JPH01270763A - Movable magnet type polyphase linear motor - Google Patents

Movable magnet type polyphase linear motor

Info

Publication number
JPH01270763A
JPH01270763A JP9753488A JP9753488A JPH01270763A JP H01270763 A JPH01270763 A JP H01270763A JP 9753488 A JP9753488 A JP 9753488A JP 9753488 A JP9753488 A JP 9753488A JP H01270763 A JPH01270763 A JP H01270763A
Authority
JP
Japan
Prior art keywords
linear motor
coils
movable
magnets
magnet type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9753488A
Other languages
Japanese (ja)
Other versions
JP2505857B2 (en
Inventor
Nobushige Korenaga
伸茂 是永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9753488A priority Critical patent/JP2505857B2/en
Publication of JPH01270763A publication Critical patent/JPH01270763A/en
Application granted granted Critical
Publication of JP2505857B2 publication Critical patent/JP2505857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To perform efficient cooling by employing a movable magnet type, and composing a movable element of a magnet and a yoke unit of a box-shaped structure. CONSTITUTION:A movable magnet type polyphase linear motor has a stator A and a movable element B. Coils 1a-1f of the stator A are wound on a coil bobbin of rectangular parallelepiped shape, and arranged by a supporting member 2 along a Y-axis direction. The members 2 are formed with side holes 21 in which the sides of the coils 1a-1f are inserted, with a cooling tube for feeding cooling medium, a guide 3 guides leads to a connector 7, and pipes 8, 9 are connected to connectors 4-5. The element B is composed by coupling an upper yoke 13 having magnets 11a-11d, a lower yoke 14 having magnets 12a-12d by a side plate 15 in a box shape. Thus, the relative position of the element B is detected, a current of predetermined direction flows to any of the coils 1 in response to the detection, and the magnets 11-12 are received by a thrust in a predetermined direction.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は可動磁石型リニアモータ、特に半導体製造装置
、測定装置等の超精密機器の駆動機構として利用される
可動磁石型リニアモータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a movable magnet linear motor, particularly to a movable magnet linear motor used as a drive mechanism for ultra-precision equipment such as semiconductor manufacturing equipment and measuring equipment.

[従来の技術] 従来より、多相リニアモータは知られている。第6図は
可動コイル型の多相リニアモータの一例を示すもので、
この図の(a)はコイル31a〜31bを有する可動子
Bを示し、(b)は可動子Bを組み込んだ固定子Aを示
している。固定子Aには可動子Bのコイル31a〜31
bを上下方向から挟むように磁石33〜35が設けられ
ている。また、両側励磁の可動磁石型の多相リニアモー
タも知られている。第8図はこのようなりニアモータの
一例を示すもので、この図において、41a〜41fは
支持部材42により裏面が固定されて支持されている固
定子A側のコイル、45゜46は可動子B側に設けられ
ている磁石である。
[Prior Art] Polyphase linear motors have been known. Figure 6 shows an example of a moving coil type multiphase linear motor.
In this figure, (a) shows a mover B having coils 31a to 31b, and (b) shows a stator A incorporating the mover B. Stator A has coils 31a to 31 of mover B.
Magnets 33 to 35 are provided to sandwich b from above and below. Further, a movable magnet type multiphase linear motor with excitation on both sides is also known. FIG. 8 shows an example of such a near motor. In this figure, 41a to 41f are the coils on the stator A side whose back side is fixed and supported by the support member 42, and 45° and 46 are the coils on the stator B side. It is a magnet installed on the side.

[発明が解決しようとしている問題点]しかしながら、
このような従来例では、コイルの冷却を考えると、次の
ような不都合かあった。第6図の例では、 (1)コイル31a〜31cに接触しているコイルボビ
ンの中に冷却媒体を流すための冷却管路を設けることが
ほとんど不可能であり、効率良くコイル31a〜31e
の発熱を吸収することかできない。なぜならば、もしコ
イルボビンの中に冷却管路を設けても、現状のようにボ
ビンの材質に樹脂を使用すれば、樹脂はほとんど断熱材
として作用するので、冷却の効果はほとんど期待できな
いし、一方、ボビンの材質に金属を使用すれば、冷却作
用については効果か期待できるが、ボビン自体に流れる
うず電流のために、過渡的にリニアモータとしての推力
特性を著しく低下させることになるからである。
[Problem that the invention seeks to solve] However,
This conventional example has the following disadvantages when considering cooling of the coil. In the example shown in FIG. 6, (1) It is almost impossible to provide a cooling conduit for flowing a cooling medium into the coil bobbin that is in contact with the coils 31a to 31c, and the coils 31a to 31e are
It is unable to absorb the heat generated by it. This is because even if a cooling conduit is provided inside the coil bobbin, if resin is used for the bobbin material as is currently the case, the resin will mostly act as a heat insulator, so almost no cooling effect can be expected; If metal is used for the bobbin, it can be expected to have a cooling effect, but the eddy current flowing through the bobbin itself will significantly reduce the thrust characteristics of the linear motor. .

(2)また、第7図に示すように、コイル31a〜31
cの周囲に冷却管路29を設ける場合には、可動子全体
の剛性か低下すると共に、リニアモータ全体か大型化す
る。なぜならば、このようなMIj成では、可動子の占
める体積9重量か増加し、可動子の共振点を下げること
になるからである。
(2) Also, as shown in FIG. 7, the coils 31a to 31
If the cooling pipe line 29 is provided around c, the rigidity of the entire mover decreases, and the entire linear motor becomes larger. This is because, in such an MIj configuration, the volume occupied by the mover increases by 9 weight, which lowers the resonance point of the mover.

また、第8図の例では、 (1)支持部材42に冷却管路43を設けることは可能
であるか、この例の場合、支持部材42は磁気回路のヨ
ークの機能を兼ねるため鉄系の材料に限定されるのて、
冷却管路43を設けるための構造及び加工か複雑になる
In the example shown in FIG. 8, (1) Is it possible to provide the cooling pipe line 43 in the support member 42? In this example, the support member 42 is made of iron-based material because it also serves as a yoke for the magnetic circuit. Limited to materials,
The structure and processing for providing the cooling pipe line 43 become complicated.

(2)支持部材42は板状であるため、これに冷却管路
43を設けると、その分たけ板厚か厚くなり、リニアモ
ータ全体の厚さか増加する。
(2) Since the support member 42 is plate-shaped, if the cooling pipe line 43 is provided thereon, the thickness of the support member 42 increases accordingly, and the thickness of the entire linear motor increases.

(3)コイル鎖交磁束による鉄損のために、リニアモー
タの過渡的な推力特性が低下し、電力効率も悪化するの
で、容量の大きな電源が必要となる。
(3) Due to iron loss due to coil flux linkage, the transient thrust characteristics of the linear motor deteriorate and the power efficiency also deteriorates, so a large capacity power source is required.

本発明はこのような事情に鑑みなされたもので、その目
的は、冷却を効率良く、且つ、支障なく行なうことので
きる小型の可動磁石型多相リニアモータを提供すること
にある。
The present invention was made in view of the above circumstances, and an object thereof is to provide a small moving magnet type multiphase linear motor that can be cooled efficiently and without any trouble.

[問題点を解決するための手段] 本発明は、前述したような目的を達成するため、固定子
側の複数のコイルで可動子側の磁石に推力を与えること
により、前記可動子を前記固定子に対して移動させる可
動磁石型多相リニアモータにおいて、所定方向に配列さ
れる前記コイルの両側を前記方向に沿って設けられる棒
状の支持部材で固定し、前記コイルの両側をそれぞれ固
定する前記支持部材の間に前記磁石を前記コイルに対向
させて配置し、前記支持部材の内部には冷媒を流すため
の管路な前記方向に沿って設けている。そして、この管
路に冷媒を循環させることにより、コイルに与えられる
駆動電流による発熱を効率良く除去することを可能にす
ると共に、固定子にうず電流か発生するのを防止できる
ようにしている。また本発明は、支持部材の間に磁石を
配置することによって、リニアモータの全高を冷却管路
を設けないときと同程度としている。この場合にはコイ
ルの磁石に対向する面からの支持部材の高さと磁石の厚
みを同程度とすることが望ましい。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention provides a thrust force to a magnet on the movable element side using a plurality of coils on the stator side, thereby fixing the movable element in the fixed position. In a movable magnet type multiphase linear motor that is moved relative to a child, both sides of the coils arranged in a predetermined direction are fixed by rod-shaped support members provided along the direction, and the coils are fixed on both sides, respectively. The magnet is disposed between the supporting members so as to face the coil, and inside the supporting member, a conduit for flowing the refrigerant is provided along the direction. By circulating the refrigerant through this conduit, it is possible to efficiently remove the heat generated by the drive current applied to the coil, and it is also possible to prevent the generation of eddy currents in the stator. Further, in the present invention, by arranging the magnet between the supporting members, the overall height of the linear motor is made comparable to that when no cooling pipe is provided. In this case, it is desirable that the height of the support member from the surface of the coil facing the magnet and the thickness of the magnet be approximately the same.

本発明では、可動磁石型を採用し、可動子を磁石と箱形
構造のヨークユニットで構成することを可能にしている
ので、コイルの冷却を可動子の剛性を低下させることな
〈実施することか可能である。
In the present invention, a movable magnet type is adopted, and the movable element can be composed of a magnet and a box-shaped yoke unit, so the coil can be cooled without reducing the rigidity of the movable element. It is possible.

[実施例] 以下1本発明を図に示した実施例に基づいて詳細に説明
する。
[Example] The present invention will be described below in detail based on an example shown in the drawings.

第1図は本発明の可動磁石型多相リニアモータの一実施
例を示す図で、この図において。
FIG. 1 is a diagram showing an embodiment of a movable magnet type multiphase linear motor of the present invention.

1a〜Ifは固定子A側のコイルて、コイル1a〜1f
のそれぞれは略長方形状にコイルボビンに巻回され、Y
軸方向に沿って支持部材2により配列されている。支持
部材2は非磁性体、例えばアルミ系の材料で棒状に形成
されている。支持部材2のそれぞれには、第3図に示す
如く、コイル1 a % 1 fの側部が挿入される姿
穴21が形成されており、コイルla〜1fはそのX方
向の両側部が支持部材2のそれぞれ対応する姿穴21に
挿入された後、接着剤により固定される。また、支持部
材2のそれぞれには、第2図に示す如く、冷却用の媒体
、例えばフロン、水等を流すための冷却管路22がY方
向に沿って貫通して設けられている。冷却管路22は支
持部材2のそれぞれに2木づつ、姿穴21に挿入された
コイルlの上下(Z方向)を通るように設けられている
1a-If are coils on the stator A side, coils 1a-1f
are wound around a coil bobbin in a substantially rectangular shape, and Y
They are arranged by support members 2 along the axial direction. The support member 2 is made of a non-magnetic material, such as an aluminum material, and is formed into a rod shape. As shown in FIG. 3, each of the support members 2 is formed with a hole 21 into which the side portions of the coils 1a to 1f are inserted, and the coils la to 1f are supported at both sides in the X direction. After being inserted into the corresponding holes 21 of the members 2, they are fixed with adhesive. Furthermore, as shown in FIG. 2, each of the support members 2 is provided with a cooling pipe passage 22 extending along the Y direction and through which a cooling medium such as fluorocarbon, water, etc. flows. Two cooling pipes 22 are provided in each of the supporting members 2 so as to pass above and below (in the Z direction) the coil I inserted into the hole 21.

支持部材2に設けられているガイド3はコイル1a〜i
fのそれぞれからのリード線を支持部材2の端部に固着
されているコネクタ7に案内し、両者の接続を可能にし
ている。配管用のコネクタ4,5はそれぞれ支持部材2
の冷却管路22と冷媒案内用のパイプ8,9を接続する
ために、支持部材2の各端部に固着されている。パイプ
8,9はそれぞれフレキシブルな材料で形成されている
。また、パイプ8.9のそれぞれはコネクタ4,5にニ
ップル6を介して接続される。固定子Aを不図示のベー
スに取り付けるためのアタッチメントlOは、支持部材
2のそれぞれの端部に固着され、2木の支持部材2を図
示の状態に保持している。
The guide 3 provided on the support member 2 has coils 1a to i
Lead wires from each of f are guided to a connector 7 fixed to the end of the support member 2, thereby enabling connection between the two. Connectors 4 and 5 for piping are each supported by support member 2.
are fixed to each end of the support member 2 in order to connect the cooling pipe line 22 and the refrigerant guiding pipes 8, 9. Each of the pipes 8 and 9 is made of a flexible material. Each of the pipes 8.9 is also connected to the connectors 4, 5 via nipples 6. An attachment lO for attaching the stator A to a base (not shown) is fixed to each end of the support member 2, and holds the two support members 2 in the state shown.

