JPH03140223A - Injection molding method and device - Google Patents

Injection molding method and device

Info

Publication number
JPH03140223A
JPH03140223A JP1278474A JP27847489A JPH03140223A JP H03140223 A JPH03140223 A JP H03140223A JP 1278474 A JP1278474 A JP 1278474A JP 27847489 A JP27847489 A JP 27847489A JP H03140223 A JPH03140223 A JP H03140223A
Authority
JP
Japan
Prior art keywords
mold
resin
filling
pressure
molten resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1278474A
Other languages
Japanese (ja)
Other versions
JP2734477B2 (en
Inventor
Yoshio Kanose
鹿瀬 義雄
Koji Kubota
浩司 久保田
Hideo Kuroda
英夫 黒田
Yukio Tamura
幸夫 田村
Masayoshi Kasai
笠井 昌義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1278474A priority Critical patent/JP2734477B2/en
Priority to EP90250266A priority patent/EP0425060B1/en
Priority to DE69021824T priority patent/DE69021824T2/en
Priority to KR1019900017162A priority patent/KR920009940B1/en
Publication of JPH03140223A publication Critical patent/JPH03140223A/en
Priority to US08/321,476 priority patent/US5478520A/en
Application granted granted Critical
Publication of JP2734477B2 publication Critical patent/JP2734477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C2045/0098Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor shearing of the moulding material, e.g. for obtaining molecular orientation or reducing the viscosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/20Injection nozzles
    • B29C45/23Feed stopping equipment
    • B29C45/232Feed stopping equipment comprising closing means disposed outside the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material

Abstract

PURPOSE:To greatly reduce the cost of a mold by enabling low mold clamping pressure molding, by a method wherein resin whose viscosity is lowered by generating shearing heat of the molten resin by narrowing an injection nozzle is filled into the mold and the resin is pressed with a movable mold after completion of the filling. CONSTITUTION:A nozzle 20 is screwed into a valve main body 22, a needle pin 21 is fitted slidably into the valve main body 22 and a gap d1 is formed between the tip of the same and the nozzle 20. When resin is passed through this narrow resin passage under a high-shearing speed, viscosity of the molten resin 7 is lowered with shearing heating. The foregoing molten resin 7 is injected and filled into a cavity 36 formed by fitting of a movable mold 32 and stationary mold 35 into each other up to a set position of a screw 1 with a signal of a controller 11. After completion of the filling, the primary mold clamping pressure is lowered and after movement of a wedgy spacer 37 backward further, the gap d1 of a narrowing nozzle 4 is closed and then the mold cavity 36 is compressed with fixed pressure as the secondary mold clamping pressure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は寸法精度の高いプラスチック製品を低圧で成形
する低型締圧射出成形方法及び装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a low clamping pressure injection molding method and apparatus for molding plastic products with high dimensional accuracy at low pressure.

(従来の技術) 従来の射出成形機は充填圧が50MPa = 100M
Paと高いため、成形品の応力歪が大きく寸法安定性に
欠けたり、金型が高価、金型寿命が短い等の欠点があっ
た。これを更に詳しく説明するため、従来の射出成形機
の成形時の負荷曲線を第4図に示すと、曲線aは射出圧
力、曲線すは金型キャビティ入口圧力、曲線Cは金型キ
ャビティ末端圧力、曲線dは型締圧力である。第4図の
曲線a、b+cから明らかなように、射出圧、型内圧、
型締圧共に高い圧力が要求される。これは−船釣に成形
品のしく流動長)/l(肉厚)が大きく、狭い金型キャ
ビティ内を低い温度の、従って粘度が高く流動抵抗の大
きい溶融樹脂を無理に流すことから圧力ドロップが大き
いためである。
(Conventional technology) The filling pressure of a conventional injection molding machine is 50MPa = 100M
Due to the high Pa, there were drawbacks such as large stress distortion in the molded product and lack of dimensional stability, expensive molds, and short mold life. To explain this in more detail, Figure 4 shows the load curve of a conventional injection molding machine during molding. Curve a is the injection pressure, curve A is the mold cavity inlet pressure, and curve C is the mold cavity end pressure. , curve d is the mold clamping pressure. As is clear from the curves a, b+c in Fig. 4, the injection pressure, the mold internal pressure,
Both mold clamping pressure and high pressure are required. This is due to the pressure drop due to the large flow length/l (wall thickness) of the molded product used in boat fishing, and the forced flow of molten resin at a low temperature, therefore with high viscosity and high flow resistance, through a narrow mold cavity. This is because it is large.

(発明が解決しようとする課題) しかしながら曲線す、cで示す型内圧から分かるように
、前記従来の場合は型内圧、即ぢ金型キャビティの入口
と出口の圧力のアンバランスの程度が大きい。このため
に金型の応力歪も大きく、高剛性が要求されるため、金
型の寸法、重喰は大きく、かつ高価であった。またプラ
スチックの成形では樹脂の冷却に伴う収縮分の補填が必
要であるが、射出成形ではゲートがシールされると圧力
が凍結され、有効圧がキャビティに作用しないため、型
内圧がアンバランスのまま冷却固化が進行し、成形品の
内部応力歪として凍結される。このため成形品の応力歪
が大きく、寸法安定性に欠けたり、ソリ、ヒケ等の不具
合が発生していた。また圧力ドロップ等で無駄なエネル
ギーが浪費されるため、エネルギー消費の面でも問題が
あった。
(Problem to be Solved by the Invention) However, as can be seen from the mold internal pressure shown by curve c, in the conventional case, there is a large degree of imbalance between the mold internal pressure, that is, the pressure at the entrance and exit of the mold cavity. For this reason, the stress strain of the mold is large and high rigidity is required, so the size and weight of the mold are large and expensive. In addition, in plastic molding, it is necessary to compensate for shrinkage due to cooling of the resin, but in injection molding, when the gate is sealed, the pressure is frozen and no effective pressure acts on the cavity, so the pressure inside the mold remains unbalanced. Cooling solidification progresses and is frozen as internal stress strain in the molded product. As a result, the molded product suffers from large stresses and strains, resulting in a lack of dimensional stability and problems such as warping and sink marks. There is also a problem in terms of energy consumption, as energy is wasted due to pressure drops and the like.

従来から少1生産型として使用されているZAS(亜鉛
合金)金型は、型費が鉄鋼型(555Cなど)と比べ、
制作費は約2と安い反面、硬度が低く、ヤング率が低い
ため変形し易く、成形時の圧力によりパーティング面が
開いてパリが発生し、金型が傷み易く、寿命が短いとい
う問題があった。この金型の変形を炭素鋼材と同程度に
押えれば、ZAS金型での量産も可能である。鋼材の変
形はヤング率に比例することから、型内圧をヤング率以
下に押えれば良く、従って第1表から明らかなように、
充填圧を20MPa以下に押えればZAS金型での量産
ができる。
ZAS (zinc alloy) molds, which have traditionally been used as small production molds, have lower mold costs than steel molds (555C, etc.).
Although the production cost is low at approximately 2, it is easy to deform due to its low hardness and low Young's modulus, and the pressure during molding causes the parting surface to open and cracks to occur, causing mold damage and shortening the lifespan. there were. If the deformation of this mold is suppressed to the same degree as carbon steel, mass production using ZAS molds is possible. Since the deformation of steel is proportional to Young's modulus, it is sufficient to keep the mold pressure below Young's modulus. Therefore, as is clear from Table 1,
If the filling pressure is kept below 20 MPa, mass production using ZAS molds is possible.

第1表(型材のヤング率と最大型内圧)従来も特開昭5
8〜167133号公報、特開昭60−21225号公
報、特開昭61−241114号公報において射出圧縮
成形方法、射出圧縮成形装置が12案されているが、こ
れらもやはり前記のような問題があった。
Table 1 (Young's modulus of mold material and maximum mold internal pressure) Previously published in JP-A No. 5
Twelve injection compression molding methods and injection compression molding apparatuses have been proposed in Japanese Patent Application Laid-open No. 8-167133, Japanese Patent Application Laid-Open No. 60-21225, and Japanese Patent Application Laid-Open No. 61-241114, but these also have the problems described above. there were.

本発明は前記の如く充填圧が鋼製金型に対するヤング率
比115、乃至最大型内圧力20MPa以下の低型締圧
力成形を実現し、金型の大幅なコストダうンを図ること
を目的とする射出成形方法及び装置を提供せんとするも
のである。
As mentioned above, the purpose of the present invention is to realize low clamping pressure forming where the filling pressure is a Young's modulus ratio of 115 compared to a steel mold, or a maximum mold internal pressure of 20 MPa or less, and to significantly reduce the cost of the mold. The purpose of the present invention is to provide an injection molding method and apparatus.

(課題を解決するための手段) このため本発明は、金型を若干開き溶融樹脂を充填圧力
を減少させて充填する射出充填時に、射出ノズルを絞る
ことにより溶融樹脂の粘度を剪断熱を発生させて低下さ
せ、この低粘度の樹脂を金型に充填し、充填完了後移動
金型で樹脂を押圧し、ゲートシール後も金型キャビティ
に充填された樹脂に有効な押圧力が作用するようにして
なるもので、これを課題解決のための手段とするもので
ある。
(Means for Solving the Problems) For this reason, the present invention generates a shear heat wave that reduces the viscosity of the molten resin by narrowing the injection nozzle during injection filling in which the mold is opened slightly and the molten resin is filled by reducing the pressure. This low viscosity resin is then filled into the mold, and after filling is completed, the resin is pressed with a moving mold so that an effective pressing force acts on the resin filled in the mold cavity even after the gate is sealed. It is intended to be used as a means to solve problems.

また本発明は、固定金型に対し、移動金型の間隔を成形
品の圧縮代(樹脂の冷却に伴う比容禎の減少分)を見込
んだ定位置に保持する移動金型の定位置決め手段と、射
出充填時、絞りノズルの溶融樹脂流路断面積可変手段と
連動する射出流量及び圧力調整手段と、充填完了後、移
動金型により樹脂を抑圧する押圧手段とを備え、溶融樹
脂の粘度を下げて金型キャビティ内での溶融樹脂の圧…
を低下せしめるようにしてなるもので、これを課題解決
のための手段上するものである。
In addition, the present invention provides fixed positioning means for a movable mold, which maintains the interval between the movable molds at a fixed position by taking into account the compression allowance of the molded product (the reduction in specific volume due to cooling of the resin) with respect to the fixed mold. , an injection flow rate and pressure adjustment means that works in conjunction with a molten resin flow path cross-sectional area variable means of a throttle nozzle during injection filling, and a pressing means that suppresses the resin with a moving mold after filling is completed, and controls the viscosity of the molten resin. The pressure of the molten resin inside the mold cavity is reduced by lowering the...
This is done in such a way as to reduce the problem, and this is done as a means to solve the problem.

(作用) 金型を若干開いて溶融樹脂を充填することにより、金型
キャビティ内を流動する樹脂圧力ドロップが減少するた
め、充填圧力が減少する。
(Function) By slightly opening the mold and filling it with molten resin, the pressure drop of the resin flowing inside the mold cavity is reduced, so the filling pressure is reduced.

射出充填時に射出ノズルを絞って狭い樹脂通路を高剪断
速度下で樹脂を通過させると、樹脂の剪断発熱により溶
融樹脂の粘度が低下し、金型キャビティ内での圧力ドロ
ップ、ひいては充填圧力が低下する。充填完了後移動金
型で樹脂を押圧することにより、ゲートシール後も金型
・キャビティに充填された樹脂に有効な押圧力が作用す
るため、応力歪が低く、高密度の成形品を得ることがで
きる。
During injection filling, when the injection nozzle is throttled and the resin passes through a narrow resin passage at high shear rates, the shear heat generation of the resin reduces the viscosity of the molten resin, causing a pressure drop in the mold cavity and, in turn, lowering the filling pressure. do. By pressing the resin with the moving mold after filling is completed, an effective pressing force acts on the resin filled in the mold/cavity even after the gate is sealed, resulting in a molded product with low stress distortion and high density. Can be done.

(実施例) 以下本発明の実施例を図面に基づいて説明すると、第1
図は本発明を実施する射出成形機の要部断面図を示す。
(Embodiment) Below, embodiments of the present invention will be described based on the drawings.
The figure shows a sectional view of essential parts of an injection molding machine that implements the present invention.

図においてlはスクリュで、シリンダ2、エンドキャッ
プ3、絞りノズル4で形成される閉塞された空間2aに
滑動自在に組み込まれている。また原料樹脂はホッパ5
に供給されて、シリンダ2内に落下し、図示しないヒー
グによる加熱と油圧モークロによるスクリュ1の回転に
より溶融可塑化され、スクリュlの前方へ送られて溶融
樹脂7として貯留される。
In the figure, l denotes a screw, which is slidably incorporated into a closed space 2a formed by the cylinder 2, end cap 3, and throttle nozzle 4. In addition, the raw resin is transported to hopper 5.
The resin falls into the cylinder 2, is melted and plasticized by heating by a heater (not shown), and rotation of the screw 1 by a hydraulic motor, and is sent to the front of the screw 1 and stored as a molten resin 7.

油圧モータ軸6aは射出ラム8の内部でスプライン結合
され、両者の間で一体回転するが、軸方向へは自由に摺
動できるようになっている。なお、図中9はスクリュl
の位置センサ、10は電磁リリーフ弁である。さてスク
リュ1はコントローラ11の指令に基づき、油圧源12
からの圧油を電磁弁13、流量制御弁14を介して射出
シリンダ15に送り込み、溶融樹脂7を金型キャビティ
に充填する。
The hydraulic motor shaft 6a is spline-coupled inside the injection ram 8, and rotates integrally between the two, but can freely slide in the axial direction. In addition, 9 in the figure is the screw l.
, and 10 is an electromagnetic relief valve. Now, the screw 1 is operated by the hydraulic power source 12 based on the command from the controller 11.
The pressurized oil is sent into the injection cylinder 15 via the solenoid valve 13 and the flow control valve 14, and the mold cavity is filled with the molten resin 7.

前記絞りノズル4の詳細を第2図に示す。図において2
0はノズル、21はニードルビン、22はバルブ本体で
、エンドキャップ3を介してシリンダ2に連結されてい
る。またニードルビン21屯連結金具24に枢着された
レバー23と穴21aを介して結合されており、前記連
結金具24を往復動させる第1図に示す油圧シリンダ2
5により駆動されるようになっている。油圧シリンダ2
5は、ブラケット26によりシリンダ2に固定されてい
る。27は位置センサで、油圧シリンダ25のストロー
ク位置、ひいてはニードルビン21の前進端乃至後退端
位置を検出する。なお、第2図の20aはノズル穴、2
0bは樹脂通路、22aも樹脂通路で円周上に設けられ
た複数個の穴で構成されている。また前記バルブ本体2
2はエンドキャップ3にボルト28で取りつけられ、ノ
ズル2oはバルブ本体22にねしこまれている。ニード
ルビン21はバルブ本体22に摺動自在に嵌合し、その
先端はノズル20との間でスキマd1を形成し、後部に
おいて前記の如く穴21aを介しレバー23と結合して
いる。29はサーボ弁で、位置センサ27で油圧シリン
ダ25のストローク位置を検出してその信号をコントロ
ーラllに送り、同コントローラ11でスキマd、に換
算し、設定されたスキマd、と比較することにより増減
信号を同サーボ弁29に送り、スキマd1のサーボ制御
を行うものである。
Details of the aperture nozzle 4 are shown in FIG. In the figure 2
0 is a nozzle, 21 is a needle bottle, and 22 is a valve body, which is connected to the cylinder 2 via an end cap 3. The hydraulic cylinder 2 shown in FIG.
5. Hydraulic cylinder 2
5 is fixed to the cylinder 2 by a bracket 26. A position sensor 27 detects the stroke position of the hydraulic cylinder 25 and, in turn, the forward end or backward end position of the needle bin 21. In addition, 20a in FIG. 2 is a nozzle hole, 2
0b is a resin passage, and 22a is also a resin passage, which is composed of a plurality of holes provided on the circumference. In addition, the valve body 2
2 is attached to the end cap 3 with bolts 28, and the nozzle 2o is screwed into the valve body 22. The needle bottle 21 is slidably fitted into the valve body 22, its tip forms a gap d1 with the nozzle 20, and its rear part is connected to the lever 23 through the hole 21a as described above. 29 is a servo valve, which detects the stroke position of the hydraulic cylinder 25 with a position sensor 27, sends the signal to the controller 11, converts it into a clearance d, and compares it with the set clearance d. An increase/decrease signal is sent to the servo valve 29 to perform servo control of the gap d1.

また第1図において、移動盤31に固定された移動金型
32は型締シリンダ33により後退し、固定盤34に固
定された固定金型35と係合することにより金型キャビ
ティ36を形成する。このキャビティ36は成形に際し
、予め圧縮代δを残して一次型締されるが、圧縮代δを
正確に決定するために、楔形スペーサ37が駆動源38
により移動金型32と固定金型35の間に介在させられ
ている。
Further, in FIG. 1, a movable mold 32 fixed to a movable platen 31 is moved back by a mold clamping cylinder 33 and engages with a fixed mold 35 fixed to a fixed platen 34, thereby forming a mold cavity 36. . During molding, this cavity 36 is primarily clamped with a compression allowance δ left in advance, but in order to accurately determine the compression allowance δ, a wedge-shaped spacer 37 is inserted into the drive source 38.
It is interposed between the movable mold 32 and the fixed mold 35.

39は位置センサで、楔形スペーサ37のストローク位
置を検出してコントローラ11に信号を送り、楔形スペ
ーサ37の動きをより正確に制御する。
A position sensor 39 detects the stroke position of the wedge-shaped spacer 37 and sends a signal to the controller 11 to more accurately control the movement of the wedge-shaped spacer 37.

また第3図に示す如く、楔形スペーサ37の傾斜角αは
、金型とのラップ代rの長短により圧縮代δの微調整が
行なえる。また楔形スペーサ37は、固定金型35と移
動金型32との間に単数乃至複数個バランス良く配置さ
れている。なお、第1図の40は電磁切換弁、41は電
磁リリーフ弁で、コントローラ11の信号により油圧源
12からの圧油を型締シリンダ33に送り、その動作及
び圧力を制御するものである。
Further, as shown in FIG. 3, the inclination angle α of the wedge-shaped spacer 37 can be finely adjusted by adjusting the compression distance δ by changing the length of the overlap distance r with the mold. Further, one or more wedge-shaped spacers 37 are arranged in a well-balanced manner between the fixed mold 35 and the movable mold 32. In FIG. 1, 40 is an electromagnetic switching valve, and 41 is an electromagnetic relief valve, which sends pressure oil from the hydraulic source 12 to the mold clamping cylinder 33 in response to a signal from the controller 11, and controls its operation and pressure.

ここで圧縮代δを含んだキャビティ36に、高温度に可
塑化された溶融樹脂7が、コントローラ11の信号によ
りスクリュlの設定された位置まで高速で射出充填され
る。そしてこの際には、金型キャビティ入口圧力、即ち
充填圧が大幅に低減される。充填完了後、コントローラ
11から電磁切換弁40、電磁リリーフ弁41に信号を
出して一次型締圧を降圧し、更に楔形スペーサ37を後
退させた後、サーボ弁29に信号を出して絞りノズル4
のスキマd、を閉鎖し、しかる後電磁切換弁40と電磁
リリーフ弁41に信号を送り、二次型締圧として所定の
圧力で、所定の時間金型キャビティ36を圧縮する。次
いで冷却固化後、移動金型32を開き成形品を取り出す
Here, the molten resin 7 plasticized at high temperature is injected and filled into the cavity 36 including the compression allowance δ at high speed up to the set position of the screw l according to a signal from the controller 11. At this time, the mold cavity inlet pressure, ie, the filling pressure, is significantly reduced. After filling is completed, the controller 11 sends a signal to the electromagnetic switching valve 40 and the electromagnetic relief valve 41 to lower the primary mold clamping pressure, and after retracting the wedge spacer 37, sends a signal to the servo valve 29 to close the throttle nozzle 4.
After that, a signal is sent to the electromagnetic switching valve 40 and the electromagnetic relief valve 41 to compress the mold cavity 36 at a predetermined pressure as secondary mold clamping pressure for a predetermined time. After cooling and solidifying, the movable mold 32 is opened and the molded product is taken out.

次に本発明を実施したテスト結果について説明する。Next, test results of the present invention will be explained.

1、充填圧低減試験 (1)テスト条件 200φ円板金型を使用して、充填圧低減の感度分析試
験を実施した。
1. Filling pressure reduction test (1) Test conditions A sensitivity analysis test for filling pressure reduction was conducted using a 200φ disc mold.

(1)  試 験 機:射出機 900/220?1S
(2)金   型:200φ円板金型(第6図)肉  
   厚:1+3mm 200φ円板金型を使用し、成形条件を変えて、型内圧
2点(キャビティ入口、キャビティ末端)と樹脂流入温
度を測定した。ここで充填圧は充填完了時(末端圧力O
)のキャビティ入口圧力と定義する。
(1) Test machine: Injection machine 900/220?1S
(2) Mold: 200φ disc mold (Fig. 6) Meat
Using a 200φ disc mold with a thickness of 1+3 mm, the mold internal pressure at two points (cavity entrance and cavity end) and resin inflow temperature were measured while changing the molding conditions. Here, the filling pressure is at the completion of filling (terminal pressure O
) is defined as the cavity inlet pressure.

(2)試験結果 金型温度の感度は今回のテストでは有意義が認められな
かった。ゲート寸法、成形品肉厚、樹脂温度、射出率を
説明変数に充填圧を特性値にとり、前項に示すそれぞれ
のテスト水準での結果を複合変数重回帰分析した。得ら
れた重回帰式を用いて、各説明変数の変化に対する特性
値を再計算することにより、充填圧力低減に及ぼす各説
明変数の感度を求めることができる。ゲート寸法、金型
肉厚、射出率の感度分析結果を第7図に示す。肉厚1m
m、ゲート寸法0.7mmを基準にし、この時の充填圧
の実測値50MPaを20MPaに低減するプロセスは
次の通りである。
(2) Test results The mold temperature sensitivity was not significant in this test. Using gate dimensions, molded product wall thickness, resin temperature, and injection rate as explanatory variables and filling pressure as a characteristic value, a multiple variable regression analysis was performed on the results at each test level shown in the previous section. By recalculating the characteristic values for changes in each explanatory variable using the obtained multiple regression equation, the sensitivity of each explanatory variable to filling pressure reduction can be determined. Figure 7 shows the sensitivity analysis results for gate dimensions, mold wall thickness, and injection rate. Wall thickness 1m
The process of reducing the actual filling pressure of 50 MPa to 20 MPa based on the gate size of 0.7 mm is as follows.

第7図から明らかなように、(1)ゲート寸法を0.7
mmから0 、2 +++mに絞って発熱させることに
より、充填圧を50MPaから32MPa (■→■)
に低減できる。また(2)肉厚をfanから1,2鮒に
増加することにより、32MPaから22MPa (■
→■)に低減できる(肉厚増分効果)。更に(3)射出
率を100c艷/secから300cd/secに増加
することにより、22MPaから17MPa(■→■)
に低減できることが分かる。即ち、20MPa以下とな
る。
As is clear from Figure 7, (1) the gate dimension is 0.7
Filling pressure can be increased from 50MPa to 32MPa (■→■) by generating heat from mm to 0,2 +++m.
can be reduced to In addition, (2) by increasing the wall thickness from fan to 1 or 2 carp, the pressure was increased from 32 MPa to 22 MPa (■
→■) (thickness increase effect). Furthermore, (3) by increasing the injection rate from 100 cd/sec to 300 cd/sec, the pressure was increased from 22 MPa to 17 MPa (■→■)
It can be seen that it can be reduced to That is, it becomes 20 MPa or less.

以上の充填圧低減効果の内、(])項と(3)項は溶融
樹脂のゲート通過時の剪断発熱による樹脂温度上昇効果
である。なお、前記テストは金型のゲートを絞って実施
したが、ノズル部で絞ることによっても同等の効果が得
られることは明らかであり、充填圧50MPaを20M
Paに低減することができる。
Among the above-mentioned filling pressure reduction effects, terms (]) and (3) are effects of increasing resin temperature due to shear heat generation when the molten resin passes through the gate. Although the above test was carried out by squeezing the mold gate, it is clear that the same effect can be obtained by squeezing the nozzle, and the filling pressure was changed from 50 MPa to 20 Mpa.
It can be reduced to Pa.

2、射出後の圧縮成形 第8図に使用樹脂ABSタフレックス−210のPvT
曲線を示す。射出成形の場合、樹脂温度210’Cで充
填して保持圧50MPaで保持しても、ゲートシール後
は有効圧が金型キャビティに作用しないため、比容積は
ゲートシール時間で決まり、第6図の例の場合1.03
2cnf/gである。
2. PvT of resin ABS Tuflex-210 used for compression molding after injection Fig. 8
Show a curve. In the case of injection molding, even if the resin is filled at a temperature of 210'C and held at a holding pressure of 50 MPa, no effective pressure acts on the mold cavity after the gate is sealed, so the specific volume is determined by the gate sealing time, as shown in Figure 6. In the example of 1.03
It is 2cnf/g.

一方本発明の低圧充填後の圧縮成形では、熱変形温度近
くまでキャビティに有効圧が作用するため、圧縮圧が、
例えば10M1’aの低圧でも、耐熱ABSO熱変形温
度110°Cまで圧力を掛けたとすると、圧縮成形の最
終時の比容積は1.oc++I/gとなり、射出成形品
以上の高密度の成形品が得られる。
On the other hand, in the compression molding after low-pressure filling of the present invention, the effective pressure acts on the cavity up to near the heat distortion temperature, so the compression pressure is
For example, even at a low pressure of 10M1'a, if pressure is applied to a heat-resistant ABSO heat distortion temperature of 110°C, the specific volume at the final stage of compression molding will be 1. oc++I/g, and a molded product with higher density than injection molded products can be obtained.

(発明の効果) 以上詳細に説明した如く本発明は構成されているので、
金型キャビティ入口圧力は大幅に低下し、成形時の負荷
曲線は第5図(eは射出圧力、rは金型キャビティ人口
圧力、gは金型キャビティ流動末端圧力、11は型締圧
力)の通りとなり、金型キャビティ内の圧力ドロップΔ
P2は従来のΔP1と比較すると、溶融樹脂の粘度低下
により大幅に低減されている。またキャビティ入口と末
端の圧力のアンバランスも殆ど無くなっている。そして
充填完了後の移動金型(押圧手段)がキャビティ全体を
所定圧力りで押圧するとき、入口圧力rと流動末端圧力
gの差が小さく、金型に無理な圧力のアンバランスが生
しない。そして前記入口と末端の平均圧力も低く、押圧
力は低圧でよくエネルギー消費が少なくて済む。以上の
ことから、本発明によれば金型キャビティ入口圧力も、
充填後の押圧力も低い状態で成形ができることになり、
ZAS金型で十分成形が可能である。
(Effects of the Invention) Since the present invention is configured as explained in detail above,
The mold cavity inlet pressure decreased significantly, and the load curve during molding became as shown in Figure 5 (e is the injection pressure, r is the mold cavity population pressure, g is the mold cavity flow end pressure, and 11 is the mold clamping pressure). As per the pressure drop in the mold cavity Δ
P2 is significantly reduced compared to the conventional ΔP1 due to a decrease in the viscosity of the molten resin. Moreover, the imbalance between the pressure at the cavity entrance and the end is almost eliminated. When the movable mold (pressing means) presses the entire cavity with a predetermined pressure after filling is completed, the difference between the inlet pressure r and the flow end pressure g is small, and no unreasonable pressure imbalance occurs in the mold. Moreover, the average pressure at the inlet and the end is low, so the pressing force can be low and energy consumption is low. From the above, according to the present invention, the mold cavity inlet pressure also
This means that molding can be performed with low pressing force after filling.
It can be sufficiently molded using a ZAS mold.

また本発明は、射出充填時、金型を開いて射出充填する
ことによる金型肉厚増分効果、ノズル絞りの発熱による
樹脂温度増分効果、高速充填による樹脂温度増分効果に
より充填圧は50MPaから17MPaへと大幅低減が
可能である。また充填後の圧縮成形では、10MI’a
の低圧でも寸法精度のよい成形品が得られ、型締力は従
来より遥かに小さくてよい。従って本発明によると、低
充填圧成形及び低型締圧成形が可能となり、従来から少
量生産型として使用されているZAS (亜鉛合金)で
の計産が可能となり、金型費も大幅に低減できる。更に
低圧充填、低圧型締により成形品1個当りに消費するエ
ネルギーも大幅に低減できる。また低型締圧力でよいた
め、射出成形装置の小型化と小スペース化を図ることが
できる。
Furthermore, during injection filling, the filling pressure is increased from 50 MPa to 17 MPa due to the mold wall thickness increase effect by opening the mold and injection filling, the resin temperature increase effect due to the heat generated by the nozzle throttle, and the resin temperature increase effect due to high-speed filling. A significant reduction is possible. In addition, in compression molding after filling, 10MI'a
Molded products with good dimensional accuracy can be obtained even at low pressures, and the mold clamping force can be much smaller than conventional molds. Therefore, according to the present invention, low filling pressure molding and low mold clamping pressure molding are possible, and mass production using ZAS (zinc alloy), which has traditionally been used as a small-volume production mold, is possible, and mold costs are significantly reduced. can. Furthermore, low-pressure filling and low-pressure mold clamping can significantly reduce the energy consumed per molded product. Furthermore, since a low mold clamping pressure is required, the injection molding apparatus can be made smaller and occupy less space.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す射出成形装置の断面
と配管を示す系統図、第2図及び第3図は夫々第1図に
おける要部の断面図、第4閏は従来の射出成形機におけ
る負荷曲線図、第5図は本発明の成形機における負荷曲
線図、第〔3図は試験金型成形品の断面図、第7図は肉
厚、ゲート寸法、射出率の充填圧低減の感度特性曲線図
、第8図ε:ロBS樹脂のPvT曲線図である。 図の主要部分の説明 1−スクリュ 4−絞りノズル 11− コントローラ 21− ニードルビン 27−位置センサ 33−型締シリンダ 36・−キャビティ 2−シリンダ 5−・ホンバ 20−ノズル 22−バルブ本体 32−・−移動金型 35・・・固定金型 37−・・楔形スペーサ 第6図 f拘険金型(φ200円組童型)tン砂イ丁り、li 鳥7図 #Ll!、′:f−ト寸ム2禽考出竿の元月U11&威
のβV(第4図 4L泉の村山成形機の負術曲鵜Lffi堵5図 木発唱の成形機の負菰扁V(記 第8図 温度(’(1)
FIG. 1 is a system diagram showing a cross section and piping of an injection molding apparatus according to a first embodiment of the present invention, FIGS. 2 and 3 are sectional views of main parts in FIG. Figure 5 is a load curve diagram for the injection molding machine, Figure 5 is a load curve diagram for the molding machine of the present invention, Figure 3 is a cross-sectional view of the test molded product, Figure 7 is the filling of wall thickness, gate size, and injection rate. FIG. 8 is a pressure reduction sensitivity characteristic curve diagram. ε: B is a PvT curve diagram of BS resin. Explanation of main parts in the figure 1 - Screw 4 - Throttle nozzle 11 - Controller 21 - Needle bin 27 - Position sensor 33 - Clamping cylinder 36 - Cavity 2 - Cylinder 5 - Hub 20 - Nozzle 22 - Valve body 32 - - Movable mold 35...Fixed mold 37--Wedge-shaped spacer Fig. 6 f Restraint mold (φ200 circle set child mold) ,': f-to size 2 bird devised rod's original month U11 &Wei's βV (Figure 4 4L Izumi's Murayama molding machine's negative technique Lffi and 5 figure Wood's molding machine's negative combi V (Figure 8 Temperature ('(1)

Claims (2)

【特許請求の範囲】[Claims] (1)金型を若干開き溶融樹脂を充填圧力を減少させて
充填する射出充填時に、射出ノズルを絞ることにより溶
融樹脂の粘度を剪断熱を発生させて低下させ、この低粘
度の樹脂を金型に充填し、充填完了後移動金型で樹脂を
押圧し、ゲートシール後も金型キャビティに充填された
樹脂に有効な押圧力が作用するようにしたことを特徴と
する射出成形方法。
(1) Open the mold slightly and fill the molten resin by reducing the filling pressure.During injection filling, the injection nozzle is narrowed to reduce the viscosity of the molten resin by generating a shear heat, and this low-viscosity resin is transferred to the mold. An injection molding method characterized by filling a mold and pressing the resin with a movable mold after filling is completed so that an effective pressing force acts on the resin filled in the mold cavity even after gate sealing.
(2)固定金型に対し、移動金型の間隔を成形品の圧縮
代(樹脂の冷却に伴う比容積の減少分)を見込んだ定位
置に保持する移動金型の定位置決め手段と、射出充填時
、絞りノズルの溶融樹脂流路断面積可変手段と連動する
射出流量及び圧力調整手段と、充填完了後、移動金型に
より樹脂を押圧する押圧手段とを備え、溶融樹脂の粘度
を下げて金型キャビティ内での溶融樹脂の圧損を低下せ
しめるようにしたことを特徴とする射出成形装置。
(2) fixed positioning means for the movable mold, which maintains the interval between the movable molds at a fixed position with respect to the fixed mold, taking into account the compression allowance of the molded product (reduction in specific volume due to cooling of the resin); At the time of filling, the injection flow rate and pressure adjusting means is interlocked with the means for varying the cross-sectional area of the molten resin flow path of the throttle nozzle, and after the filling is completed, a pressing means is provided that presses the resin using a moving mold to lower the viscosity of the molten resin. An injection molding device characterized by reducing pressure loss of molten resin within a mold cavity.
JP1278474A 1989-10-27 1989-10-27 Injection molding method and apparatus Expired - Fee Related JP2734477B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1278474A JP2734477B2 (en) 1989-10-27 1989-10-27 Injection molding method and apparatus
EP90250266A EP0425060B1 (en) 1989-10-27 1990-10-18 Process for injection molding and apparatus therefor
DE69021824T DE69021824T2 (en) 1989-10-27 1990-10-18 Injection molding process and apparatus therefor.
KR1019900017162A KR920009940B1 (en) 1989-10-27 1990-10-25 Process for injection molding and apparatus therefor
US08/321,476 US5478520A (en) 1989-10-27 1994-10-11 Process for injection molding and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1278474A JP2734477B2 (en) 1989-10-27 1989-10-27 Injection molding method and apparatus

Publications (2)

Publication Number Publication Date
JPH03140223A true JPH03140223A (en) 1991-06-14
JP2734477B2 JP2734477B2 (en) 1998-03-30

Family

ID=17597834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1278474A Expired - Fee Related JP2734477B2 (en) 1989-10-27 1989-10-27 Injection molding method and apparatus

Country Status (1)

Country Link
JP (1) JP2734477B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210164A (en) * 2006-02-08 2007-08-23 Sumitomo Heavy Ind Ltd Injection molding method and injection moulding machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021225A (en) * 1983-07-15 1985-02-02 Idemitsu Petrochem Co Ltd Injection compression molding method
JPS60242022A (en) * 1984-05-10 1985-12-02 Mitsubishi Heavy Ind Ltd Injection device
JPH01278475A (en) * 1988-04-28 1989-11-08 Oiles Ind Co Ltd Complex sliding member of silicon carbide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021225A (en) * 1983-07-15 1985-02-02 Idemitsu Petrochem Co Ltd Injection compression molding method
JPS60242022A (en) * 1984-05-10 1985-12-02 Mitsubishi Heavy Ind Ltd Injection device
JPH01278475A (en) * 1988-04-28 1989-11-08 Oiles Ind Co Ltd Complex sliding member of silicon carbide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210164A (en) * 2006-02-08 2007-08-23 Sumitomo Heavy Ind Ltd Injection molding method and injection moulding machine

Also Published As

Publication number Publication date
JP2734477B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US5478520A (en) Process for injection molding and apparatus therefor
EP0968782B1 (en) Method and apparatus for semi-molten metal injection molding
JP4284070B2 (en) Mold for injection compression molding and molding method using the same
JPH0729350B2 (en) Injection molding method with pressurization
RU2008222C1 (en) Method and apparatus for injection molding
US4191726A (en) Process and apparatus for manufacturing molded parts from granulated plastic materials
EP0968781B1 (en) Method and apparatus for semi-molten metal injection molding
KR920009940B1 (en) Process for injection molding and apparatus therefor
JPH0550972B2 (en)
US4158540A (en) Process and apparatus for manufacturing molded parts from granulated plastic materials
JPH03140222A (en) Injection molding method and device
JPH03140223A (en) Injection molding method and device
CA2183718A1 (en) Adjustable mold gate
JP2647515B2 (en) Injection molding method
JPS59165634A (en) Injection molding method
JP3293415B2 (en) How to set the optimal filling resin amount for injection compression molding
JPH0465766B2 (en)
JPS6315719A (en) Weld generation preventive device for injection molding mold
JPH0994856A (en) Mold for injection molding
JPH07214611A (en) Control method for suck-back action in injection molding machine
JP3265923B2 (en) Injection compression molding method and apparatus
JP2009255463A (en) Injection molding machine and injection molding method
JP3232550B2 (en) Control method of mold clamping pressure in injection compression molding
JPH04246523A (en) Injection compression molding method
JPS6233050A (en) Method for ejecting injection product at mold opening of injection molding machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees