JPH01274421A - Heat treatment method for semiconductor substrate - Google Patents
Heat treatment method for semiconductor substrateInfo
- Publication number
- JPH01274421A JPH01274421A JP10248088A JP10248088A JPH01274421A JP H01274421 A JPH01274421 A JP H01274421A JP 10248088 A JP10248088 A JP 10248088A JP 10248088 A JP10248088 A JP 10248088A JP H01274421 A JPH01274421 A JP H01274421A
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- film
- substrate
- semiconductor substrate
- metal film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 59
- 238000010438 heat treatment Methods 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000004065 semiconductor Substances 0.000 title claims description 41
- 229910052751 metal Inorganic materials 0.000 claims abstract description 24
- 239000002184 metal Substances 0.000 claims abstract description 24
- 230000001678 irradiating effect Effects 0.000 claims abstract description 3
- 239000010408 film Substances 0.000 claims description 33
- 239000010409 thin film Substances 0.000 claims description 18
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 8
- 229910052721 tungsten Inorganic materials 0.000 abstract description 6
- 239000010937 tungsten Substances 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052736 halogen Inorganic materials 0.000 abstract description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 abstract description 3
- -1 tungsten halogen Chemical class 0.000 abstract description 3
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 2
- 239000000377 silicon dioxide Substances 0.000 abstract description 2
- 239000000956 alloy Substances 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 230000031700 light absorption Effects 0.000 description 9
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BYDQGSVXQDOSJJ-UHFFFAOYSA-N [Ge].[Au] Chemical class [Ge].[Au] BYDQGSVXQDOSJJ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000006023 eutectic alloy Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は半導体基板の熱処理方法に関し、ざらに詳しく
は半導体基板の光照射加熱による短時間熱処理方法に関
する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of heat treatment of a semiconductor substrate, and more particularly to a method of heat treatment of a semiconductor substrate for a short time by heating by light irradiation.
[従来の技術]
従来より半導体基板の熱処理方法の一つとして、ランプ
からの光照射による加熱を利用した短時間熱処理方法が
知られている。この方法は半導体基板の片面または両面
にランプからの光を照射し、半導体基板の光吸収によっ
て基板を加熱するもので、短時間熱処理に適した方法と
して半導体装置の製造工程で利用されている。[Prior Art] As one of the heat treatment methods for semiconductor substrates, a short time heat treatment method using heating by light irradiation from a lamp has been known. This method irradiates light from a lamp onto one or both sides of a semiconductor substrate, and heats the substrate by absorption of light by the semiconductor substrate, and is used in the manufacturing process of semiconductor devices as a method suitable for short-time heat treatment.
ところで、半導体装置のI!造工程においては、半導体
基板の熱処理を行う際に半導体基板表面にパターンを有
する薄膜が形成されていることも少なくない。従来、こ
のような表面に薄膜パターンを有する半導体基板の光照
射加熱による熱処理は、前記薄膜パターンを含む半導体
基板表面が露出した状態、あるいはこれらの半導体基板
を二酸化硅素(5i02 )や窒化硅素(5iNx)等
の保護膜で被覆した状態で行っていた。By the way, I! of semiconductor devices! In the manufacturing process, a thin film having a pattern is often formed on the surface of the semiconductor substrate when the semiconductor substrate is subjected to heat treatment. Conventionally, heat treatment by light irradiation heating of a semiconductor substrate having a thin film pattern on its surface has been carried out with the surface of the semiconductor substrate including the thin film pattern exposed, or these semiconductor substrates are heated with silicon dioxide (5i02) or silicon nitride (5iNx). ) and other protective films.
[発明が解決しようとする課題]
しかし、このような従来の熱処理方法では、半導体基板
と薄膜材料との光吸収効率に差がある場合にはパターン
によって選択的な加熱が発生し、基板面内における加熱
温度にばらつきが生じる。[Problems to be Solved by the Invention] However, in such conventional heat treatment methods, if there is a difference in light absorption efficiency between the semiconductor substrate and the thin film material, selective heating occurs depending on the pattern, causing damage within the substrate surface. Variations occur in the heating temperature.
例えば、熱処理用光源として広く用いられているタング
ステン・ハロゲンランプの放射光の波長範囲では、シリ
コン(Si)や砒化ガリウム(GaAs )等の半導体
結晶基板の光吸収効率は低く、不純物をドーピングした
半導体結晶、金属の順に光吸収効率は高くなる。また、
5i02. SiNxの光吸収効率はきわめて低い。For example, in the wavelength range of emitted light from a tungsten halogen lamp, which is widely used as a light source for heat treatment, the light absorption efficiency of semiconductor crystal substrates such as silicon (Si) and gallium arsenide (GaAs) is low; Light absorption efficiency increases in the order of crystal and metal. Also,
5i02. The light absorption efficiency of SiNx is extremely low.
従って、半導体基板表面にパターンを有する金属膜や不
純物ドーピングした半導体層が存在するとき、選択加熱
によって基板面内で温度分布が生じ、熱処理効果の均一
性を損うという問題があった。さらに、この理由からパ
ターンの寸法、形状、密度によって局所的な温度および
そめ分布が変化し、熱処理の効果、均一性、再現性の上
で大きな問題となっていた。Therefore, when a patterned metal film or an impurity-doped semiconductor layer is present on the surface of a semiconductor substrate, there is a problem in that selective heating causes temperature distribution within the substrate surface, impairing the uniformity of the heat treatment effect. Furthermore, for this reason, the local temperature and temperature distribution change depending on the size, shape, and density of the pattern, which poses a major problem in terms of the effectiveness, uniformity, and reproducibility of heat treatment.
本発明の目的はこのような従来の欠点を除去し、半導体
基板を均一性および再現性良く熱処理することができる
半導体基板の熱処理方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for heat-treating a semiconductor substrate, which eliminates such conventional drawbacks and can heat-treat a semiconductor substrate with good uniformity and reproducibility.
[課題を解決するための手段]
本発明は、任意のパターンを有する薄膜が表面に形成さ
れてなる半導体基板の光照射による熱処理方法において
、半導体基板の少なくとも熱処理時に光照射される側の
表面を金属膜で全面にわたって被覆する工程と、前記半
導体基板を光照射によって加熱する工程とを備えること
を特徴とする半導体基板の熱処理方法である。[Means for Solving the Problems] The present invention provides a method for heat treatment by light irradiation of a semiconductor substrate on which a thin film having an arbitrary pattern is formed, in which at least the surface of the semiconductor substrate on the side to be irradiated with light during heat treatment is heated. A method for heat-treating a semiconductor substrate, comprising a step of covering the entire surface with a metal film, and a step of heating the semiconductor substrate by irradiating light.
本発明においては、基板全面に被覆すべき金属膜が、下
層の半導体基板や薄膜材料と反応したり、あるいは熱処
理後における金属膜の除去に際して、下層の半導体基板
や薄膜材料が損傷をうけやすいものである場合には、金
属膜の被覆に先立って、保護膜としての中間層を基板全
面にわたって形成しておくことが望ましい。このような
中間層の材料として用いられるものとしては、例えば5
i02が挙げられる。In the present invention, the metal film to be coated on the entire surface of the substrate may react with the underlying semiconductor substrate or thin film material, or the underlying semiconductor substrate or thin film material may be easily damaged when the metal film is removed after heat treatment. In this case, it is desirable to form an intermediate layer as a protective film over the entire surface of the substrate prior to coating with the metal film. Examples of materials used for such an intermediate layer include 5
i02 is mentioned.
[作用]
基板全面を金属膜で被覆したのちにランプからの光を照
射し、加熱すると、基板の昇温は表面全面に形成した光
吸収効率の高い金属膜の光吸収による加熱が支配的とな
り、基板上に形成された薄膜の選択加熱による基板の面
内の温度の不均一は生じない。この時、基板の昇温は金
属膜からの熱伝導の効果が大きくなるが、金属膜を中間
層を介して基板に密着させると熱伝導の面内均一性は十
分に保証される。また、金属膜の膜厚は半導体基板の厚
さに対して十分小さいので熱容量の増加はほとんどなく
、短時間熱処理に重要な昇降温速度に影響しない。[Function] When the entire surface of the substrate is coated with a metal film and then irradiated with light from a lamp and heated, the temperature rise of the substrate is dominated by the heating caused by the light absorption of the metal film with high light absorption efficiency formed on the entire surface. , non-uniformity in temperature within the plane of the substrate does not occur due to selective heating of the thin film formed on the substrate. At this time, when the temperature of the substrate increases, the effect of heat conduction from the metal film increases, but if the metal film is brought into close contact with the substrate via an intermediate layer, the in-plane uniformity of heat conduction is sufficiently guaranteed. Furthermore, since the thickness of the metal film is sufficiently smaller than the thickness of the semiconductor substrate, there is almost no increase in heat capacity, and the temperature increase/decrease rate, which is important for short-time heat treatment, is not affected.
以上のことから、本発明によれば、半導体基板の表面に
形成された薄膜パターンの材料、寸法、形状、密度等の
違いによらず、温度の面内均一性および再現性の良い熱
処理が可能になる。From the above, according to the present invention, it is possible to perform heat treatment with good in-plane temperature uniformity and reproducibility, regardless of differences in material, size, shape, density, etc. of thin film patterns formed on the surface of a semiconductor substrate. become.
[実施例] 次に本発明の実施例について説明する。[Example] Next, examples of the present invention will be described.
第1図は本発明の方法を、n型GaAs層にオーム性接
触を形成するための熱処理に適用した一実施例を説明す
るための半導体基板の部分断面図である。FIG. 1 is a partial sectional view of a semiconductor substrate for explaining an embodiment in which the method of the present invention is applied to heat treatment for forming an ohmic contact to an n-type GaAs layer.
第1図において、1は半絶縁性GaAS結晶よりなる半
導体基板で、その−表面に島状のパターンを有する厚さ
1500人のn型GaAs層よりなる第1の薄膜2がイ
オン注入法によって形成されている。さらに、前記n型
GaAs層2の表面の一部と接触するような島状のパタ
ーンを有する金−ゲルマニウム(AuGe )共晶合金
膜とニッケル(Ni)膜との二層構造の電極金属膜より
なる第2の薄膜3が真空蒸着法によって形成されている
。In FIG. 1, 1 is a semiconductor substrate made of semi-insulating GaAS crystal, and a first thin film 2 made of an n-type GaAs layer having a thickness of 1500 nm and having an island-like pattern on its surface is formed by ion implantation. has been done. Furthermore, an electrode metal film having a two-layer structure of a gold-germanium (AuGe) eutectic alloy film and a nickel (Ni) film having an island-like pattern in contact with a part of the surface of the n-type GaAs layer 2 is used. A second thin film 3 is formed by vacuum evaporation.
本実施例における光照射による熱処理は前記n型GaA
s層(第1の薄膜)2と前記電極金属膜(第2の薄膜)
3とを合金化せしめ、低抵抗のオーム性接触を得るため
に行う。その熱処理前に基板1の薄膜形成面上を覆うよ
うに膜厚2000人の5i02膜よりなる中間層4をス
パッタ法等で堆積し、続いて基板1の両面全面にわたっ
て厚さ約1卯のタングステン(W)膜よりなる金属膜5
をスパッタ法等で堆積する。この基板1を光照射熱処理
装置に入れ、N2あるいは不活性ガスの雰囲気中で基板
1の両面からタングステン・ハロゲンランプで光照射加
熱し、約450℃で数秒間の熱処理を行うことで低抵抗
のオーム性接触が得られる。In this example, the heat treatment by light irradiation is performed on the n-type GaA
s layer (first thin film) 2 and the electrode metal film (second thin film)
This is done to obtain a low resistance ohmic contact. Before the heat treatment, an intermediate layer 4 made of a 5i02 film with a thickness of 2000 μm is deposited by sputtering or the like so as to cover the thin film formation surface of the substrate 1, and then a tungsten layer with a thickness of about 1 μm is deposited over the entire surface of both sides of the substrate 1. (W) Metal film 5 made of film
is deposited by sputtering or the like. This substrate 1 is placed in a light irradiation heat treatment apparatus, and is heated by light irradiation from both sides of the substrate 1 with a tungsten halogen lamp in an atmosphere of N2 or inert gas, and heat treatment is performed at approximately 450°C for several seconds to achieve a low resistance. Ohmic contact is obtained.
この時、基板1の昇温はW膜5の光吸収による発熱の効
果が支配的となり、電極金属膜3やn型GaAs層2で
の選択加熱に起因する温度の面内不均一性の問題は生じ
ない。従って、電極金属膜3やn型GaAS層2のパタ
ーン形状、寸法、密度等が変った場合でも同じ熱処理条
件で再現性良くオーム性接触を形成できる。At this time, the temperature rise of the substrate 1 is dominated by the effect of heat generation due to light absorption by the W film 5, and there is a problem of in-plane temperature non-uniformity caused by selective heating in the electrode metal film 3 and the n-type GaAs layer 2. does not occur. Therefore, even if the pattern shape, dimensions, density, etc. of the electrode metal film 3 and the n-type GaAS layer 2 change, ohmic contact can be formed with good reproducibility under the same heat treatment conditions.
ざらに、中間層4である5i02膜の存在によって、電
極金属膜3、n型GaAS層2あるいはGaAs基板1
とW膜5との反応は防止される。また、5i02膜4は
熱処理後のW膜5のエツチング除去時に保護膜となり、
5i02膜4の除去はGaAs基板1、n型GaAS層
2、電極金属膜3に対して損傷を与えず行える。従って
、この後の製造工程は従来と変りなく行うことができる
。Roughly speaking, due to the presence of the 5i02 film as the intermediate layer 4, the electrode metal film 3, the n-type GaAS layer 2 or the GaAs substrate 1
The reaction between the tungsten and the W film 5 is prevented. Furthermore, the 5i02 film 4 becomes a protective film when the W film 5 is removed by etching after heat treatment.
The removal of the 5i02 film 4 can be performed without damaging the GaAs substrate 1, the n-type GaAS layer 2, and the electrode metal film 3. Therefore, the subsequent manufacturing steps can be carried out in the same manner as before.
以上、本発明の一実施例を述べたが、半導体基板1とし
てはGaAsに限らず、他の化合物半導体やSiでもよ
い。また、熱処理の目的もオーム性接触形成に限るもの
ではない。Although one embodiment of the present invention has been described above, the semiconductor substrate 1 is not limited to GaAs, but may be other compound semiconductors or Si. Furthermore, the purpose of the heat treatment is not limited to forming ohmic contact.
[発明の効果]
以上説明したように、本発明の半導体基板の熱処理方法
によれば、光照射による熱処理前に光吸収効率の大きい
金属膜を半導体基板の少なくとも光照射側の面に形成す
ることによって、前記半導体基板表面に形成されている
薄膜パターンに起因′する温度の面内不均一性の発生を
抑えることができる。従って、パターンの寸法、形状、
密度の変化による温度の均一性や再現性の低下のない熱
処理が行えるため、半導体装置の製造における歩沼り向
上に顕著な効果がある。[Effects of the Invention] As explained above, according to the method for heat treatment of a semiconductor substrate of the present invention, a metal film with high light absorption efficiency is formed on at least the surface of the semiconductor substrate on the light irradiation side before heat treatment by light irradiation. Accordingly, it is possible to suppress the occurrence of in-plane temperature non-uniformity caused by the thin film pattern formed on the surface of the semiconductor substrate. Therefore, the pattern size, shape,
Since heat treatment can be performed without deterioration of temperature uniformity or reproducibility due to changes in density, it has a remarkable effect on improving the efficiency in manufacturing semiconductor devices.
第1図は本発明の一実施例を説明するための半導体基板
の部分断面図である。
1・・・半導体基板 2・・・第1の薄膜3・・
・第2の薄膜 4・・・中間層5・・・金属膜FIG. 1 is a partial sectional view of a semiconductor substrate for explaining one embodiment of the present invention. 1... Semiconductor substrate 2... First thin film 3...
・Second thin film 4...Intermediate layer 5...Metal film
Claims (1)
なる半導体基板の光照射による熱処理方法において、半
導体基板の少なくとも熱処理時に光照射される側の表面
を金属膜で全面にわたって被覆する工程と、前記半導体
基板を光照射によって加熱する工程とを備えることを特
徴とする半導体基板の熱処理方法。(1) In a method of heat treatment by light irradiation of a semiconductor substrate on which a thin film having an arbitrary pattern is formed, a step of covering the entire surface of the semiconductor substrate with a metal film at least on the side that is irradiated with light during heat treatment; A method for heat treatment of a semiconductor substrate, comprising the step of heating the semiconductor substrate by irradiating light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10248088A JPH01274421A (en) | 1988-04-27 | 1988-04-27 | Heat treatment method for semiconductor substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10248088A JPH01274421A (en) | 1988-04-27 | 1988-04-27 | Heat treatment method for semiconductor substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01274421A true JPH01274421A (en) | 1989-11-02 |
Family
ID=14328618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10248088A Pending JPH01274421A (en) | 1988-04-27 | 1988-04-27 | Heat treatment method for semiconductor substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01274421A (en) |
-
1988
- 1988-04-27 JP JP10248088A patent/JPH01274421A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01187814A (en) | Manufacture of thin film semiconductor device | |
JP2893723B2 (en) | Method of manufacturing ohmic electrode | |
JPS59119867A (en) | Semiconductor device | |
US5389564A (en) | Method of forming a GaAs FET having etched ohmic contacts | |
JPH01274421A (en) | Heat treatment method for semiconductor substrate | |
KR0163746B1 (en) | Method for forming ohmic electrode of compound semiconductor device | |
JPH06151354A (en) | Electrode formation method of semiconductor element | |
JPS6424466A (en) | Manufacture of semiconductor device | |
JPH01274422A (en) | Heat treatment method for semiconductor substrate | |
JPS6175517A (en) | Compound semiconductor substrate annealing method | |
JP3095928B2 (en) | Method for manufacturing compound semiconductor | |
JPS5821423B2 (en) | Processing method for semiconductor devices | |
JPH04287916A (en) | Manufacture of semiconductor device | |
JPH01274420A (en) | Heat treatment method for semiconductor substrate | |
JPS6077467A (en) | Manufacture of field effect transistor | |
JPS6021807A (en) | Flash annealing method of hydrogenated amorphous silicon | |
JPS59123271A (en) | Manufacture of compound semiconductor device | |
JPS58175834A (en) | Manufacture of semiconductor device | |
JPH03165515A (en) | Contact forming method | |
JPS60157228A (en) | Semiconductor wafer | |
JPS63173321A (en) | Manufacture of compound semiconductor device | |
JPH0245929A (en) | Manufacture of semiconductor device | |
JPH03175625A (en) | Method and apparatus for heat treatment of semiconductor device | |
JPH01235253A (en) | Manufacture of semiconductor device | |
JPH03289142A (en) | Manufacture of compound semiconductor device |