可動子Bは磁石11a〜lidを有する上ヨーク13と
、磁石12a〜12dを有する下ヨーク14を側板15
で連結することにより箱型に構成されている。磁石11
a−1idと磁石12a〜12dは互いに対向する磁石
に対して極性が異なるように配列されている。また、Y
方向に関して隣合う磁石間でも極性が異なっている。ヨ
ーク13.14は鉄系の材料で、また側板15は非磁性
系の材料で構成されている。可動子Bは固定子Aに対し
て、第2図に示すように、組み付けられる。この時、各
磁石11.12はX方向に関して支持部材2の間に位置
する。また、本実施例では、このような構造を可能とす
るため、コイルlの磁石対向面からの支持部材2の高さ
(Z方向)TIと磁石11.12の厚みT2を略等しく
している。
The mover B has an upper yoke 13 having magnets 11a to lid, a lower yoke 14 having magnets 12a to 12d, and a side plate 15.
It is constructed into a box shape by connecting with. magnet 11
a-1id and the magnets 12a to 12d are arranged so that the polarities of the magnets facing each other are different. Also, Y
Magnets that are adjacent to each other in terms of direction also have different polarities. The yokes 13 and 14 are made of iron-based material, and the side plates 15 are made of non-magnetic material. The mover B is assembled to the stator A as shown in FIG. At this time, each magnet 11, 12 is located between the support members 2 in the X direction. In addition, in this embodiment, in order to enable such a structure, the height (Z direction) TI of the support member 2 from the magnet facing surface of the coil l and the thickness T2 of the magnets 11 and 12 are made approximately equal. .

不図示の電源からコネクタ7を介してコイルla〜1f
に電流が供給されると、可動子Bは固定子Aに対してY
方向に移動する。この際の駆動シーケンスは周知の如く
、不図示の位置検出器1例えばレーザ干渉計を用いた測
長器で固定子Aに対する可動子Bの相対位置を検出し、
その検出値に応じてコイル1a〜ifのいずれかを選択
し、また、その値に応じて決まる方向に電流を流すこと
により制御される。この電流によって磁石11.12は
所定方向に推力を受け、Y方向に沿って駆動される。こ
の時、コイル1a〜Ifから発生するジュール熱は熱伝
導により支持部材2の内部の管路22を流れる冷媒に伝
わり、この冷媒によりリニアモータの外部に持ち去られ
る。冷媒は不図示の供給源から常に供給されている。
Coils la to 1f are connected from a power source (not shown) via connector 7.
When a current is supplied to , mover B moves Y with respect to stator A.
move in the direction. As is well known, the driving sequence at this time is to detect the relative position of the movable element B with respect to the stator A with a position detector 1 (not shown), for example, a length measuring device using a laser interferometer;
Control is performed by selecting one of the coils 1a to 1if according to the detected value, and by flowing a current in a direction determined according to the detected value. The magnets 11, 12 receive thrust in a predetermined direction due to this current, and are driven along the Y direction. At this time, the Joule heat generated from the coils 1a to If is transmitted to the refrigerant flowing through the pipe line 22 inside the support member 2 by thermal conduction, and is carried away to the outside of the linear motor by this refrigerant. Refrigerant is constantly supplied from a supply source (not shown).

