%、好ましくは25〜40重量%である。
The mixing ratio of coke is 25 to 4 to the total amount of mixed powder.
5% by weight, preferably 25-40% by weight.

25重量%より少ない場合には、乾燥もしくは境界摩擦
条件下あるいは液体潤滑条件下であっても高荷重条件下
で良好な摺動特性を得ることが難しく、また、45重晒
%より多い場合には、焼結体の機械的強度が低下するの
で好ましくない。
If it is less than 25% by weight, it is difficult to obtain good sliding properties under high load conditions even under dry or boundary friction conditions or liquid lubrication conditions, and if it is more than 45% by weight is not preferable because it reduces the mechanical strength of the sintered body.

ホウ素又は炭化ホウ素もしくは窒化ホウ素などのホウ素
化合物は、混合粉末の焼結助剤としての役割と前述した
コークスの焼結時の黒鉛化を促進させる役割を宋たりも
ので、イの混合割合は混合粉末総量に対して0.5〜5
重量%である。
Boron or boron compounds such as boron carbide or boron nitride have been known since ancient times to play the role of a sintering aid for mixed powder and the role of promoting graphitization during sintering of coke as mentioned above. 0.5-5 based on the total amount of powder
Weight%.

炭素は前記ホウ素またはホウ素化合物と同様、混合粉末
の焼結助剤の役割を果たすもので、カーボンブラックな
どが例示される。また、本発明では、上記炭素に代えて
、炭化可能な有機材料を使用することができる。この炭
化可能な有機材料としてはフェノール樹脂やコールター
ルピッチ等が例示されるが、とくにフェノール樹脂が好
ましく使用される。その混合割合は混合粉末総量に対し
て、炭素を使用する場合は2〜4重量%、炭化可能な有
機材料を使用する場合は6〜10重恐%であり、有機材
料を炭化して得られる炭素量が混合粉末総量に対して2
〜4重量%になるような聞用いられる。
Carbon, like the boron or boron compound described above, serves as a sintering aid for the mixed powder, and examples include carbon black. Furthermore, in the present invention, a carbonizable organic material can be used in place of the carbon described above. Examples of the carbonizable organic material include phenol resin and coal tar pitch, and phenol resin is particularly preferably used. The mixing ratio is 2 to 4% by weight when carbon is used, and 6 to 10% by weight when carbonizable organic material is used, based on the total amount of mixed powder. The amount of carbon is 2 relative to the total amount of mixed powder
~4% by weight.

また、場合によっては、上述した成分組成からなる混合
粉末に一時的結合材例えばポリビニルアルコール等を添
加することも有効である。この時、−時的結合材の添加
量としては混合粉末100重吊部に対して約3車量部が
好ましい。
In some cases, it is also effective to add a temporary binder, such as polyvinyl alcohol, to the mixed powder having the above-mentioned component composition. At this time, the amount of the temporary binder added is preferably about 3 parts by volume per 100 parts of the mixed powder.

次に、本発明の製造方法を示す。Next, the manufacturing method of the present invention will be described.

まず、炭化ケイ素粉末にコークス粉末およびホウ素もし
くはホウ素化合物を添加し、さらに炭素もしくは炭化可
能な有機材料J3よび必要に応じて一時的結合材を加え
混合して混合物を得た後、該混合物を乾燥し、粉砕して
粉末とする。該粉末を金型に装填し、1000〜200
01(9/Jの圧力で加圧成形して成形体を得る。そし
て上記成形体を無加圧状sr、1900〜2100[(
1)1[![−0,5〜21間[’iし、焼結体を得る
First, coke powder and boron or a boron compound are added to silicon carbide powder, and then carbon or carbonizable organic material J3 and a temporary binder as necessary are added and mixed to obtain a mixture, and then the mixture is dried. and grind it into powder. The powder was loaded into a mold and heated to 1000 to 200
A molded body is obtained by pressure molding at a pressure of 01 (9/J).The molded body is then subjected to pressure molding at a pressure of 1900 to 2100 [(
1) 1[! [-0, between 5 and 21] to obtain a sintered body.

以下、本発明を実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

[実施例1〜3.比較例1〜6] 表1に示す割合で平均粒径0.5ミクロンのα型炭化ケ
イ素粉末(商品名:DU−A−1,昭和電工■社製)、
残密揮発分11%のコークス粉末、ホウ素粉末、フェノ
ール樹脂およびアセトン50CCをボールミルを用いて
10時間混合した後、該混合物を乾燥し、粉砕して10
0メツシユアンダーに分級した粉末を得た。
[Examples 1-3. Comparative Examples 1 to 6] α-type silicon carbide powder (trade name: DU-A-1, manufactured by Showa Denko ■) with an average particle size of 0.5 microns in the proportions shown in Table 1,
After mixing coke powder with a residual volatile content of 11%, boron powder, phenol resin, and 50 cc of acetone using a ball mill for 10 hours, the mixture was dried and pulverized to 10 cc of residual volatile content.
A powder classified to 0 mesh under was obtained.

該混合粉末を金型に装填し、20001(9/Jの圧力
で加圧成形し成形体を得た。
The mixed powder was loaded into a mold and press-molded at a pressure of 20001 (9/J) to obtain a molded body.

この成形体を2050度の温度に加熱された加熱炉中(
アルゴンガス雰囲気)で1時間焼成し、焼結体を得た。
This molded body was placed in a heating furnace heated to a temperature of 2050 degrees (
The mixture was fired in an argon gas atmosphere for 1 hour to obtain a sintered body.

この焼結体を機械加工して長さ3711111゜幅4I
II#I、厚さ3Mの曲げ強度試験片および縦横それぞ
れ32m、厚さ7mのスラスト試験片を得た。
This sintered body is machined to a length of 3711111° and a width of 4I.
A bending strength test piece with a thickness of 3M and a thrust test piece with a length and width of 32m and a thickness of 7m were obtained.

[比較例7] 表1に示す割合で平均粒径0゜5ミクロンのα型炭化ケ
イ素粉末(商品名:DU−A−1,昭和電工■社製)、
カーボンブラック粉末、ホウ素粉末。
[Comparative Example 7] α-type silicon carbide powder (trade name: DU-A-1, manufactured by Showa Denko ■) with an average particle size of 0°5 microns in the proportions shown in Table 1,
Carbon black powder, boron powder.

フェノール樹脂、アセトン50ccおよびポリビニルア
ルコール3重量部をボールミルを用いて10時間混合し
た後、該混合物を乾燥し、粉砕して100メツシユアン
ダーに分級した粉末を得た。
After mixing the phenol resin, 50 cc of acetone, and 3 parts by weight of polyvinyl alcohol using a ball mill for 10 hours, the mixture was dried and pulverized to obtain a powder classified into 100 mesh particles.

該混合粉末を金型に装填し、2000に5/lJの圧力
で加圧成形し成形体を得た。
The mixed powder was loaded into a mold and press-molded at a pressure of 2,000 to 5/lJ to obtain a molded body.

この成形体を2050度の温度に加熱された加熱炉中(
アルゴンガス雰囲気)で1時間焼成し、焼結体を得た。
This molded body was placed in a heating furnace heated to a temperature of 2050 degrees (
The mixture was fired in an argon gas atmosphere for 1 hour to obtain a sintered body.

該焼結体を機械加工して長さ37m、幅4門、厚さ3#
Iの曲げ試験片および縦横それぞれ32rttms厚さ
7m+のスラスト試験片を得た。
The sintered body was machined to have a length of 37 m, a width of 4 gates, and a thickness of 3 #.
A bending test piece of I and a thrust test piece of 32 rttms in length and width and 7 m+ in thickness were obtained.

し比較例8] 表1に示す割合で平均粒径0.5ミクロンのα型炭化ケ
イ素粉末(商品名:DU−A−1,昭和電工側社製)、
黒鉛粉末、ホウ素粉末、フェノール樹脂、およびアセト
ン50ccをボールミルを用いて10時間混合した侵、
該混合物を乾燥し、粉砕して100メツシユアンダーに
分級した粉末を得た。
Comparative Example 8] α-type silicon carbide powder (trade name: DU-A-1, manufactured by Showa Denko) with an average particle size of 0.5 microns in the proportions shown in Table 1,
Graphite powder, boron powder, phenolic resin, and 50 cc of acetone were mixed for 10 hours using a ball mill.
The mixture was dried and ground to obtain a powder classified into 100 mesh particles.

該混合粉末を金型に装填し、2000Kg/ ciの圧
ヵで加圧成形し成形体を得た。
The mixed powder was loaded into a mold and press-molded at a pressure of 2000 kg/ci to obtain a compact.

この成形体を2050度の温度に加熱された加熱炉中(
アルゴンガス雰囲気)で1時間焼成し、焼結体を得た。
This molded body was placed in a heating furnace heated to a temperature of 2050 degrees (
The mixture was fired in an argon gas atmosphere for 1 hour to obtain a sintered body.

該焼結体を機械加工して長さ37M1幅4rIWi、厚
さ3−の曲げ試験片および縦横それぞれ32線、厚さ7
Mのスラスト試験片を得た。
The sintered body was machined to produce a bending test piece with a length of 37M1 width of 4rIWi and a thickness of 3mm, and a bending test piece with 32 lines in the vertical and horizontal directions and a thickness of 7mm.
A thrust test piece of M was obtained.

[比較例9] 平均粒径0.5ミクロンのα型炭化ケイ素粉末38.9
重量%、残留揮発分11%のコークス粉末51.2重量
%、炭化ホウ素粉末9.9重用%をらいかい機で5時間
摩砕混合した。このようにして得た混合粉末を金型に装
填し、2000KW/dの圧力で加圧成形して成形体を
得たのち、2000度の温度に加熱された加熱炉中(ア
ルゴンガス雰囲気)で1時間焼成し、焼結体を得た。こ
の焼結体を機械加工して、長さ37#l、幅4NR1厚
さ3間の曲げ試験片および縦横それぞれ32慣、厚さ7
111+lのスラスト試験片を得た。
[Comparative Example 9] α-type silicon carbide powder with an average particle size of 0.5 microns 38.9
51.2% by weight of coke powder with a residual volatile content of 11% and 9.9% by weight of boron carbide powder were ground and mixed in a mill for 5 hours. The thus obtained mixed powder was loaded into a mold and pressed at a pressure of 2000 KW/d to obtain a compact, which was then placed in a heating furnace heated to 2000 degrees (in an argon gas atmosphere). It was fired for 1 hour to obtain a sintered body. This sintered body was machined to produce a bending test piece with a length of 37 #l, a width of 4NR, and a thickness of 3.
A thrust test piece of 111+l was obtained.

上記実施例1〜3、比較例1〜9をJIS R1601
「ファインセラミックの曲げ強さ試験」に沿って3点曲
げ強度試験を行うとともに以下の条件で水中耐荷重スラ
スト試験を行った。その結果を表1に示す。なお、表中
「−」は、摩擦係数が上昇したため試験を途中で中止し
たことを示すものである。
The above Examples 1 to 3 and Comparative Examples 1 to 9 were JIS R1601
A three-point bending strength test was conducted in accordance with the "Fine Ceramic Bending Strength Test" and an underwater load-bearing thrust test was conducted under the following conditions. The results are shown in Table 1. Note that the "-" in the table indicates that the test was stopped midway due to an increase in the friction coefficient.

速 度: 5m/e+in 荷 重:  0.5hr毎に12.5Kg/Jづつ累積
し、250句/dにて終了 相手材:5iC(φ12×φ25X l 17)試験結
果から、実施例1〜3の焼結体は全試験時間を通して安
定した摺動特性を示した。一方、比較例1〜5の焼結体
は、荷重の増大にともない次第ニr!4r!A係数が上
昇シ、血圧150Kg / ei テ摩擦係数の急激な
上昇が認められたので試験を中止した。
Speed: 5m/e+in Load: Accumulates 12.5Kg/J every 0.5hr and ends at 250kg/d Compatible material: 5iC (φ12×φ25X l 17) From the test results, Examples 1 to 3 The sintered body exhibited stable sliding properties throughout the entire test period. On the other hand, as the load increases, the sintered bodies of Comparative Examples 1 to 5 become r! 4r! The test was discontinued because the A coefficient increased and the blood pressure increased to 150 kg/ei.A rapid increase in the friction coefficient was observed.

つぎに、上述した試験で、良好な摺動特性を示した実施
例3と比較例9の焼結体について、さらに過酷な水中ス
ラスト試験を行った。試験条件は以下に示すとおりであ
る。
Next, a more severe underwater thrust test was conducted on the sintered bodies of Example 3 and Comparative Example 9, which had shown good sliding characteristics in the above-mentioned test. The test conditions are as shown below.

面  ル :  1501!Ff  /!速  度 :
5TrL/1n 時  間 :   50hr 水 :蒸留水0.1wt%関東ローム7種(JIS28
901)添加 相手14:5iC(φ12×φ25X l 17)表2
は上記の試験結果を示すものである。
Menu: 1501! Ff/! Speed:
5TrL/1n Time: 50hr Water: Distilled water 0.1wt% Kanto loam type 7 (JIS28
901) Addition partner 14:5iC (φ12×φ25X l 17) Table 2
shows the above test results.

表2 1”””””’”””””””’t’WJ”’:f、;
’i:!r′”1tls!’i’[:’lff1;”’
J:fff”’/cJ)”””(’m/’m:”n)h
r”1試験結果から、比較例9の焼結体は、摩耗針が多
く、耐アブレッシブ性に劣り、土砂の侵入が余儀なくさ
れる水中ポンプなどの軸受への適用はできない。
Table 2 1”””””’”””””””’t’WJ”’: f,;
'i:! r'"1tls!'i'[:'lff1;"'
J:fff"'/cJ)"""('m/'m:"n)h
From the r''1 test results, the sintered body of Comparative Example 9 has many worn needles, has poor abrasive resistance, and cannot be applied to bearings such as submersible pumps that are forced to be penetrated by earth and sand.

[発明の効果] 本発明の炭化ケイ素複合層動部材は、液中摩擦条件下で
はちもろIυのこと、乾燥もしくは境界摩擦条件下ある
いは、高?4重条件下でも良好な摺動特性を示し、かつ
高い殿様的強度を示し、優れた耐アブレッシブ性を有す
るので、水、薬液中などにおいて使用される液中軸受用
材料に適している。
[Effects of the Invention] The silicon carbide composite layered dynamic member of the present invention has low Iυ under liquid friction conditions, dry or boundary friction conditions, or high Iυ. It exhibits good sliding properties even under quadruple conditions, high mechanical strength, and excellent abrasion resistance, making it suitable as a material for submerged bearings used in water, chemical solutions, etc.

Claims (1)

【特許請求の範囲】[Claims] (1) 残留揮発分4重量%以上を有するコークス25
〜45重量%、ホウ素もしくはホウ素化合物0.5〜5
重量%、炭素2〜4重量%もしくは炭化後の炭素含量が
2〜4重量%になる炭化可能な有機材料6〜10重量%
並びに残部炭化ケイ素からなる混合粉末を焼結してなる
炭化ケイ素複合摺動部材。
(1) Coke 25 with residual volatile content of 4% by weight or more
~45% by weight, boron or boron compound 0.5-5
% by weight, 2-4% by weight of carbon or 6-10% by weight of carbonizable organic material with a carbon content of 2-4% by weight after carbonization
and a silicon carbide composite sliding member made by sintering a mixed powder consisting of silicon carbide.
JP63106139A 1988-04-28 1988-04-28 Silicon carbide composite sliding member Expired - Fee Related JPH0733287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63106139A JPH0733287B2 (en) 1988-04-28 1988-04-28 Silicon carbide composite sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63106139A JPH0733287B2 (en) 1988-04-28 1988-04-28 Silicon carbide composite sliding member

Publications (2)

Publication Number Publication Date
JPH01278475A true JPH01278475A (en) 1989-11-08
JPH0733287B2 JPH0733287B2 (en) 1995-04-12

Family

ID=14426036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63106139A Expired - Fee Related JPH0733287B2 (en) 1988-04-28 1988-04-28 Silicon carbide composite sliding member

Country Status (1)

Country Link
JP (1) JPH0733287B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140223A (en) * 1989-10-27 1991-06-14 Mitsubishi Heavy Ind Ltd Injection molding method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140223A (en) * 1989-10-27 1991-06-14 Mitsubishi Heavy Ind Ltd Injection molding method and device

Also Published As

Publication number Publication date
JPH0733287B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
US5707567A (en) Process for producing a self-sintered silicon carbide/carbon graphite composite material having interconnected pores which maybe impregnated
JP5735501B2 (en) Hard non-oxide or oxide ceramic / hard non-oxide or oxide ceramic composite hybrid seal parts
EP0520520B1 (en) Ceramic composite and process for production thereof
KR101456352B1 (en) Sliding material based on graphite-containing resin, and sliding member
JP3755150B2 (en) High density self-sintered silicon carbide / carbon / graphite composite material and method for producing the same
AU2003230879B2 (en) A composite body of silicon carbide and binderless carbon and process for producing
JP2722182B2 (en) Porous SiC bearing material having three types of pore structure and method of manufacturing the same
US5538649A (en) Carbon composite mateiral for tribological applications
US20020160902A1 (en) Composite material based on silicon carbide and carbon, process for its production and its use
EP1440955B1 (en) A seal assembly containing a sliding element and the use of a sliding element for seals
JPH01278475A (en) Complex sliding member of silicon carbide
CN1169708A (en) Selfsintered silicon carbide/carbon composite material
JPS59131577A (en) Silicon carbide material and manufacture
JP2543093B2 (en) Sliding parts for seals
Gubernat et al. Self-lubricating SiC matrix composites
JPH0510303B2 (en)
JP2002338357A (en) Sliding body and mechanical seal
JP2024036132A (en) Silicon carbide sintered compact, sliding component using silicon carbide sintered compact, and method for producing silicon carbide sintered compact
JPS6220148B2 (en)
JPH0413315B2 (en)
JPH04254471A (en) Ceramic composite sintered body and sliding member using the same
JPH0510304B2 (en)
JPH11278937A (en) Tungsten carbide/carbon composite material and slide member
JPH10203871A (en) Production of silicon carbide-based sliding material
JPS6058189B2 (en) Carbonaceous composite sliding material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees