JPH0510303B2 - - Google Patents

Info

Publication number
JPH0510303B2
JPH0510303B2 JP61294771A JP29477186A JPH0510303B2 JP H0510303 B2 JPH0510303 B2 JP H0510303B2 JP 61294771 A JP61294771 A JP 61294771A JP 29477186 A JP29477186 A JP 29477186A JP H0510303 B2 JPH0510303 B2 JP H0510303B2
Authority
JP
Japan
Prior art keywords
silicon carbide
carbon
powder
porous body
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61294771A
Other languages
Japanese (ja)
Other versions
JPS63147880A (en
Inventor
Masahiro Tokuse
Junichi Kugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP61294771A priority Critical patent/JPS63147880A/en
Publication of JPS63147880A publication Critical patent/JPS63147880A/en
Publication of JPH0510303B2 publication Critical patent/JPH0510303B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はメカニカルシール等密封摺動部品とし
て特に有用な炭化珪素複合材に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a silicon carbide composite material that is particularly useful as a sealed sliding part such as a mechanical seal.

(従来の技術およびその問題点) 近年、開発された多くのセラミツクスの中で、
無加圧焼結炭化珪素は、耐摩耗性、耐食性に優れ
ていることから、メカニカルシール等の密封摺動
部品分野においても活発に用途開発がなされてき
た。
(Conventional technology and its problems) Among the many ceramics developed in recent years,
Pressureless sintered silicon carbide has excellent wear resistance and corrosion resistance, and has therefore been actively developed for use in the field of sealed sliding parts such as mechanical seals.

炭化珪素焼結体の製造方法としては、例えば特
開昭50−78609号公報、特開昭51−148712号公報
等に記載の方法がある。しかし、前記製造方法に
より得られる緻密質炭化珪素焼結体は摺動部品と
して使用した場合、潤滑不十分な条件下では摩擦
係数が高くなり、摺動相手材の摩耗が激しく、ま
た炭化珪素焼結体自体もクラツクを生じ易い欠点
があつた。
Examples of methods for manufacturing silicon carbide sintered bodies include methods described in JP-A-50-78609, JP-A-51-148712, and the like. However, when the dense silicon carbide sintered body obtained by the above manufacturing method is used as a sliding part, the coefficient of friction becomes high under conditions of insufficient lubrication, causing severe wear of the sliding partner material, and the silicon carbide sintered body The structure itself also had the disadvantage of being prone to cracks.

この欠点を改良する方法として特開昭61−
58861号公報には、焼結助剤を含む炭化珪素粉末
を比較的低温で焼結し、炭化珪素多孔質焼結体
(以下、多孔体という)を得、これに熱硬化性樹
脂を含浸して摺動材を得る方法が記載されてい
る。前記方法により得られる摺動材は多孔体密度
が2.4g/cm3以下では樹脂含浸後でも強度、耐摩
耗性ともに不十分であるため、実際には多孔体密
度2.68g/cm3のものを用いている。しかし、その
場合、樹脂含有量が7重量%と少ないため、含浸
樹脂による潤滑作用も不十分なものであつた。
As a method to improve this drawback, JP-A-61-
Publication No. 58861 discloses that silicon carbide powder containing a sintering aid is sintered at a relatively low temperature to obtain a porous sintered body of silicon carbide (hereinafter referred to as a porous body), which is impregnated with a thermosetting resin. A method for obtaining a sliding material is described. If the sliding material obtained by the above method has a porous density of 2.4 g/cm 3 or less, both strength and abrasion resistance are insufficient even after resin impregnation. I am using it. However, in this case, since the resin content was as low as 7% by weight, the lubricating effect of the impregnated resin was also insufficient.

また特開昭59−131577号公報には、焼結体中に
遊離炭素相を形成させ、表面に炭素粒子を露出さ
せることにより、摩擦係数を低減させている。し
かし、過剰でしかも大粒径の遊離炭素の添加は、
焼結を妨げ、均質で耐摩耗性の高い焼結体を得る
ことが難しかつた。
Furthermore, in JP-A-59-131577, the coefficient of friction is reduced by forming a free carbon phase in a sintered body and exposing carbon particles on the surface. However, the addition of excessive and large particle size free carbon
This hinders sintering and makes it difficult to obtain a homogeneous sintered body with high wear resistance.

(発明の目的) 本発明は、前記欠点を解決し、含有炭素の十分
な潤滑作用で耐摩耗性が良好な摺動部材を提供す
ることを目的とする。
(Objective of the Invention) An object of the present invention is to solve the above-mentioned drawbacks and to provide a sliding member that has good wear resistance due to the sufficient lubricating action of carbon contained therein.

(問題点を解決するための技術的手段) 本発明は炭化珪素粉末が有機珪素化合物の熱分
解により生成する主としてSiとCからなる無機物
により結合された多孔体に、加熱により炭素に転
換しうる有機高分子化合物を含浸し、炭化させて
なる炭化珪素−炭素複合材に関する。
(Technical means for solving the problem) The present invention provides a porous body in which silicon carbide powder is bonded by inorganic substances mainly composed of Si and C, which is produced by thermal decomposition of an organic silicon compound, and can be converted into carbon by heating. The present invention relates to a silicon carbide-carbon composite material impregnated with an organic polymer compound and carbonized.

本発明において、炭化珪素粉末としては、α,
βいずれでも良く、純度、粒径についても特別な
制限はないが、多孔体の強度を保持する上で、サ
ブミクロン粉末を用いることが望ましい。
In the present invention, the silicon carbide powder includes α,
Either β may be used, and there are no particular restrictions on purity or particle size, but it is desirable to use submicron powder in order to maintain the strength of the porous body.

有機珪素化合物としては、不活性ガス雰囲気
下、1000℃以上で熱処理することにより主として
SiとCからなる無機物に転換されるものが用いら
れる。特に、珪素と炭素との結合を主な骨格成分
とする有機珪素重縮合体が好ましい。例えば、特
開昭51−126300号公報、特開昭52−112700号公
報、特開昭54−61299号公報および特開昭57−
16029号公報に記載されている主としてカルボシ
ラン骨格よりなる高分子有機珪素化合物が本発明
の使用に適している。
As an organosilicon compound, it is mainly produced by heat treatment at 1000℃ or higher in an inert gas atmosphere.
A material that can be converted into an inorganic substance consisting of Si and C is used. Particularly preferred are organosilicon polycondensates whose main skeleton components are bonds between silicon and carbon. For example, JP-A-51-126300, JP-A-52-112700, JP-A-54-61299, and JP-A-57-
The polymeric organosilicon compounds mainly consisting of a carbosilane skeleton described in Japanese Patent No. 16029 are suitable for use in the present invention.

有機高分子化合物としては、加熱により炭素に
転換しうるものであれば、特に制限はないが、経
済性および炭化率の高さより考慮するとフエノー
ル系、フラン系、エポキシ系等の熱硬化性樹脂、
またはピツチ、タール類が適している。
The organic polymer compound is not particularly limited as long as it can be converted into carbon by heating, but from the viewpoint of economy and high carbonization rate, thermosetting resins such as phenol, furan, and epoxy resins,
Alternatively, pitch and tar are suitable.

本発明の炭化珪素−炭素複合材は以下の製法に
より得られる。
The silicon carbide-carbon composite material of the present invention can be obtained by the following manufacturing method.

まず炭化珪素粉末に結合剤として有機珪素化合
物を混合する。炭化珪素粉末と有機珪素化合物の
混合は加圧ニーダー等を用いて行う。この際、成
形性を良くするため、滑剤として例えば高級脂肪
酸等を添加してもよい。
First, an organic silicon compound is mixed with silicon carbide powder as a binder. The silicon carbide powder and the organic silicon compound are mixed using a pressure kneader or the like. At this time, in order to improve moldability, a higher fatty acid or the like may be added as a lubricant.

次いで得られた混合物を押出成形等により所望
の形状に成形し、これを焼成することにより多孔
体が得られる。焼成温度は1200〜2200℃、特に
1600〜2200℃が望ましい。温度が低すぎると多孔
体の強度が不十分となる。
Next, the obtained mixture is molded into a desired shape by extrusion molding or the like, and this is fired to obtain a porous body. The firing temperature is 1200-2200℃, especially
1600-2200℃ is desirable. If the temperature is too low, the strength of the porous body will be insufficient.

本発明における多孔体は、炭化珪素粉末が焼結
助剤を用いず、有機珪素化合物の熱分解により生
成する主としてSiとCからなる無機物により結合
された多孔体であるため、1.8〜2.4g/cm3という
低密度であるにもかかわらず、25〜35Kg/mm2とい
う高強度を有する。
The porous body in the present invention is a porous body in which silicon carbide powder is bonded by an inorganic substance mainly composed of Si and C produced by thermal decomposition of an organic silicon compound without using a sintering aid. Despite its low density of cm3 , it has high strength of 25-35Kg/ mm2 .

次に、多孔体の有機高分子化合物を含浸する。
多孔体への有機高分子化合物の含浸は通常の方
法、例えば多孔体を真空で有機高分子化合物に浸
漬する方法で行われる。あるいはさらに、静水圧
プレス等で有機高分子を加圧することにより、気
孔の細部まで十分に有機高分子化合物を含浸する
ことができる。
Next, the porous body is impregnated with an organic polymer compound.
Impregnation of the porous body with the organic polymer compound is carried out by a conventional method, for example, by immersing the porous body in the organic polymer compound under vacuum. Alternatively, by pressurizing the organic polymer using a hydrostatic press or the like, the organic polymer compound can be sufficiently impregnated into the fine details of the pores.

次いで、前記有機高分子化合物を含浸した多孔
体を不活性雰囲気下で700〜2200℃で加熱し、炭
化することにより、耐摩耗性に優れた炭化珪素−
炭素複合材が得られる。さらに前記含浸−炭化操
作を繰返し行うことにより、多孔体に炭素が十分
に含有された炭化珪素−炭素複合材を得ることが
できる。
Next, the porous body impregnated with the organic polymer compound is heated at 700 to 2200°C in an inert atmosphere and carbonized to form silicon carbide with excellent wear resistance.
A carbon composite material is obtained. Furthermore, by repeating the impregnation-carbonization operation, a silicon carbide-carbon composite material in which the porous body sufficiently contains carbon can be obtained.

(実施例) 以下、実施例において本発明を説明する。(Example) Hereinafter, the present invention will be explained in Examples.

実施例 1 平均粒径0.3μmの炭化珪素粉末81重量部、ポリ
チタノカルボシラン10重量部およびステアリン酸
9重量部を加圧ニーダーを用いて90分間混合し
た。得られた混合物を粉砕後、押出成形によりパ
イプ状の成形体を得た。この成形体を550℃まで
ゆるやかに昇温し、ステアリン酸を脱脂後、1950
℃で焼成し、外径44mm、内径30mmの焼結体を得
た。この焼結体は密度2.05g/cm3の多孔体であ
り、抗折強度は34.1Kg/mm2であつた。この焼結体
を厚さ10mmに切断して多孔体リングを得た。
Example 1 81 parts by weight of silicon carbide powder having an average particle size of 0.3 μm, 10 parts by weight of polytitanocarbosilane and 9 parts by weight of stearic acid were mixed for 90 minutes using a pressure kneader. After pulverizing the obtained mixture, a pipe-shaped molded product was obtained by extrusion molding. This molded body was heated slowly to 550℃, and after degreasing the stearic acid, 1950℃
It was fired at ℃ to obtain a sintered body with an outer diameter of 44 mm and an inner diameter of 30 mm. This sintered body was a porous body with a density of 2.05 g/cm 3 and a bending strength of 34.1 Kg/mm 2 . This sintered body was cut to a thickness of 10 mm to obtain a porous ring.

この多孔体リングにレゾールタイプのフエノー
ル樹脂を含浸後、窒素雰囲気中で800℃に加熱し、
炭化させた。この含浸−炭化操作を3回繰返し、
密度2.73g/cm3の複合材リングを得た。
After impregnating this porous ring with resol type phenolic resin, it was heated to 800℃ in a nitrogen atmosphere.
Carbonized. This impregnation-carbonization operation was repeated three times,
A composite ring with a density of 2.73 g/cm 3 was obtained.

得られた複合材リングに相手材として、フエノ
ール樹脂含浸カーボンを用い、100℃熱水中で、
摺動試験を行つた。試験条件は液圧7Kg/cm2、回
転数5000rpm、200時間であつた。摩耗量は複合
材側0.1μm、相手材側0.2μmであつた。
Using phenol resin-impregnated carbon as a mating material for the resulting composite ring, it was heated in hot water at 100°C.
A sliding test was conducted. The test conditions were a hydraulic pressure of 7 Kg/cm 2 , a rotation speed of 5000 rpm, and a duration of 200 hours. The amount of wear was 0.1 μm on the composite material side and 0.2 μm on the mating material side.

比較例 1 焼結助剤として炭化ホウ素粉末1.5重量部およ
びレゾールタイプフエノール樹脂5.6重量部とス
テアリン酸1重量部および残部が炭化珪素粉末か
らなる混合物をエタノール中で湿式ボールミル混
合後、エタノール留去し、粉砕した。得られた粉
末を1.0ton/cm2の圧力で静水圧プレスした後、真
空中1850℃で焼成し、外径44mm、内径30mm、厚さ
10mmの焼結体を得た。この多孔体の密度は2.75
g/cm3、抗折強度は15.0Kg/mm2であつた。この多
孔体に実施例1と同様な方法でフエノール樹脂を
含浸硬化させたところ、密度2.93g/cm3、樹脂含
有率6.3%であつた。実施例1と同条件で摺動試
験を行つた結果、摩耗量は複合材側0.5μm、相手
材側1.2μmであつた。
Comparative Example 1 A mixture consisting of 1.5 parts by weight of boron carbide powder as a sintering aid, 5.6 parts by weight of resol type phenol resin, 1 part by weight of stearic acid, and the balance consisting of silicon carbide powder was wet-ball milled in ethanol, and then the ethanol was distilled off. , crushed. The obtained powder was hydrostatically pressed at a pressure of 1.0 ton/cm 2 and then calcined in a vacuum at 1850°C to form a powder with an outer diameter of 44 mm, an inner diameter of 30 mm, and a thickness of
A sintered body of 10 mm was obtained. The density of this porous material is 2.75
g/cm 3 , and the bending strength was 15.0 Kg/mm 2 . When this porous body was impregnated with a phenolic resin and cured in the same manner as in Example 1, the density was 2.93 g/cm 3 and the resin content was 6.3%. As a result of a sliding test conducted under the same conditions as in Example 1, the amount of wear was 0.5 μm on the composite material side and 1.2 μm on the mating material side.

比較例 2 比較例1と同組成の解砕粉に、平均粒径15μm
の炭素粉5重量部を添加し、湿式ボールミル混合
後、乾燥、粉砕し、炭素過剰の解砕粉を得た。
Comparative Example 2 Crushed powder with the same composition as Comparative Example 1 with an average particle size of 15 μm
5 parts by weight of carbon powder were added thereto, mixed in a wet ball mill, dried and pulverized to obtain a pulverized powder containing excess carbon.

得られた粉末を1.0ton/cm2の圧力で静水圧プレ
スした後、成形体を真空中で2100℃で焼結た。得
られた焼結体は、密度2.88g/cm3、抗折強度は
20.5Kg/mm2であり、低密度であつた。実施例1と
同様な条件で摺動試験を行つた結果、焼結体側摩
耗量は0.3μm、相手材側は1.0μmであつた。
After the obtained powder was subjected to isostatic pressing at a pressure of 1.0 ton/cm 2 , the compact was sintered at 2100° C. in a vacuum. The obtained sintered body has a density of 2.88 g/cm 3 and a bending strength of
It had a low density of 20.5Kg/mm 2 . As a result of a sliding test conducted under the same conditions as in Example 1, the amount of wear on the sintered body side was 0.3 μm, and on the mating material side was 1.0 μm.

(発明の効果) 本発明による炭化珪素−炭素複合材は、炭化珪
素と含浸炭素とからなり、後者の潤滑作用によ
り、炭化珪素単独のものよりはるかに低い摩擦係
数を示す。また本発明の炭化珪素−炭素複合材
は、十分な強度および硬度を持つており、したが
つて、本発明の炭化珪素−有機高分子複合材は、
潤滑性と耐摩耗性を兼備した優れた摺動部材であ
る。さらに、炭化珪素多孔体を製造する際に、ほ
とんど収縮がないことも、寸法精度良く摺動部材
を製造する上で有利である。
(Effects of the Invention) The silicon carbide-carbon composite material according to the present invention is composed of silicon carbide and impregnated carbon, and due to the lubricating action of the latter, it exhibits a much lower coefficient of friction than silicon carbide alone. Furthermore, the silicon carbide-carbon composite material of the present invention has sufficient strength and hardness, and therefore, the silicon carbide-organic polymer composite material of the present invention has sufficient strength and hardness.
It is an excellent sliding member that has both lubricity and wear resistance. Furthermore, when producing a silicon carbide porous body, there is almost no shrinkage, which is advantageous in producing sliding members with high dimensional accuracy.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化珪素粉末が有機珪素化合物の熱分解によ
り生成する主としてSiとCとからなる無機物によ
り結合されており、密度が1.8〜2.4g/cm3である
炭化珪素多孔質焼結体に、加熱により炭素に転換
しうる有機高分子化合物を含浸し、炭化させてな
る炭化珪素−炭素複合材。
1 Silicon carbide powder is bonded by an inorganic substance mainly composed of Si and C produced by thermal decomposition of an organic silicon compound, and the silicon carbide porous sintered body has a density of 1.8 to 2.4 g/cm 3 by heating. A silicon carbide-carbon composite material impregnated with an organic polymer compound that can be converted into carbon and carbonized.
JP61294771A 1986-12-12 1986-12-12 Silicon carbide-carbon composite material Granted JPS63147880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61294771A JPS63147880A (en) 1986-12-12 1986-12-12 Silicon carbide-carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61294771A JPS63147880A (en) 1986-12-12 1986-12-12 Silicon carbide-carbon composite material

Publications (2)

Publication Number Publication Date
JPS63147880A JPS63147880A (en) 1988-06-20
JPH0510303B2 true JPH0510303B2 (en) 1993-02-09

Family

ID=17812082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61294771A Granted JPS63147880A (en) 1986-12-12 1986-12-12 Silicon carbide-carbon composite material

Country Status (1)

Country Link
JP (1) JPS63147880A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369575A (en) * 1989-08-07 1991-03-25 Shinagawa Refract Co Ltd Production of carbon or active carbon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124012A (en) * 1978-03-20 1979-09-26 Akira Washida Parts for sliding portion
JPS5848503A (en) * 1981-09-18 1983-03-22 Mitsubishi Electric Corp Antenna device
JPS61132575A (en) * 1984-11-30 1986-06-20 イビデン株式会社 Silicon carbide composite body
JPS61174182A (en) * 1985-01-26 1986-08-05 イビデン株式会社 Silicon carbide base composite body with high size precisionand sliding properties and manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124012A (en) * 1978-03-20 1979-09-26 Akira Washida Parts for sliding portion
JPS5848503A (en) * 1981-09-18 1983-03-22 Mitsubishi Electric Corp Antenna device
JPS61132575A (en) * 1984-11-30 1986-06-20 イビデン株式会社 Silicon carbide composite body
JPS61174182A (en) * 1985-01-26 1986-08-05 イビデン株式会社 Silicon carbide base composite body with high size precisionand sliding properties and manufacture

Also Published As

Publication number Publication date
JPS63147880A (en) 1988-06-20

Similar Documents

Publication Publication Date Title
US5707567A (en) Process for producing a self-sintered silicon carbide/carbon graphite composite material having interconnected pores which maybe impregnated
US8906522B2 (en) Hard non-oxide or oxide ceramic / hard non-oxide or oxide ceramic composite hybrid article
US7166550B2 (en) Ceramic composite body of silicon carbide/boron nitride/carbon
AU2003230879B2 (en) A composite body of silicon carbide and binderless carbon and process for producing
US6398991B1 (en) Processes for making a silicon carbide composition
JP3350394B2 (en) Graphite composite silicon carbide sintered body, graphite composite silicon carbide sintered composite, and mechanical seal
US6709999B2 (en) Molded part of ceramic material derived from polymers, process for producing ceramic molded parts and sliding element having a molded part
CN1169708A (en) Selfsintered silicon carbide/carbon composite material
JPH0510303B2 (en)
JP2851717B2 (en) Sliding member
JPH0510304B2 (en)
JPS59131577A (en) Silicon carbide material and manufacture
JPS6158861A (en) Silicon carbide material and manufacture
JPH0251864B2 (en)
JPH0735301B2 (en) Manufacturing method of sliding material for mechanical seal
JPS60112670A (en) Silicon carbide material and manufacture
JP2801785B2 (en) Manufacturing method of ceramic composite sintered body
JPH01320254A (en) Ceramic-carbon based composite material and its production
JP2002338357A (en) Sliding body and mechanical seal
JP2543093B2 (en) Sliding parts for seals
JPH02129071A (en) Production of silicon carbide ceramics
JPS6227030B2 (en)
JPS62176956A (en) Manufacture of silicon carbide base composite body
JPS62275066A (en) Manufacture of silicon carbide sintered body
JPH01278475A (en) Complex sliding member of silicon carbide