[他の実施例] 第4図は本発明の他の実施例を示すもので、コイルla
〜1fの両側部をそれぞれ2本の支持部材2a、2bで
把持して固定するものである。この支持部材2a、2b
は管路な構成するために中空でアルミを押し出して造ら
れている。この実施例では、2本の支持部材2a。
[Other Embodiments] FIG. 4 shows another embodiment of the present invention, in which the coil la
The two supporting members 2a and 2b are used to hold and fix the two supporting members 2a and 2b, respectively, on both sides. These supporting members 2a, 2b
It is hollow and made of extruded aluminum to create a conduit structure. In this embodiment, there are two supporting members 2a.

2bでコイルla〜Ifを把持することにより、先の実
施例のような姿穴21の加工を不要としている。
By gripping the coils la to If with 2b, it is not necessary to process the hole 21 as in the previous embodiment.

また、第5図は本発明の更に他の実施例を示すもので、
支持部材2のそれぞれを3木のアルミ又は銅の折り曲げ
たパイプで構成したものである。この実施例は、第4図
の実施例と同様に姿穴21の加工を不要にすると共に、
冷却用パイプ8,9の設置場所を片側だけで済むように
している。
Moreover, FIG. 5 shows still another embodiment of the present invention,
Each of the supporting members 2 is composed of three bent aluminum or copper pipes. Similar to the embodiment shown in FIG. 4, this embodiment eliminates the need for machining the hole 21, and
The cooling pipes 8 and 9 can be installed only on one side.

[発明の効果] 以上説明したように本発明によれば、可動磁石型多相リ
ニアモータにおいて、効率良くコイルからの発熱を冷却
することができる。またこの場合、リニアモータの推力
特性に支障を与えることもない。更に、リニアモータの
全高を低くてき、コイルユニットの構成を簡略化できる
という効果もある。
[Effects of the Invention] As described above, according to the present invention, heat generated from the coils can be efficiently cooled in a moving magnet type multiphase linear motor. Moreover, in this case, the thrust characteristics of the linear motor are not affected. Furthermore, the overall height of the linear motor can be reduced and the configuration of the coil unit can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の可動磁石型多相リニアモータの一実施
例を示す図、 第2図は第1図の実施例の断面を示す図、第3図は第1
図の実施例の固定子を詳細に示す図、 第4図、第5図はそれぞれ本発明の他の実施例を示す図
、 第6図、第7図、第8図はそれぞれ従来例を示す図であ
る。 1(a〜f)・・・コイル、 2・・・支持部材、 11、12 (a 〜f)−磁石。 21・・・姿穴。 22・・・冷却管路、 A・・・固定子、 B・・・可動子
FIG. 1 is a diagram showing an embodiment of the moving magnet type multi-phase linear motor of the present invention, FIG. 2 is a diagram showing a cross section of the embodiment of FIG. 1, and FIG.
Figures 4 and 5 are diagrams showing other embodiments of the present invention, respectively, and Figures 6, 7, and 8 are diagrams showing conventional examples, respectively. It is a diagram. 1(a-f)...Coil, 2...Supporting member, 11, 12(a-f)-Magnet. 21... Figure hole. 22...Cooling pipe line, A...Stator, B...Mover

Claims (2)

【特許請求の範囲】[Claims] (1)固定子側の複数のコイルで可動子側の磁石に推力
を与えることにより、前記可動子を前記固定子に対して
移動させる可動磁石型多相リニアモータにおいて、 所定方向に配列される前記コイルの両側を前記方向に沿
って設けられる棒状の支持部材で固定し、前記コイルの
両側をそれぞれ固定する前記支持部材の間に前記磁石を
前記コイルに対向させて配置し、前記支持部材の内部に
は冷媒を流すための管路を前記方向に沿って設けること
を特徴とする可動磁石型多相リニアモータ。
(1) In a movable magnet type multiphase linear motor that moves the movable element relative to the stator by applying thrust to the magnets on the movable side with a plurality of coils on the stator side, the movable magnets are arranged in a predetermined direction. Both sides of the coil are fixed by rod-shaped support members provided along the direction, and the magnet is placed opposite the coil between the support members fixing both sides of the coil, and the magnet is arranged opposite to the coil. A movable magnet type multiphase linear motor, characterized in that a conduit for flowing a refrigerant is provided inside along the aforementioned direction.
(2)前記支持部材は非磁性体で構成されていることを
特徴とする特許請求の範囲第(1)項記載の可動磁石型
多相リニアモータ。
(2) The movable magnet type multiphase linear motor according to claim (1), wherein the support member is made of a non-magnetic material.
JP9753488A 1988-04-20 1988-04-20 Movable magnet type multi-phase linear motor Expired - Fee Related JP2505857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9753488A JP2505857B2 (en) 1988-04-20 1988-04-20 Movable magnet type multi-phase linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9753488A JP2505857B2 (en) 1988-04-20 1988-04-20 Movable magnet type multi-phase linear motor

Publications (2)

Publication Number Publication Date
JPH01270763A true JPH01270763A (en) 1989-10-30
JP2505857B2 JP2505857B2 (en) 1996-06-12

Family

ID=14194921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9753488A Expired - Fee Related JP2505857B2 (en) 1988-04-20 1988-04-20 Movable magnet type multi-phase linear motor

Country Status (1)

Country Link
JP (1) JP2505857B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703420A (en) * 1994-10-11 1997-12-30 Canon Kabushiki Kaisha Moving magnet type multi-phase linear motor with vibration suppression and coil cooling means
EP0868011A1 (en) * 1997-03-27 1998-09-30 Ford Global Technologies, Inc. Fluid-cooled linear motor armature
EP1780877A1 (en) * 2004-07-25 2007-05-02 Tsheatronics Co. Ltd. Linear or curved mobile motor and its radiator
US7732951B2 (en) 2007-03-06 2010-06-08 Jtekt Corporation Moving-magnet type linear motor
CN111687680A (en) * 2020-05-26 2020-09-22 广州市昊志机电股份有限公司 Linear motor secondary cooling device and machine tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3891545B2 (en) 2001-07-10 2007-03-14 キヤノン株式会社 Linear motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703420A (en) * 1994-10-11 1997-12-30 Canon Kabushiki Kaisha Moving magnet type multi-phase linear motor with vibration suppression and coil cooling means
EP0868011A1 (en) * 1997-03-27 1998-09-30 Ford Global Technologies, Inc. Fluid-cooled linear motor armature
EP1780877A1 (en) * 2004-07-25 2007-05-02 Tsheatronics Co. Ltd. Linear or curved mobile motor and its radiator
EP1780877A4 (en) * 2004-07-25 2012-12-26 Mizutani Electric Ind Co Ltd Linear or curved mobile motor and its radiator
US7732951B2 (en) 2007-03-06 2010-06-08 Jtekt Corporation Moving-magnet type linear motor
CN111687680A (en) * 2020-05-26 2020-09-22 广州市昊志机电股份有限公司 Linear motor secondary cooling device and machine tool

Also Published As

Publication number Publication date
JP2505857B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
JP5292707B2 (en) Moving magnet type linear motor
JP5423392B2 (en) Canned linear motor armature and canned linear motor
US6661124B1 (en) Linear motor coils assembly and method for manufacturing the same
US10181780B2 (en) Stator device for a linear motor and linear transport system
KR100785192B1 (en) Coreless linear motor
KR100726533B1 (en) Linear motor
US20150048693A1 (en) Stator device for a linear motor, and linear transport system
JPH04500583A (en) Magnetic field generating composition and method
WO2001063733A1 (en) Canned linear motor
KR101321253B1 (en) Magnet movable linear motor
JPH09154272A (en) Cooling structure of linear motor
JPH01270763A (en) Movable magnet type polyphase linear motor
KR100623535B1 (en) Actuator coil cooling system
JP2008228545A (en) Moving magnet type linear motor
JP2008220020A (en) Movable magnet type linear motor
WO2004088827A1 (en) Cooling structure for linear motor
JP2010148233A (en) Linear motor driving and feeding device
JPH08168233A (en) Moving magnet multiphase linear motor
JP2524103Y2 (en) Synchronous linear motor
JP3446563B2 (en) Linear motor
JPH10323012A (en) Linear motor
JP2585818Y2 (en) Stator for canned linear motor
JPH11113238A (en) Linear motor
JPS61271804A (en) Superconductive electromagnet
JP2004236475A (en) Coil jacket and linear motor using it

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees