JPH01273805A - Two stage reheating steam turbine plant having turbine bypass device - Google Patents

Two stage reheating steam turbine plant having turbine bypass device

Info

Publication number
JPH01273805A
JPH01273805A JP10130588A JP10130588A JPH01273805A JP H01273805 A JPH01273805 A JP H01273805A JP 10130588 A JP10130588 A JP 10130588A JP 10130588 A JP10130588 A JP 10130588A JP H01273805 A JPH01273805 A JP H01273805A
Authority
JP
Japan
Prior art keywords
turbine
pressure turbine
steam
ultra
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10130588A
Other languages
Japanese (ja)
Inventor
Kazumasa Kaneko
和正 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10130588A priority Critical patent/JPH01273805A/en
Publication of JPH01273805A publication Critical patent/JPH01273805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To increase the warming performance at actuation time by providing the bypass pipe going round the respective turbine of ultrahigh pressure, high pressure, medium and low pressures and providing the steam liaison pipe leading steam to a low pressure turbine directly without flowing it to an ultrahigh pressure turbine. CONSTITUTION:The title plant performs work with the steam generated by a boiler 1 being passed in order through an ultrahigh pressure turbine 23, a 1st stage reheater 30, high pressure turbine 2, 2nd stage reheater 37 and medium, low pressure turbines 10, 11, driving a generator 22. In this case, the bypass pipe 26 reaching to a 1st stage reheater 30 by going round the ultrahigh pressure turbine 23, the bypass pipe 33 reaching to a 2nd stage reheater 37 by going round the high pressure turbine 2 and the bypass pipe 14 reaching to a steam condenser 12 by going round the medium, low pressure turbines 10, 11 are respectively provided. An ultrahigh pressure steam liaison pipe 45 is provided so that steam may be flowed into the low pressure turbine directly without being flowed into the ultrahigh pressure turbine 23 and a main steam control valve 46 is interposed on the way.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はタービンバイパス装置を有する二段再熱式蒸気
タービンプラントに関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION Field of Industrial Application The present invention relates to a two-stage reheat steam turbine plant with a turbine bypass device.

(従来の技術) タービンバイパス系統はボイラと蒸気タービンの相互の
制御を解消または緩和することによってプラント運転の
柔軟性を高める目的で、設置されるもので1次の様な機
能がある。一つは起動特性の向上であり、起動時に再熱
器の蒸気冷却を行うことによって再熱器の焼損を防止し
なからボイラ燃焼率を高めると共に、蒸気タービン通気
時のメタルマツチングを容易に行えることである。次の
機能としては、ボイラ負荷とタービン負荷の差の吸収で
あり、ボイラの負荷応答性を越える急激な負荷変化に対
応してその時の応答遅れを吸収すると共に、送電事故等
により所内単独負荷運転に移行する場合の余剰蒸気を排
出する機能を持ちあわせている。さらにもう一つの機能
としては過熱器安全弁および再熱器安全弁としての機能
を果たし、特に変圧運転プラントと組合せる場合の圧力
上昇を抑えることができる。
(Prior Art) A turbine bypass system is installed for the purpose of increasing the flexibility of plant operation by eliminating or relaxing mutual control between a boiler and a steam turbine, and has a primary function. One is to improve the startup characteristics. By cooling the reheater with steam at startup, it prevents burnout of the reheater, increases the boiler combustion rate, and facilitates metal matching when venting the steam turbine. It can be done. The next function is to absorb the difference between the boiler load and the turbine load, and to respond to sudden load changes that exceed the boiler's load response and absorb the response delay at that time. It also has the function of discharging excess steam when transitioning to Furthermore, it functions as a superheater safety valve and a reheater safety valve, and can suppress pressure rises, especially when combined with a variable pressure operation plant.

従来のタービンバイパス系は第2図に示す如く、高圧タ
ービンバイパス装置として、ボイラ1より発生した蒸気
を高圧タービン2をバイパスして流すための主蒸気管3
と、低温再熱蒸気管4とを結ぶ高圧タービンバイパス管
5と、高圧タービンバイパス管5の蒸気流量を制御する
ためのバイパス制御弁6と、バイパス制御弁6の出口温
度を制御するための減温器7とで構成され、低温再熱器
4には高圧タービン逆止弁8が設置されている。
As shown in FIG. 2, a conventional turbine bypass system is a high-pressure turbine bypass device that includes a main steam pipe 3 for passing steam generated from a boiler 1 bypassing a high-pressure turbine 2.
and a high-pressure turbine bypass pipe 5 connecting the low-temperature reheat steam pipe 4, a bypass control valve 6 for controlling the steam flow rate of the high-pressure turbine bypass pipe 5, and a reduction valve for controlling the outlet temperature of the bypass control valve 6. A high-pressure turbine check valve 8 is installed in the low-temperature reheater 4.

また、低圧タービンバイパス装置として、ボイラーの再
熱器9を通過した蒸気を中圧タービン10および低圧タ
ービン11をバイパスして復水器12ヘダンプするため
の高温再熱蒸気管13と復水器12とを結ぶ中、低圧タ
ービンバイパス管14と中、低圧ツ タービンバイパス管14の蒸気流量を制御するためのバ
イパス制御弁15とバイパス制御弁15の出口温フ 度を制御するための減温器16とで構成されている。
Also, as a low-pressure turbine bypass device, a high-temperature reheat steam pipe 13 and a condenser 12 are used to dump the steam that has passed through the reheater 9 of the boiler to the condenser 12 by bypassing the intermediate-pressure turbine 10 and the low-pressure turbine 11. A bypass control valve 15 for controlling the steam flow rate of the medium and low pressure turbine bypass pipe 14 and a desuperheater 16 for controlling the outlet temperature of the bypass control valve 15. It is made up of.

復水器12で凝縮した水は復水ポンプ17、低圧ヒータ
ー8、脱気器19、給水ポンプ20、高圧ヒータ21を
各々を通ってボイラーに送られ、再び高圧タービン2、
中圧タービン10、低圧タービン11を通して循環され
る。発電機22は高圧タービン2、中圧タービン10お
よび低圧タービン11によって駆動される。
The water condensed in the condenser 12 is sent to the boiler through a condensate pump 17, a low pressure heater 8, a deaerator 19, a feed water pump 20, and a high pressure heater 21, and is then sent to the boiler again.
It is circulated through an intermediate pressure turbine 10 and a low pressure turbine 11. The generator 22 is driven by the high pressure turbine 2, the intermediate pressure turbine 10, and the low pressure turbine 11.

この従来のタービンバイパス系を有する蒸気タービンプ
ラントでは、中圧および低圧タービン10゜11で起動
、昇速しさらに低負荷を制御する場合と高圧タービン2
あるいは高圧、中圧、低圧タービン2 、1.0.11
を同時に起動、昇速しさらに低負荷を制御する場合とが
ある。
In a steam turbine plant having this conventional turbine bypass system, there is a case where the intermediate pressure and low pressure turbines 10° and 11 are used to start up and speed up, and further control low loads, and a case where the high pressure turbine 2
Or high pressure, intermediate pressure, low pressure turbine 2, 1.0.11
There are cases in which the motors are simultaneously started, speeded up, and further controlled at low loads.

いづれの場合も、起動時、特にコールドスタートあるい
はウオームスタートにおいて、タービンロータの蒸気−
メタルマツチングが厳しい環境になる(ミスマツチが大
きくなる)問題があり、起動時の制御も高圧、中圧、低
圧タービン2,10゜11を同時に考慮しなければなら
ないという繁雑さがある。
In either case, during start-up, especially during a cold start or warm start, the steam in the turbine rotor
There is a problem that metal matching becomes a harsh environment (mismatch becomes large), and control at startup is complicated because high pressure, intermediate pressure, and low pressure turbines 2, 10 and 11 must be taken into consideration at the same time.

一方、この従来のタービンバイパス系を、二段の再熱器
を有するボイラと組合せた二段再熱式蒸気タービンに適
用すると、事態はさらに複雑になる。
On the other hand, when this conventional turbine bypass system is applied to a two-stage reheat steam turbine in combination with a boiler having two stages of reheaters, the situation becomes even more complicated.

二段の再熱器を有するボイラと組合せた二段再熱式蒸気
タービンに前述した従来のタービンバイパス系を適用す
ると第3図に示すようになる。超高圧タービンバイパス
装置として、ボイラ1より発生した超高圧高温の主蒸気
を超高圧タービン23をバイパスして流すための超高圧
主蒸気管24と第一低温再熱蒸気管25とを結ぶ超高圧
タービンバイパス管26と、超高圧タービンバイパス管
26の蒸気流量を制御するためのバイパス制御弁27と
、バイパス制御弁27の出口温度を制御するための減温
器28とで構成され第一低温再熱蒸気管25には超高圧
タービン排気逆止弁29が設置されている。また、高圧
タービンバイパス装置として、ボイラ1の第一段再熱器
30を通過した蒸気を高圧タービン2をバイパスして流
すための第一高温再熱蒸気管31と第二低温再熱管32
とを結ぶ高圧タービンバイパス管33と、高圧タービン
バイパス管33の蒸気流量を菅 制御するためのバイパス井制御34と、バイパス割入 御弁34の出口温度を制御するための減温器35とで構
成され、第二低温再熱蒸気管32には高圧タービン排気
逆止弁36が設置されている。さらに低圧タービンバイ
パス装置として、ボイラ1の第二段再熱器37を通過し
た蒸気を中圧タービン10および低圧タービン11をバ
イパスして復水器12ヘダンプするための第二高温再熱
蒸気管38と復水器12とを結ぶ中、低圧タービンバイ
パス管14と、中低圧タービンバイパス管14の蒸気流
量を制御するためのバイパス制御弁15と、バイパス制
御弁15の出口温度を制御するための減温器16とで構
成されている。
When the above-described conventional turbine bypass system is applied to a two-stage reheat steam turbine combined with a boiler having two-stage reheaters, the result is as shown in FIG. 3. As an ultra-high-pressure turbine bypass device, an ultra-high-pressure turbine connects an ultra-high-pressure main steam pipe 24 and a first low-temperature reheat steam pipe 25 for flowing ultra-high-pressure, high-temperature main steam generated from the boiler 1 bypassing the ultra-high-pressure turbine 23. The first low-temperature regeneration system is composed of a turbine bypass pipe 26, a bypass control valve 27 for controlling the steam flow rate of the ultra-high pressure turbine bypass pipe 26, and a desuperheater 28 for controlling the outlet temperature of the bypass control valve 27. An ultra-high pressure turbine exhaust check valve 29 is installed in the heat steam pipe 25 . Also, as a high-pressure turbine bypass device, a first high-temperature reheat steam pipe 31 and a second low-temperature reheat pipe 32 are used to flow the steam that has passed through the first stage reheater 30 of the boiler 1 while bypassing the high-pressure turbine 2.
a high-pressure turbine bypass pipe 33 connecting the high-pressure turbine bypass pipe 33, a bypass well control 34 for controlling the steam flow rate of the high-pressure turbine bypass pipe 33, and a desuperheater 35 for controlling the outlet temperature of the bypass entry control valve 34. A high-pressure turbine exhaust check valve 36 is installed in the second low-temperature reheat steam pipe 32. Further, as a low-pressure turbine bypass device, a second high-temperature reheat steam pipe 38 is used to dump the steam that has passed through the second stage reheater 37 of the boiler 1 to the condenser 12, bypassing the intermediate-pressure turbine 10 and the low-pressure turbine 11. A low pressure turbine bypass pipe 14 , a bypass control valve 15 for controlling the steam flow rate of the medium and low pressure turbine bypass pipe 14 , and a reduction valve for controlling the outlet temperature of the bypass control valve 15 are connected to the condenser 12 and the low pressure turbine bypass pipe 14 . It is composed of a warmer 16.

復水器12で凝縮した水は復水ポンプ17、低圧ヒータ
18、脱気器19、給水ポンプ20、高圧ヒータ21を
各々を通ってボイラ1に送られ、再び超高圧タービン2
3、高圧タービン2、中圧タービン10および低圧ター
ビン11を通して循環する0発電機22は超高圧タービ
ン23、高圧タービン2、中圧タービン10および低圧
タービン11によって駆動される。
The water condensed in the condenser 12 is sent to the boiler 1 through a condensate pump 17, a low pressure heater 18, a deaerator 19, a feed water pump 20, and a high pressure heater 21, and is then sent to the ultra-high pressure turbine 2 again.
3. The generator 22 circulating through the high pressure turbine 2, the intermediate pressure turbine 10 and the low pressure turbine 11 is driven by the extra high pressure turbine 23, the high pressure turbine 2, the intermediate pressure turbine 10 and the low pressure turbine 11.

(発明が解決しようとする課題) ところで、化石燃料の不足に伴う蒸気タービンプラント
の性能向上の重要開発機種として主蒸気圧力、温度を従
来の機種より高めた超高圧高温タービンの開発が進んで
いる。国内では従来の主蒸気入口条件である246kg
f/a#、 538℃を上回る316kgf/d、 5
66℃の超高圧高温タービンの開発が完了し、すでに建
設が進んでおり、世界的には316kgf/a+f、 
 593℃級あるいは350kgf/a+!、 538
℃級のタービン開発が進められている。これらの超高圧
高温タービンは基本的には二段の再熱器を有する二段再
熱式の蒸気タービンプラントである。この二段再熱式超
高圧高温タービンの場合、起動時のタービン制御が、前
述した一段再熱式タービンに比し一段と複雑になり、起
動時の蒸気−メタルミスマツチングもタービンバイパス
系があることによるボイラ負荷上昇率(蒸気温度上昇率
)の向上とあいまって超高圧高温タービンの各タービン
ロータはミスマツチングによる影響を強く受けることに
なる。さらに、超高圧高温タービンの場合、蒸気タービ
ンの部品材料にマルテンサイト系ステンレス鋼やオース
テナイト系ステンレス鋼が使用されるため、タービンの
伸び差に対しては従来以上の厳しい設計が要求される。
(Problem to be solved by the invention) By the way, as an important development model for improving the performance of steam turbine plants due to the shortage of fossil fuels, the development of ultra-high pressure and high temperature turbines with higher main steam pressure and temperature than conventional models is progressing. . In Japan, the conventional main steam inlet condition is 246 kg.
f/a#, 316kgf/d over 538℃, 5
The development of a 66℃ ultra-high pressure and high temperature turbine has been completed and construction is already underway, with a worldwide production capacity of 316kgf/a+f,
593℃ class or 350kgf/a+! , 538
℃ class turbine development is underway. These ultra-high pressure, high temperature turbines are essentially two-stage reheat steam turbine plants with two-stage reheaters. In the case of this two-stage reheat type ultra-high-pressure, high-temperature turbine, the turbine control at startup is more complicated than that of the single-stage reheat turbine described above, and there is also a turbine bypass system to prevent steam-metal mismatching at startup. As a result, the boiler load increase rate (steam temperature increase rate) increases, and each turbine rotor of an ultra-high-pressure, high-temperature turbine is strongly affected by mismatching. Furthermore, in the case of ultra-high-pressure, high-temperature turbines, martensitic stainless steel or austenitic stainless steel is used as part material for the steam turbine, so a stricter design than before is required to account for the difference in elongation of the turbine.

この点でも従来のタービンバイパス系をそのまま適用す
ることは非常に困雅である。
In this respect as well, it is extremely difficult to apply the conventional turbine bypass system as it is.

本発明の目的はタービン起動時、超高圧タービンロータ
、高圧タービンロータ等のミスマツチングによる熱応力
等の影響を軽減させることにより起動操作を簡素なもの
とすることのできるタービンバイパス装置を有する二段
再熱式蒸気タービンプラントを提供することにある。
The object of the present invention is to provide a two-stage recycler equipped with a turbine bypass device that can simplify startup operations by reducing the effects of thermal stress caused by mismatching of ultra-high pressure turbine rotors, high-pressure turbine rotors, etc. at the time of turbine startup. The purpose of the present invention is to provide a thermal steam turbine plant.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明に係るタービンバイパス装置を有する二段再熱式
蒸気タービンプラントは二段の再熱器を有するボイラで
発生した蒸気が超高圧主蒸気管を経て超高圧タービンに
導かれ、この超高圧タービンからボイラの第一段再熱器
に送られて加熱され、さらに第一高温再熱蒸気管を経て
高圧タービンに導かれ、この高圧タービンからボイラの
第二段再熱器に送られて加熱され、さらに第二高温再熱
蒸気管を経て中圧タービンおよび低圧タービンに順次導
かれるようになっている二段再熱式蒸気タービンプラン
トにおいて、超高圧主蒸気管から分岐されて超高圧ター
ビンをバイパスして第一段再熱器に至るバイパス制御弁
を備えた超高圧タービンバイパス管、第一高温再熱蒸気
管から分岐されて高圧タービンをバイパスして第二段再
熱器に至るバイパス制御弁を有する高圧タービンバイパ
ス管、第二高温再熱蒸気管から分岐されて中圧タービン
および低圧タービンをバイパスして復水器に至るバイパ
ス弁を備えた中、低圧タービンバイパス管をそれぞれ設
けると共に、蒸気が超高圧タービンに流入することなく
、直接低圧タービンに流入するように超高圧主蒸気連絡
管を主蒸気制御弁を介して設けたことを特徴とする。
(Means for Solving the Problems) In a two-stage reheat steam turbine plant having a turbine bypass device according to the present invention, steam generated in a boiler having a two-stage reheater passes through an ultra-high pressure main steam pipe to an ultra-high pressure It is guided to the turbine, from this ultra-high pressure turbine it is sent to the first stage reheater of the boiler where it is heated, then it is led through the first high temperature reheat steam pipe to the high pressure turbine, and from this high pressure turbine it is sent to the second stage of the boiler. In a two-stage reheat steam turbine plant, the ultra-high pressure main steam pipe is sent to a reheater, heated, and then sequentially guided to an intermediate-pressure turbine and a low-pressure turbine via a second high-temperature reheat steam pipe. An ultra-high-pressure turbine bypass pipe equipped with a bypass control valve that branches off from the first high-temperature reheat steam pipe and bypasses the ultra-high-pressure turbine to the first stage reheater; A high-pressure turbine bypass pipe with a bypass control valve leading to the stage reheater, and a medium-low pressure pipe with a bypass valve branching from the second high-temperature reheat steam pipe and bypassing the intermediate-pressure turbine and the low-pressure turbine to the condenser. It is characterized in that a turbine bypass pipe is provided respectively, and an ultra-high pressure main steam communication pipe is provided via a main steam control valve so that the steam does not flow into the ultra-high pressure turbine but directly flows into the low pressure turbine.

(作 用) タービン起動時にタービンロータのミスマツチングによ
る熱応力的影響を減少させる手段として超高圧タービン
入口前から主蒸気を直接低圧タービン入口へ導く超高圧
主蒸気連絡管を設置し、超高圧タービンまたは高圧ター
ビンへの通気前に、低圧タービンを起動させることによ
り、超高圧タービン、高圧タービン及び中圧タービンに
風損によるウオーミング効果を与え、実際のタービン起
動において、蒸気−メタル間のミスマツチングを軽減せ
しめると共に、蒸気タービンの伸び差も軽減させる。
(Function) As a means to reduce the thermal stress effects caused by turbine rotor mismatching during turbine startup, an ultra-high pressure main steam connecting pipe is installed to directly guide main steam from before the ultra-high pressure turbine inlet to the low-pressure turbine inlet. By starting the low-pressure turbine before venting to the high-pressure turbine, a warming effect due to wind damage is given to the ultra-high-pressure, high-pressure, and intermediate-pressure turbines, which reduces mismatching between steam and metal during actual turbine startup. At the same time, the difference in expansion of the steam turbine is also reduced.

(実施例) 以下、本発明の一実施例を図面の簡単な説明する。(Example) Hereinafter, one embodiment of the present invention will be briefly described with reference to the drawings.

第1図は二段の再熱器を有するボイラと組合され、かつ
タービンバイパス装置を有する二段再熱式蒸気タービン
プラントを示したものである。
FIG. 1 shows a two-stage reheat steam turbine plant combined with a boiler having two reheaters and having a turbine bypass device.

タービン起動直前の状態においてはボイラ1からの蒸気
は一部を除き超高圧主蒸気管24を通り、バイパス制御
弁27で流量制御され、減温器28で温度を低下して第
一低温再熱蒸気管25を通って第一段再熱器30に導か
れる。第一低温再熱蒸気管25には超高圧タービン排気
逆止弁29が設置されているため、減温器28を通った
蒸気は超高圧タービン23へは逆流しない。この後、蒸
気は第一段再熱器30で温度のみを回復して第一高温再
熱蒸気管31を通り、バイパス制御弁34で流量制御さ
れ、減温器35で温度低下して第二低温再熱蒸気管32
を経て第二段再熱器37に流れる。さらに蒸気は、第二
段再熱器37で温度のみ回復して第二高温再熱蒸気管3
8を通って中、低圧タービンバイパス管14を通り、減
温器16でさらに減温されて復水器12に排出される。
Immediately before the turbine is started, the steam from the boiler 1, except for a portion, passes through the ultra-high pressure main steam pipe 24, the flow rate is controlled by the bypass control valve 27, the temperature is lowered by the desuperheater 28, and the steam is sent to the first low-temperature reheat. It passes through the steam pipe 25 and is led to the first stage reheater 30. Since the ultra-high pressure turbine exhaust check valve 29 is installed in the first low-temperature reheat steam pipe 25, the steam that has passed through the attemperator 28 does not flow back to the ultra-high pressure turbine 23. After that, the steam recovers only its temperature in the first stage reheater 30, passes through the first high temperature reheat steam pipe 31, has its flow rate controlled by the bypass control valve 34, lowers its temperature in the desuperheater 35, and then passes through the first high temperature reheat steam pipe 31. Low temperature reheat steam pipe 32
and then flows to the second stage reheater 37. Furthermore, only the temperature of the steam is recovered in the second stage reheater 37 and the steam is transferred to the second high temperature reheat steam pipe 3.
8 , the medium and low pressure turbine bypass pipe 14 , the temperature is further reduced in the attemperator 16 , and the temperature is discharged to the condenser 12 .

このタービンバイパス系の運転状態では、主蒸気止め弁
39、第−再熱蒸気止め弁41、第二再熱蒸気止め弁4
3は全開状態でウオーミングされている。
In this operating state of the turbine bypass system, the main steam stop valve 39, the first reheat steam stop valve 41, the second reheat steam stop valve 4
3 is warmed in the fully open state.

また、超高圧主蒸気管24と低圧タービン11とを直接
連絡している超高圧主蒸気連絡管45に設けた主蒸気制
御弁46は全開しており、低圧タービン11ヘボイラ1
からの主蒸気の一部が流入し、低圧タービン11を駆動
することにより、超高圧タービン23゜高圧タービン2
が回転し、風損により各タービンロータがウオーミング
される。このウオーミング方式は、特に蒸気温度とロー
タメタル温度の温度差(ミスマツチング)が大きい、コ
ールドスタート時またはウオーミングスタート時に有効
な起動方法となる。十分なウオーミングの後、主蒸気制
御弁46を閉じ、その後主蒸気加減弁4oを開いてバイ
パス制御弁27を通って第一段再熱器3oへ流れていた
蒸気の一部を超高圧タービン23に流すと共に、第二再
熱蒸気加減弁44を開いて、バイパス制御弁15を通っ
て復水器12へ流れていた蒸気の一部が中圧タービン1
0および低圧タービン11を通って流れるようにして通
気し、回転上昇を行う。この後、主蒸気加減弁40、第
一再熱蒸気加減弁42、第二再熱蒸気加減弁44を開い
て行き、これと共に、各バイパス制御弁27.34.1
5が全閉される。この状態よりさらに負荷上昇するに際
しては、主蒸気加減弁40のみで蒸気量を増加して行く
Further, the main steam control valve 46 provided in the ultra-high pressure main steam connecting pipe 45 that directly connects the ultra-high pressure main steam pipe 24 and the low-pressure turbine 11 is fully open, and the low-pressure turbine 11 and the boiler 1 are fully opened.
A part of the main steam from the ultra-high pressure turbine 23 degrees high pressure turbine 2 flows in and drives the low pressure turbine 11.
rotates, and each turbine rotor is warmed by windage. This warming method is an effective startup method, especially during a cold start or a warm start when there is a large temperature difference (mismatch) between the steam temperature and the rotor metal temperature. After sufficient warming, the main steam control valve 46 is closed, and then the main steam control valve 4o is opened to transfer a part of the steam that was flowing through the bypass control valve 27 to the first stage reheater 3o to the ultra-high pressure turbine 23. At the same time, the second reheat steam control valve 44 is opened, and a part of the steam that was flowing to the condenser 12 through the bypass control valve 15 is transferred to the intermediate pressure turbine 1.
0 and through the low pressure turbine 11 to ventilate and increase rotation. After this, the main steam control valve 40, the first reheat steam control valve 42, and the second reheat steam control valve 44 are opened, and at the same time, each bypass control valve 27.34.1
5 is fully closed. When the load increases further from this state, the amount of steam is increased only by the main steam control valve 40.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、タービン起動時、特
にコールドスタート、ウオームスタート時において蒸気
タービンのウオーミングを十分に行なえることから、超
高圧タービンロータ、高圧タービンロータ等のミスマツ
チングによる熱応力等の影響を減少させ、蒸気タービン
の伸び差も軽減できることから、起動操作の複雑さをな
くすことが可能となり、同時にタービン制御も主素化で
きる効果がある。
As described above, according to the present invention, the steam turbine can be sufficiently warmed at the time of starting the turbine, especially at the time of cold start or warm start, so that thermal stress due to mismatching of the ultra-high pressure turbine rotor, high pressure turbine rotor, etc. Since it is possible to reduce the influence of steam turbines and the difference in expansion of the steam turbine, it is possible to eliminate the complexity of startup operations, and at the same time, it has the effect of making turbine control the main element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すタービンバイパス装置
を有する二段再熱式蒸気タービンプラントの系統図、第
2図は従来のタービンバイパス装置を有する蒸気タービ
ンプラントの系統図、第3図は従来のタービンバイパス
装置を二段再熱式蒸気タービンプラントに適用した時の
蒸気タービンプラントの系統図を示す。 1・・・ボイラ     2・・・高圧タービン10・
・・中圧タービン・ 11・・・低圧タービン12・・
・復水器 14・・・中、低圧タービンバイパス管15、27.3
4・・・バイパス制御弁23・・・超高圧タービン 2
4・・・超高圧主蒸気管26・・・超高圧タービンバイ
パス管 30・・・第一段再熱器  31・・・第一高温再熱蒸
気管33・・・高圧タービンバイパス管 37・・・第二段再熱蒸器 38・・・第二高温再熱蒸
気管45・・・超高圧主蒸気連絡管 46・・・主蒸気制御弁 代理人 弁理士  則 近 憲 佑 同     第子丸   健 第2図
FIG. 1 is a system diagram of a two-stage reheat steam turbine plant having a turbine bypass device showing an embodiment of the present invention, FIG. 2 is a system diagram of a steam turbine plant having a conventional turbine bypass device, and FIG. 3 is a system diagram of a steam turbine plant having a conventional turbine bypass device. shows a system diagram of a steam turbine plant when a conventional turbine bypass device is applied to a two-stage reheat steam turbine plant. 1... Boiler 2... High pressure turbine 10.
...Intermediate pressure turbine 11...Low pressure turbine 12...
・Condenser 14...middle and low pressure turbine bypass pipes 15, 27.3
4...Bypass control valve 23...Ultra high pressure turbine 2
4...Ultra high pressure main steam pipe 26...Ultra high pressure turbine bypass pipe 30...First stage reheater 31...First high temperature reheat steam pipe 33...High pressure turbine bypass pipe 37...・Second stage reheat steamer 38...Second high temperature reheat steam pipe 45...Ultra high pressure main steam communication pipe 46...Main steam control valve agent Patent attorney Yudo Noriyoshi Chika Kendai Daishimaru Figure 2

Claims (1)

【特許請求の範囲】[Claims] 二段の再熱器を有するボイラで発生した蒸気が超高圧主
蒸気管を経て超高圧タービンに導かれ、この超高圧ター
ビンから前記ボイラの第一段再熱器に送られて加熱され
、さらに第一高温再熱蒸気管を経て高圧タービンに導か
れ、この高圧タービンから前記ボイラの第二段再熱器に
送られて加熱され、さらに第二高温再熱蒸気管を経て中
圧タービンおよび低圧タービンに順次導かれるようにな
っている二段再熱式蒸気タービンプラントにおいて、前
記超高圧主蒸気管から分岐されて前記超高圧タービンを
バイパスして前記第一段再熱器に至るバイパス制御弁を
備えた超高圧タービンバイパス管、前記第一高温再熱蒸
気管から分岐されて前記高圧タービンをバイパスして前
記第二段再熱器に至るバイパス制御弁を有する高圧ター
ビンバイパス管、前記第二高温再熱蒸気管から分岐され
て前記中圧タービンおよび低圧タービンをバイパスして
復水器に至るバイパス制御弁を備えた中、低圧タービン
バイパス管をそれぞれ設けると共に、蒸気が前記超高圧
タービンに流入することなく、直接前記低圧タービンに
流入するように超高圧主蒸気連絡管を主蒸気制御弁を介
して設けたことを特徴とするタービンバイパス装置を有
する二段再熱式蒸気タービンプラント。
Steam generated in a boiler with a two-stage reheater is led to an ultra-high-pressure turbine via an ultra-high-pressure main steam pipe, and from this ultra-high-pressure turbine is sent to the first-stage reheater of the boiler where it is heated. It is led to a high-pressure turbine through a first high-temperature reheat steam pipe, and from this high-pressure turbine it is sent to the second stage reheater of the boiler where it is heated, and further through a second high-temperature reheat steam pipe to an intermediate-pressure turbine and a low-pressure In a two-stage reheat steam turbine plant in which steam is sequentially guided to a turbine, a bypass control valve is branched from the ultra-high pressure main steam pipe, bypasses the ultra-high pressure turbine, and leads to the first stage reheater. a high-pressure turbine bypass pipe having a bypass control valve branched from the first high-temperature reheat steam pipe to bypass the high-pressure turbine and reach the second-stage reheater; Medium and low pressure turbine bypass pipes each having a bypass control valve branching from the high temperature reheat steam pipe to bypass the medium pressure turbine and the low pressure turbine and reach the condenser are provided, and steam flows into the ultra high pressure turbine. 1. A two-stage reheat steam turbine plant having a turbine bypass device, characterized in that an ultra-high-pressure main steam communication pipe is provided via a main steam control valve so that it directly flows into the low-pressure turbine without having to do so.
JP10130588A 1988-04-26 1988-04-26 Two stage reheating steam turbine plant having turbine bypass device Pending JPH01273805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10130588A JPH01273805A (en) 1988-04-26 1988-04-26 Two stage reheating steam turbine plant having turbine bypass device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10130588A JPH01273805A (en) 1988-04-26 1988-04-26 Two stage reheating steam turbine plant having turbine bypass device

Publications (1)

Publication Number Publication Date
JPH01273805A true JPH01273805A (en) 1989-11-01

Family

ID=14297099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10130588A Pending JPH01273805A (en) 1988-04-26 1988-04-26 Two stage reheating steam turbine plant having turbine bypass device

Country Status (1)

Country Link
JP (1) JPH01273805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110593962A (en) * 2019-09-26 2019-12-20 无锡利信能源科技有限公司 Automatic load-increasing control method for supercritical steam turbine generator set after grid connection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110593962A (en) * 2019-09-26 2019-12-20 无锡利信能源科技有限公司 Automatic load-increasing control method for supercritical steam turbine generator set after grid connection

Similar Documents

Publication Publication Date Title
EP2423460B1 (en) Systems and methods for pre-warming a heat recovery steam generator and associated steam lines
JP5860597B2 (en) System and method for preheating exhaust heat recovery boiler piping
JP3795124B2 (en) Steam turbine operation
JPH10501315A (en) Method of operating a steam turbine power plant and steam turbine power plant for implementing the method
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
JP3559574B2 (en) Startup method of single-shaft combined cycle power plant
US20220195896A1 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JPS6336004A (en) Method for starting steam turbine plant
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPH01273805A (en) Two stage reheating steam turbine plant having turbine bypass device
JPH1193693A (en) Method of operating combined cycle power plant, and combined cycle power plant
JPH09303114A (en) Steam cycle for combined cycle using steam cooling type gas turbine
JP2677598B2 (en) Start-up method for two-stage reheat steam turbine plant.
JPH01285605A (en) Method and device of starting 2-stage reheat type steam turbine plant
JPH01273804A (en) Two stage reheating steam turbine plant having turbine bypass device
JP4090584B2 (en) Combined cycle power plant
JP2870759B2 (en) Combined power generator
JP2558740B2 (en) How to start up a two-stage reheat steam turbine plant
JPH01318706A (en) Bypass device for turbine of two stage reheating turbine
JPS5926765B2 (en) Control method and device for a turbine plant having a turbine bypass line
JPS60159311A (en) Starting method for steam turbine
JPH10331608A (en) Closed steam cooling gas turbine combined plant
JP4014948B2 (en) Multi-axis combined cycle plant and control method thereof
JP2657411B2 (en) Combined cycle power plant and operating method thereof
JP2642954B2 (en) How to start a reheat combined plant