JPH09154272A - Cooling structure of linear motor - Google Patents

Cooling structure of linear motor

Info

Publication number
JPH09154272A
JPH09154272A JP30935995A JP30935995A JPH09154272A JP H09154272 A JPH09154272 A JP H09154272A JP 30935995 A JP30935995 A JP 30935995A JP 30935995 A JP30935995 A JP 30935995A JP H09154272 A JPH09154272 A JP H09154272A
Authority
JP
Japan
Prior art keywords
cooling
magnetic pole
coil
bobbin
slider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30935995A
Other languages
Japanese (ja)
Inventor
Atsushi Horikoshi
敦 堀越
Tatsuo Komori
竜夫 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP30935995A priority Critical patent/JPH09154272A/en
Publication of JPH09154272A publication Critical patent/JPH09154272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To sufficiently control the temperature rise of a motor by providing a non-magnetic coil cooling member having high thermal conductivity between the magnetic pole of the rotor side and a coil to cool the coolant a little. SOLUTION: When a coil 9 of a linear motor 1 receives electric power, a repulsion force is generated at a rotor 1a and thereby a slider 4 is driven linearly. Generated heat is sequentially transferred, before it is transmitted to a projected magnetic pole 7, to a bobbin 8, a flange 11 and a cooling member 10 having higher thermal conductivity. Thereafter, heat is extracted to external side via the coolant flowing into the piping 13 for cooling. As a result, before heat of the coil 9 is spread to the projected magnetic pole 7 having a large thermal capacity, it is transmitted effectively to the bobbin 8, the flange 11 and cooling member 10, effective cooling can be realized and the temperature rise of the motor can also be controlled to improve the rated repulsion force. Moreover, since the bobbin 8 is cooled effectively, heat is not easily transmitted to the projected magnetic pole 7 and thermal expansion of the slider 4 can be reduced to improve positioning accuracy and linear performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リニアモータの冷
却構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear motor cooling structure.

【0002】[0002]

【従来の技術】図13は従来のリニアモータの一例を示
したものである。このリニアモータは、互いに平行配置
された2本のリニアガイドaの各ベアリングb間に架け
渡されたスライダcを直線駆動させるもので、該スライ
ダcの下部に取り付けられた可動子側磁極部dを備え
る。磁極部dには絶縁部eを介してコイルfが巻回され
ており、また、磁極部dの下方には固定子gが非接触で
対向配置されている。
2. Description of the Related Art FIG. 13 shows an example of a conventional linear motor. This linear motor linearly drives a slider c that is bridged between bearings b of two linear guides a that are arranged in parallel to each other, and a mover-side magnetic pole portion d attached to the lower portion of the slider c. Equipped with. A coil f is wound around the magnetic pole portion d via an insulating portion e, and a stator g is arranged below the magnetic pole portion d so as to face each other in a non-contact manner.

【0003】ところで、かかるリニアモータにおいて
は、モータの温度上昇値によって定格推力が制限される
ことから、磁極部dとスライダcとの間に冷却液配管付
プレートhを介在させて、コイルfから絶縁部eを経て
磁極部dに伝達された熱を冷却液を介して外部に逃が
し、これによりモータの温度上昇を抑制して定格推力の
低下を防止するようにしている。
By the way, in such a linear motor, since the rated thrust is limited by the temperature rise value of the motor, a plate h with a cooling liquid pipe is interposed between the magnetic pole portion d and the slider c, and the coil f is used. The heat transferred to the magnetic pole part d through the insulating part e is released to the outside through the cooling liquid, thereby suppressing the temperature rise of the motor and preventing the rated thrust from decreasing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、かかる
従来のリニアモータにおいては、コイルfから絶縁部e
を経て磁極部dに伝達された熱が該磁極部dの熱容量が
大きいために拡散してしまい、この結果、磁極部dと冷
却液配管付プレートh内を流れる冷却液との温度差が小
さくなって冷却効率が悪くなり、モータの温度上昇を十
分に抑制することができないという不都合がある。
However, in such a conventional linear motor, the coil f to the insulating portion e are not used.
The heat transferred to the magnetic pole part d via the magnetic pole part d is diffused because the heat capacity of the magnetic pole part d is large, and as a result, the temperature difference between the magnetic pole part d and the cooling liquid flowing in the plate h with the cooling liquid pipe is small. Therefore, there is a disadvantage that the cooling efficiency is deteriorated and the temperature rise of the motor cannot be sufficiently suppressed.

【0005】また、モータの推力をスライダcに正確に
伝達するという観点からスライダc、冷却液配管付プレ
ートh及び磁極部dは一体的に強固に固定されているた
め、モータの冷却効率が悪いと、冷却液配管付プレート
hからスライダcへ熱が伝達されやすくなってスライダ
cの温度上昇を招き、この結果、該スライダcの熱膨張
によって位置決め精度や直進性能を著しく低下させると
いう不都合がある。
Further, from the viewpoint of accurately transmitting the thrust of the motor to the slider c, the slider c, the plate h with the cooling liquid pipe, and the magnetic pole portion d are integrally and firmly fixed, so that the cooling efficiency of the motor is poor. As a result, heat is likely to be transferred from the plate h with the cooling liquid pipe to the slider c, and the temperature of the slider c rises. As a result, the thermal expansion of the slider c causes a disadvantage that positioning accuracy and rectilinear performance are significantly reduced. .

【0006】更に、スライダcと磁極部dとの間に冷却
液配管付プレートhを挟む構造になっているため、モー
タの推力をスライダcに伝達する際に冷却液配管付プレ
ートhがばね性やガタを生じさせる要因となって共振等
が発生しやすくなり、制御性に劣るという不都合があ
る。本発明はかかる不都合を解消するためになされたも
のであり、モータの定格推力の向上を図ることができる
と共に、位置決め精度や直進性能の向上を図ることがで
きるリニアモータの冷却構造を提供することを目的とす
る。
Further, since the plate h with the cooling liquid pipe is sandwiched between the slider c and the magnetic pole portion d, the plate h with the cooling liquid pipe is springy when the thrust of the motor is transmitted to the slider c. Resonance or the like is likely to occur as a factor that causes play or play, resulting in inferior controllability. The present invention has been made to solve such inconvenience, and provides a cooling structure for a linear motor, which can improve the rated thrust of the motor and can improve the positioning accuracy and the straight traveling performance. With the goal.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明に係るリニアモータの冷却構造は、可動子
側の磁極部と該磁極部に巻回されるコイルとの間に前記
磁極部より熱伝導率が高い非磁性のコイル冷却用部材を
介在させ、該コイル冷却用部材を冷却液を介して冷却す
る冷却手段を備えたことを特徴とする。
In order to achieve the above object, a cooling structure for a linear motor according to the present invention is provided with a magnetic pole between a magnetic pole portion on a mover side and a coil wound around the magnetic pole portion. A non-magnetic coil cooling member having a higher thermal conductivity than that of the section is interposed, and a cooling unit for cooling the coil cooling member via a cooling liquid is provided.

【0008】[0008]

【作用】本発明では、可動子側磁極部とコイルとの間に
該磁極部より熱伝導率が高い非磁性のコイル冷却用部材
を介在させて、該コイル冷却用部材を冷却液を介して冷
却することにより、コイルの熱が磁極部に伝達されて拡
散する前に冷却液との温度差を従来より高く設定した状
態でコイル冷却用部材を冷却し、これによりモータの冷
却効率を上げることを可能にする。
According to the present invention, a non-magnetic coil cooling member having a higher thermal conductivity than that of the magnetic pole portion is interposed between the magnetic pole portion on the mover side and the coil, and the coil cooling member is passed through the cooling liquid. By cooling, the coil cooling member is cooled while the temperature difference from the cooling liquid is set higher than before before the heat of the coil is transferred to the magnetic poles and diffused, thereby improving the cooling efficiency of the motor. To enable.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態の一例
を図1〜図4を参照して説明する。図1は本発明の実施
の形態の一例であるリニアモータの冷却構造を説明する
ための説明的概略図、図2はリニアモータの可動子の全
体斜視図、図3は図2のA−A線断面図、図4はボビン
の全体斜視図である。
DETAILED DESCRIPTION OF THE INVENTION An example of an embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is an explanatory schematic diagram for explaining a cooling structure of a linear motor that is an example of an embodiment of the present invention, FIG. 2 is an overall perspective view of a mover of the linear motor, and FIG. 3 is AA of FIG. A line sectional view, and FIG. 4 is an overall perspective view of the bobbin.

【0010】まず、図1〜図4を参照して構成から説明
すると、リニアモータ1は、互いに平行配置された2本
のリニアガイド2の各ベアリング3間に架け渡されたス
ライダ4を直線駆動させるもので、該スライダ4の下部
に取り付けられた可動子1aと、可動子1aの下方位置
に非接触で対向配置された固定子(磁石或いは二次側プ
レート)1bとによって構成されている。
First, the structure will be described with reference to FIGS. 1 to 4. A linear motor 1 linearly drives a slider 4 which is bridged between bearings 3 of two linear guides 2 arranged in parallel with each other. The movable element 1a is attached to the lower part of the slider 4 and the stator (magnet or secondary side plate) 1b is disposed below the movable element 1a so as to face each other in a non-contact manner.

【0011】可動子1aは電磁鋼板を積層して形成され
たヨーク5を備えており、該ヨーク5はスライダ4への
取り付け部をなす板状のスライダ取付部6と、該スライ
ダ取付部6から突出する複数の突磁極部(可動子側磁極
部)7とを有する。尚、この実施の形態では、突磁極部
7をスライダ取付部6の長手方向(スライダ4の移動方
向)に沿って6極並設しているが、突磁極部7の数は特
に限定されない。各突磁極部7には、それぞれボビン
(コイル冷却用部材)8を介してコイル9が巻回されて
いる。
The mover 1a is provided with a yoke 5 formed by laminating electromagnetic steel plates. The yoke 5 is a plate-like slider mounting portion 6 which is a mounting portion for the slider 4, and the slider mounting portion 6 It has a plurality of projecting magnetic pole portions (mover-side magnetic pole portions) 7 that project. In this embodiment, the salient magnetic pole portions 7 are arranged in parallel with six poles along the longitudinal direction of the slider mounting portion 6 (moving direction of the slider 4), but the number of the salient magnetic pole portions 7 is not particularly limited. A coil 9 is wound around each salient magnetic pole portion 7 via a bobbin (coil cooling member) 8.

【0012】ボビン8は、突磁極部7より熱伝導率が高
いアルミニウム或いは銅等の非磁性金属で筒状に形成さ
れて該突磁極部7に外挿されており、外周部にはコイル
9との電気的絶縁のための絶縁塗装等が施されている。
また、ボビン8のスライダ取付部6側の端部には、図3
及び図4に示すように、フランジ11が形成されてお
り、該フランジ11の両側にはそれぞれブロック状の冷
却部材(冷却手段)10がスライダ取付部6の幅方向両
側に位置して設けられている。フランジ11及び冷却部
材10は、ボビン8と同様に突磁極部7より熱伝導率が
高いアルミニウム或いは銅等の非磁性金属で形成されて
いる。この場合、ボビン8、フランジ11及び冷却部材
10の素材として非磁性金属に代えて合成樹脂を採用す
ることもできるが、非磁性金属の方が合成樹脂に比べて
突磁極部7に対する熱伝導性が良いので、冷却効果をよ
り期待するためには非磁性金属が好ましい。また、ボビ
ン8、フランジ11及び冷却部材10は同一素材で一体
に成形或いは加工してもよく、又は同一若しくは異なる
素材を互いに溶接接合してもよい。尚、図4において符
号14は、ボビン8の材質として非磁性金属を用いた場
合に、コイル9に電流を流した際にボビン8に二次電流
が流れるのを防止すべくボビン8の外周部を軸方向に沿
って切断するスリットである。
The bobbin 8 is cylindrically formed of a non-magnetic metal such as aluminum or copper having a higher thermal conductivity than the salient magnetic pole portion 7, and is externally fitted to the salient magnetic pole portion 7. A coil 9 is provided on the outer peripheral portion of the bobbin 8. Insulation coating is applied for electrical insulation with the.
In addition, at the end of the bobbin 8 on the slider mounting portion 6 side, as shown in FIG.
As shown in FIG. 4, a flange 11 is formed, and block-shaped cooling members (cooling means) 10 are provided on both sides of the flange 11 respectively on both sides in the width direction of the slider mounting portion 6. There is. Like the bobbin 8, the flange 11 and the cooling member 10 are made of a non-magnetic metal such as aluminum or copper having a higher thermal conductivity than the salient magnetic pole portion 7. In this case, synthetic resin can be used as the material of the bobbin 8, the flange 11, and the cooling member 10 instead of the non-magnetic metal, but the non-magnetic metal has higher thermal conductivity to the salient magnetic pole portion 7 than the synthetic resin. Therefore, a non-magnetic metal is preferable in order to expect more cooling effect. Further, the bobbin 8, the flange 11 and the cooling member 10 may be integrally formed or processed with the same material, or the same or different materials may be welded to each other. In FIG. 4, reference numeral 14 denotes an outer peripheral portion of the bobbin 8 to prevent a secondary current from flowing to the bobbin 8 when a current is passed through the coil 9 when a non-magnetic metal is used as the material of the bobbin 8. Is a slit that cuts along the axial direction.

【0013】冷却部材10には、貫通孔12がスライダ
取付部6の側部に沿って形成されている。スライダ取付
部6の長手方向に沿って並設された各冷却部材10の貫
通孔12には冷却液が流通する冷却用配管(冷却手段)
13が挿通配置されている。冷却用配管13は、伝熱性
に優れたアルミニウムや銅等の金属管で形成されてお
り、コイル9からボビン8を経て冷却部材10に伝達さ
れた熱を冷却液を介して外部に逃がすようにされてい
る。この場合、貫通孔12の内周面と冷却用配管13の
外周面との接触部に伝熱性を良くするためにシリコン等
を塗布するようにしてもよい。尚、この実施の形態で
は、冷却部材10に冷却用配管13を1本ずつ配置した
場合を例に採ったが、これに限定する必要はなく、冷却
用配管13を2本ずつ以上配置するようにしてもよい。
また、冷却部材10に貫通孔12を形成して該貫通孔1
2に冷却用配管13を挿通配置するようにしているが、
これに代えて、冷却部材10に溝(図示せず。)を形成
して該溝に冷却用配管13を埋め込むようにしてもよ
い。
Through holes 12 are formed in the cooling member 10 along the sides of the slider mounting portion 6. Cooling pipes (cooling means) through which the cooling liquid flows through the through holes 12 of the cooling members 10 arranged in parallel along the longitudinal direction of the slider mounting portion 6.
13 is inserted and arranged. The cooling pipe 13 is formed of a metal tube such as aluminum or copper having excellent heat conductivity, and the heat transferred from the coil 9 to the cooling member 10 via the bobbin 8 is released to the outside through the cooling liquid. Has been done. In this case, silicon or the like may be applied to the contact portion between the inner peripheral surface of the through hole 12 and the outer peripheral surface of the cooling pipe 13 in order to improve heat conductivity. In addition, in this embodiment, the case where the cooling pipes 13 are arranged one by one in the cooling member 10 is taken as an example, but the invention is not limited to this, and two or more cooling pipes 13 may be arranged. You may
Further, the through hole 12 is formed in the cooling member 10 to form the through hole 1.
Although the cooling pipe 13 is arranged to be inserted through the 2
Instead of this, a groove (not shown) may be formed in the cooling member 10 and the cooling pipe 13 may be embedded in the groove.

【0014】かかる構成のリニアモータ1においては、
コイル9に通電することにより可動子1aに推力が生じ
てスライダ4が直線駆動される。このとき、コイル9に
発生した熱は突磁極部7に伝達される前に該突磁極部7
より熱伝導率が高いボビン8、フランジ11及び冷却部
材10に順次伝達され、その後、冷却部材10内の冷却
用配管13を流れる冷却液を介して外部に取り出され
る。これにより、コイル9の熱が熱容量の大きい突磁極
部7に拡散する前にボビン(コイル冷却用部材)8、フ
ランジ11及び冷却部材10に伝熱するため、これらの
部材と冷却液との温度差を従来より高く設定した状態で
ボビン8、フランジ11及び冷却部材10を効率よく冷
却することができ、この結果、モータの温度上昇が従来
より抑制されて定格推力の向上を図ることができる。
In the linear motor 1 having such a structure,
By energizing the coil 9, a thrust is generated in the mover 1a and the slider 4 is linearly driven. At this time, the heat generated in the coil 9 is transferred to the salient magnetic pole portion 7 before being transferred to the salient magnetic pole portion 7.
It is sequentially transferred to the bobbin 8, the flange 11 and the cooling member 10 having higher thermal conductivity, and then taken out to the outside via the cooling liquid flowing through the cooling pipe 13 in the cooling member 10. As a result, the heat of the coil 9 is transferred to the bobbin (coil cooling member) 8, the flange 11 and the cooling member 10 before being diffused to the salient magnetic pole portion 7 having a large heat capacity. It is possible to efficiently cool the bobbin 8, the flange 11 and the cooling member 10 in a state where the difference is set higher than in the conventional case, and as a result, the temperature rise of the motor is suppressed more than in the conventional case and the rated thrust can be improved.

【0015】また、ボビン8を効率良く冷却することが
できることから、コイル9の熱が突磁極部7に伝達され
にくくなり、この結果、スライダ4や図示しない検出器
等の温度上昇を低く押さえることが可能になってスライ
ダ4の熱膨張を少なくすることができ、位置決め精度や
直進性能の向上を図ることができる。更に、ヨーク5の
スライダ取付部6とスライダ4との間に従来のような冷
却液配管付プレートhを介在させなくて済むため、モー
タの推力をスライダ4に伝達する際に冷却液配管付プレ
ートhに起因するばね性やガタをなくすことが可能にな
って共振等が発生しにくくすることができる。
Further, since the bobbin 8 can be cooled efficiently, the heat of the coil 9 is less likely to be transferred to the salient magnetic pole portion 7, and as a result, the temperature rise of the slider 4 and the detector (not shown) can be suppressed low. Therefore, the thermal expansion of the slider 4 can be reduced, and the positioning accuracy and the straight traveling performance can be improved. Further, since it is not necessary to interpose a conventional plate h with cooling liquid piping between the slider mounting portion 6 of the yoke 5 and the slider 4, the plate with cooling liquid piping when transmitting the thrust of the motor to the slider 4. It is possible to eliminate the spring property and play due to h, and it is possible to make resonance less likely to occur.

【0016】尚、上記実施の形態では、冷却部材10の
貫通孔12に挿通配置された冷却用配管13に冷却液を
流すようにしているが、必ずしもこのようにする必要は
なく、スライダ取付部6の長手方向に沿って並設された
各冷却部材10を互いに接合することにより、各冷却部
材10の貫通孔12を接続して冷却液の流路とするよう
にしてもよい。この場合、結果として冷却用配管13は
不要となる。
In the above embodiment, the cooling liquid is caused to flow through the cooling pipe 13 inserted through the through hole 12 of the cooling member 10. However, this is not always necessary, and the slider mounting portion is not always necessary. The cooling members 10 arranged side by side along the longitudinal direction of 6 may be joined to each other to connect the through holes 12 of the cooling members 10 to form a cooling liquid flow path. In this case, as a result, the cooling pipe 13 becomes unnecessary.

【0017】また、上記実施の形態では、冷却部材10
のみに冷却液の流路を形成しているが、図5に示すよう
に、コイル9が巻回されるボビン8の両側を厚肉にして
該厚肉部分に冷却液流路15を形成し、該冷却液流路1
5の両端を冷却部材10に開口させることにより、冷却
効率のより向上を図るようにしてもよい。更に、場合に
よっては、ヨーク5のスライダ取付部6とスライダ4と
の間に従来のような冷却液配管付プレートhを介在させ
るようにしてもよい。
Further, in the above embodiment, the cooling member 10 is used.
Although the flow path for the cooling liquid is formed only in the above, as shown in FIG. 5, both sides of the bobbin 8 around which the coil 9 is wound are made thicker to form the cooling liquid flow path 15 in the thick portion. , The cooling liquid channel 1
The cooling efficiency may be further improved by opening both ends of the cooling member 5 in the cooling member 10. Further, in some cases, a conventional plate h with cooling liquid piping may be interposed between the slider mounting portion 6 of the yoke 5 and the slider 4.

【0018】次に、本発明の他の実施の形態を図6〜図
9を参照して説明する。図6は本発明の他の実施の形態
であるリニアモータの冷却構造を説明するための説明的
概略図、図7は図6に示すリニアモータの可動子の全体
斜視図、図8は図7のB−B線断面図、図9はボビンの
全体斜視図である。まず、図6〜図9を参照して構成か
ら説明すると、リニアモータ20は、互いに平行配置さ
れた2本のリニアガイド2の各ベアリング3間に架け渡
されたスライダ4を直線駆動させるもので、該スライダ
4の下部に取り付けられた可動子21aと、可動子21
aの下方位置に非接触で対向配置された固定子(磁石或
いは二次側プレート)21bとによって構成されてい
る。
Next, another embodiment of the present invention will be described with reference to FIGS. 6 is an explanatory schematic view for explaining a cooling structure of a linear motor according to another embodiment of the present invention, FIG. 7 is an overall perspective view of a mover of the linear motor shown in FIG. 6, and FIG. 9 is a sectional view taken along line BB of FIG. 9, and FIG. 9 is an overall perspective view of the bobbin. First, the configuration will be described with reference to FIGS. 6 to 9. The linear motor 20 linearly drives the slider 4 bridged between the bearings 3 of the two linear guides 2 arranged in parallel with each other. A mover 21a attached to the lower part of the slider 4, and a mover 21
It is constituted by a stator (magnet or secondary side plate) 21b which is arranged in a non-contacting and opposed manner to a position below a.

【0019】可動子21aは電磁鋼板を積層して形成さ
れたヨーク22を備えており、該ヨーク22はスライダ
4への取り付け部をなす板状のスライダ取付部23と、
該スライダ取付部23から突出する5極の突磁極部(可
動子側磁極部)24とを有する。各突磁極部24には、
図7及び図8に示すように、それぞれボビン(コイル冷
却用部材)25を介してコイル26が巻回されている。
The mover 21a is provided with a yoke 22 formed by laminating electromagnetic steel sheets. The yoke 22 has a plate-like slider mounting portion 23 which is a mounting portion for the slider 4.
It has a five-pole salient magnetic pole portion (mover-side magnetic pole portion) 24 protruding from the slider mounting portion 23. Each salient pole portion 24 has
As shown in FIGS. 7 and 8, a coil 26 is wound via a bobbin (coil cooling member) 25.

【0020】ボビン25は、突磁極部24より熱伝導率
が高いアルミニウム或いは銅等の非磁性金属で筒状に形
成されて該突磁極部24に外挿されており、外周部には
コイル26との電気的絶縁のための絶縁塗装等が施され
ている。また、図8及び図9に示すように、ボビン25
の軸方向の両端部にはそれぞれフランジ27a,27b
が形成されており、該フランジ27a,27bのスライ
ダ取付部23の幅方向両側にはそれぞれ冷却部材(冷却
手段)28が配置されている。フランジ27a,27b
及び冷却部材28は、ボビン25と同様に突磁極部24
より熱伝導率が高いアルミニウム或いは銅等の非磁性金
属で形成されている。
The bobbin 25 is cylindrically formed of a non-magnetic metal such as aluminum or copper having a higher thermal conductivity than that of the salient magnetic pole portion 24, and is externally fitted to the salient magnetic pole portion 24. Insulation coating is applied for electrical insulation with the. In addition, as shown in FIGS. 8 and 9, the bobbin 25
Flanges 27a, 27b on both axial ends of
Are formed, and cooling members (cooling means) 28 are arranged on both sides in the width direction of the slider attachment portion 23 of the flanges 27a and 27b. Flange 27a, 27b
Similarly to the bobbin 25, the cooling member 28 includes the salient magnetic pole portion 24.
It is made of a non-magnetic metal such as aluminum or copper having a higher thermal conductivity.

【0021】冷却部材28は、スライダ取付部23の長
手方向に沿って並設されたフランジ27a,27bの各
外面にそれぞれ面接触する接触片29a,29bと、接
触片29a,29bを連結する連結片30とによって断
面略コ字状に形成されており、該連結片30には冷却液
の流路としての二本の貫通孔31がスライダ取付部23
の長手方向に沿って形成されている。貫通孔31を流れ
る冷却液を介してコイル26からボビン25及びフラン
ジ27a,27bを経て冷却部材28に伝達された熱を
外部に逃がすようにされている。この場合、伝熱性をさ
らに良くするために、フランジ27a,27bの各外面
と接触片29a,29bとの接触部分にシリコン等を塗
布してもよく、また、フランジ27a,27bと接触片
29a,29bとを溶接等によって接合するようにして
もよい。尚、図9において符号32は、コイル26に電
流を流した際に、ボビン25に二次電流が流れるのを防
止すべくボビン25の外周部を軸方向に沿って切断する
スリットである。
The cooling member 28 connects the contact pieces 29a and 29b with the contact pieces 29a and 29b which come into surface contact with the outer surfaces of the flanges 27a and 27b arranged in parallel along the longitudinal direction of the slider mounting portion 23. The connecting piece 30 is formed with a substantially U-shaped cross section, and the connecting piece 30 has two through holes 31 as a flow path of the cooling liquid.
Are formed along the longitudinal direction. The heat transmitted from the coil 26 to the cooling member 28 via the bobbin 25 and the flanges 27a and 27b via the cooling liquid flowing through the through hole 31 is released to the outside. In this case, in order to further improve the heat transfer property, silicon or the like may be applied to the contact portions between the outer surfaces of the flanges 27a and 27b and the contact pieces 29a and 29b, and the flanges 27a and 27b and the contact pieces 29a and 29b. 29b may be joined by welding or the like. In FIG. 9, reference numeral 32 is a slit that cuts the outer peripheral portion of the bobbin 25 along the axial direction in order to prevent a secondary current from flowing to the bobbin 25 when a current is passed through the coil 26.

【0022】かかる構成のリニアモータ20において
は、コイル26に通電することにより可動子21aに推
力が生じてスライダ4が直線駆動される。このとき、コ
イル26に発生した熱は突磁極部24に伝達される前に
該突磁極部24より熱伝導率が高いボビン25、フラン
ジ27a,27b及び冷却部材28に順次伝達され、そ
の後、冷却部材28内の貫通孔31を流れる冷却液を介
して外部に取り出される。これにより、コイル26の熱
が熱容量の大きい突磁極部24に拡散する前にボビン
(コイル冷却用部材)25、フランジ27a,27b及
び冷却部材28に伝熱するため、これらの部材と冷却液
との温度差を従来より高く設定した状態でボビン25、
フランジ27a,27b及び冷却部材28を効率よく冷
却することができ、この結果、モータの温度上昇が従来
より抑制されて定格推力の向上を図ることができる。
In the linear motor 20 having such a structure, when the coil 26 is energized, a thrust is generated in the mover 21a to linearly drive the slider 4. At this time, the heat generated in the coil 26 is sequentially transferred to the bobbin 25, the flanges 27a and 27b, and the cooling member 28, which have higher thermal conductivity than the salient magnetic pole portion 24, before being transferred to the salient magnetic pole portion 24, and then cooled. It is taken out to the outside via the cooling liquid flowing through the through hole 31 in the member 28. As a result, the heat of the coil 26 is transferred to the bobbin (coil cooling member) 25, the flanges 27a and 27b, and the cooling member 28 before being diffused to the salient magnetic pole portion 24 having a large heat capacity. Bobbin 25 with the temperature difference of
The flanges 27a and 27b and the cooling member 28 can be efficiently cooled, and as a result, the temperature rise of the motor can be suppressed more than before and the rated thrust can be improved.

【0023】また、ボビン25を効率良く冷却すること
ができることから、コイル26の熱が突磁極部24に伝
達されにくくなり、この結果、スライダ4や図示しない
検出器等の温度上昇を低く押さえることが可能になって
スライダ4の熱膨張を少なくすることができ、位置決め
精度や直進性能の向上を図ることができる。更に、ヨー
ク22のスライダ取付部23とスライダ4との間に従来
のような冷却液配管付プレートhを介在させなくて済む
ため、モータの推力をスライダ4に伝達する際に冷却液
配管付プレートhに起因するばね性やガタがなくすこと
が可能になって共振等が発生しにくくすることができ
る。
Further, since the bobbin 25 can be cooled efficiently, the heat of the coil 26 is less likely to be transferred to the salient magnetic pole portion 24, and as a result, the temperature rise of the slider 4, the detector (not shown) and the like can be suppressed low. Therefore, the thermal expansion of the slider 4 can be reduced, and the positioning accuracy and the straight traveling performance can be improved. Further, since it is not necessary to interpose a conventional plate h with cooling liquid piping between the slider mounting portion 23 of the yoke 22 and the slider 4, the plate with cooling liquid piping when transmitting the thrust of the motor to the slider 4. It is possible to eliminate the spring property and play due to h, and it is possible to make resonance less likely to occur.

【0024】尚、ボビン25の変形例として、図10〜
図12に示すように、コイル26が巻回されるボビン2
5の壁部全体を厚肉にして該厚肉部分に冷却液流路32
を形成し、該冷却液流路32に冷却用配管33を連通さ
せることにより、冷却効率のより向上を図るようにして
もよい。
As a modified example of the bobbin 25, FIGS.
As shown in FIG. 12, the bobbin 2 around which the coil 26 is wound.
5, the entire wall portion 5 is made thick, and the cooling liquid passage 32 is formed in the thick portion.
May be formed and the cooling pipe 33 may be connected to the cooling liquid flow path 32 to further improve the cooling efficiency.

【0025】[0025]

【発明の効果】上記の説明から明らかなように、本発明
によれば、コイルの熱が熱容量の大きい磁極部に拡散す
る前に冷却液との温度差を従来より高く設定した状態で
コイル冷却用部材を効率よく冷却して冷却効率を上げる
ことができるので、モータの温度上昇が従来より抑制さ
れて定格推力の向上を図ることができるという効果が得
られる。
As is apparent from the above description, according to the present invention, the coil cooling is performed in a state in which the temperature difference between the heat of the coil and the cooling liquid is set higher than that of the prior art before being diffused to the magnetic pole portion having a large heat capacity. Since the cooling member can be efficiently cooled and the cooling efficiency can be increased, it is possible to obtain an effect that the temperature rise of the motor is suppressed more than in the past and the rated thrust can be improved.

【0026】また、コイル冷却用部材を効率良く冷却す
ることができることから、コイルの熱が磁極部に伝達さ
れにくくなるので、スライダの温度上昇を低く押さえる
ことが可能になってスライダの熱膨張を少なくすること
ができ、位置決め精度や直進性能の向上を図ることがで
きるという効果が得られる。更に、磁極部とスライダと
の間に従来のような冷却液配管付プレートを介在させな
くて済むため、モータの推力をスライダに伝達する際に
冷却液配管付プレートに起因するばね性やガタをなくす
ことが可能になって共振等が発生しにくくすることがで
きるという効果が得られる。
Further, since the coil cooling member can be cooled efficiently, the heat of the coil is less likely to be transferred to the magnetic pole portion, so that the temperature rise of the slider can be suppressed low and the thermal expansion of the slider can be suppressed. It is possible to reduce the number, and it is possible to obtain the effect that the positioning accuracy and the straight traveling performance can be improved. Furthermore, since it is not necessary to interpose a conventional plate with cooling liquid piping between the magnetic pole portion and the slider, when the thrust of the motor is transmitted to the slider, the spring property and play caused by the plate with cooling liquid piping are eliminated. This can be eliminated, and the effect that resonance or the like is less likely to occur can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例であるリニアモータ
の冷却構造を説明するための説明的概略図である。
FIG. 1 is an explanatory schematic diagram for explaining a cooling structure for a linear motor that is an example of an embodiment of the present invention.

【図2】リニアモータの可動子の全体斜視図である。FIG. 2 is an overall perspective view of a mover of a linear motor.

【図3】図2のA−A線断面図である。FIG. 3 is a sectional view taken along line AA of FIG. 2;

【図4】ボビンの全体斜視図である。FIG. 4 is an overall perspective view of a bobbin.

【図5】ボビンの変形例を示す全体斜視図である。FIG. 5 is an overall perspective view showing a modified example of the bobbin.

【図6】本発明の他の実施の形態であるリニアモータの
冷却構造を説明するための説明的概略図である。
FIG. 6 is an explanatory schematic diagram for explaining a cooling structure for a linear motor that is another embodiment of the present invention.

【図7】リニアモータの可動子の全体斜視図である。FIG. 7 is an overall perspective view of a mover of a linear motor.

【図8】図7のB−B線断面図である。FIG. 8 is a sectional view taken along line BB of FIG. 7;

【図9】ボビンの全体斜視図である。FIG. 9 is an overall perspective view of a bobbin.

【図10】ボビンの変形例を説明するための説明的平面
図である。
FIG. 10 is an explanatory plan view for explaining a modified example of the bobbin.

【図11】図10の左側面図である。FIG. 11 is a left side view of FIG.

【図12】図10のC−C線断面図である。12 is a cross-sectional view taken along the line CC of FIG.

【図13】従来のリニアモータの冷却構造を説明するた
めの説明的概略図である。
FIG. 13 is an explanatory schematic diagram for explaining a conventional cooling structure for a linear motor.

【符号の説明】[Explanation of symbols]

1…リニアモータ 1a…可動子 7…突磁極部(可動子側磁極部) 8…ボビン(コイル冷却用部材) 9…コイル 10…冷却部材(冷却手段) 13…冷却用配管(冷却手段) DESCRIPTION OF SYMBOLS 1 ... Linear motor 1a ... Mover 7 ... Salient magnetic pole part (mover side magnetic pole part) 8 ... Bobbin (coil cooling member) 9 ... Coil 10 ... Cooling member (cooling means) 13 ... Cooling piping (cooling means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 可動子側の磁極部と該磁極部に巻回され
るコイルとの間に前記磁極部より熱伝導率が高い非磁性
のコイル冷却用部材を介在させ、該コイル冷却用部材を
冷却液を介して冷却する冷却手段を備えたことを特徴と
するリニアモータの冷却構造。
1. A non-magnetic coil cooling member having a thermal conductivity higher than that of the magnetic pole portion is interposed between a magnetic pole portion on the mover side and a coil wound around the magnetic pole portion, and the coil cooling member is provided. A cooling structure for a linear motor, comprising: a cooling unit that cools the liquid via a cooling liquid.
JP30935995A 1995-11-28 1995-11-28 Cooling structure of linear motor Pending JPH09154272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30935995A JPH09154272A (en) 1995-11-28 1995-11-28 Cooling structure of linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30935995A JPH09154272A (en) 1995-11-28 1995-11-28 Cooling structure of linear motor

Publications (1)

Publication Number Publication Date
JPH09154272A true JPH09154272A (en) 1997-06-10

Family

ID=17992057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30935995A Pending JPH09154272A (en) 1995-11-28 1995-11-28 Cooling structure of linear motor

Country Status (1)

Country Link
JP (1) JPH09154272A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198808A (en) * 1997-09-26 1999-04-09 Hitachi Metals Ltd Stator and linear motor
EP1124160A2 (en) * 2000-02-10 2001-08-16 Asm Lithography B.V. Cooling of oscillating linear motors in lithographic projection apparatus
KR100631098B1 (en) * 2003-03-11 2006-10-02 에이에스엠엘 네델란즈 비.브이. Lithographic Apparatus and Device Manufacturing Method
JP2006304399A (en) * 2005-04-15 2006-11-02 Mitsubishi Electric Corp Linear motor
KR100757671B1 (en) * 2006-02-03 2007-09-10 창원대학교 산학협력단 Cooling Plate with Symmetrical Arrangement of Cooling Pipe for Linear Motors
JP2008106611A (en) * 2006-10-23 2008-05-08 Japan Servo Co Ltd Centrifugal fan
KR20080055274A (en) * 2006-12-15 2008-06-19 창원대학교 산학협력단 U-type cooling plate system of linear motors
JP2008220003A (en) * 2007-03-01 2008-09-18 Mitsubishi Electric Corp Linear motor
WO2009019192A1 (en) * 2007-08-03 2009-02-12 Siemens Aktiengesellschaft Primary part of an electric linear motor with a cooling device
KR100899279B1 (en) * 2007-01-26 2009-05-27 창원대학교 산학협력단 Cooling equipment for Linear Motors by Combination of a Plate Cooler on the Upper Side and Conducting Sheet at the Side
WO2009101852A1 (en) * 2008-02-14 2009-08-20 Thk Co., Ltd. Linear motor
WO2010049969A1 (en) * 2008-10-28 2010-05-06 三菱電機株式会社 Electric discharge machine
KR100956296B1 (en) * 2008-03-18 2010-05-10 현대로템 주식회사 Linear motor attachment structure for magnetically levitated vehicle
JP2010268655A (en) * 2009-05-18 2010-11-25 Minebea Co Ltd Stepping motor
JP2014511102A (en) * 2011-04-01 2014-05-01 ヴォッベン プロパティーズ ゲーエムベーハー Laminated core assembly
KR101444946B1 (en) * 2007-12-05 2014-09-30 두산인프라코어 주식회사 Cooling apparatus for linear motor
US9373988B2 (en) 2013-03-15 2016-06-21 Teco-Westinghouse Motor Company Assemblies and methods for cooling electric machines
CN111463946A (en) * 2020-04-13 2020-07-28 苏州思铭普精密科技有限公司 Coreless moving coil type linear motor
CN115378174A (en) * 2022-08-24 2022-11-22 上海铼钠克数控科技有限公司 Linear motor coil winding, manufacturing method thereof and linear motor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198808A (en) * 1997-09-26 1999-04-09 Hitachi Metals Ltd Stator and linear motor
EP1124160A2 (en) * 2000-02-10 2001-08-16 Asm Lithography B.V. Cooling of oscillating linear motors in lithographic projection apparatus
EP1124160A3 (en) * 2000-02-10 2004-07-28 ASML Netherlands B.V. Cooling of oscillating linear motors in lithographic projection apparatus
KR100631098B1 (en) * 2003-03-11 2006-10-02 에이에스엠엘 네델란즈 비.브이. Lithographic Apparatus and Device Manufacturing Method
JP2006304399A (en) * 2005-04-15 2006-11-02 Mitsubishi Electric Corp Linear motor
KR100757671B1 (en) * 2006-02-03 2007-09-10 창원대학교 산학협력단 Cooling Plate with Symmetrical Arrangement of Cooling Pipe for Linear Motors
JP2008106611A (en) * 2006-10-23 2008-05-08 Japan Servo Co Ltd Centrifugal fan
KR20080055274A (en) * 2006-12-15 2008-06-19 창원대학교 산학협력단 U-type cooling plate system of linear motors
KR100899279B1 (en) * 2007-01-26 2009-05-27 창원대학교 산학협력단 Cooling equipment for Linear Motors by Combination of a Plate Cooler on the Upper Side and Conducting Sheet at the Side
JP2008220003A (en) * 2007-03-01 2008-09-18 Mitsubishi Electric Corp Linear motor
WO2009019192A1 (en) * 2007-08-03 2009-02-12 Siemens Aktiengesellschaft Primary part of an electric linear motor with a cooling device
KR101444946B1 (en) * 2007-12-05 2014-09-30 두산인프라코어 주식회사 Cooling apparatus for linear motor
CN101939897A (en) * 2008-02-14 2011-01-05 Thk株式会社 Linear motor
JP5444008B2 (en) * 2008-02-14 2014-03-19 Thk株式会社 Linear motor
WO2009101852A1 (en) * 2008-02-14 2009-08-20 Thk Co., Ltd. Linear motor
TWI482398B (en) * 2008-02-14 2015-04-21 Thk Co Ltd Linear motor
KR100956296B1 (en) * 2008-03-18 2010-05-10 현대로템 주식회사 Linear motor attachment structure for magnetically levitated vehicle
WO2010049969A1 (en) * 2008-10-28 2010-05-06 三菱電機株式会社 Electric discharge machine
JP2010268655A (en) * 2009-05-18 2010-11-25 Minebea Co Ltd Stepping motor
JP2014511102A (en) * 2011-04-01 2014-05-01 ヴォッベン プロパティーズ ゲーエムベーハー Laminated core assembly
US9373988B2 (en) 2013-03-15 2016-06-21 Teco-Westinghouse Motor Company Assemblies and methods for cooling electric machines
CN111463946A (en) * 2020-04-13 2020-07-28 苏州思铭普精密科技有限公司 Coreless moving coil type linear motor
CN115378174A (en) * 2022-08-24 2022-11-22 上海铼钠克数控科技有限公司 Linear motor coil winding, manufacturing method thereof and linear motor

Similar Documents

Publication Publication Date Title
JPH09154272A (en) Cooling structure of linear motor
CN101496265B (en) Linear motor with thrust ripple compensation
KR100844759B1 (en) Coreless linear motor
US7176593B2 (en) Actuator coil cooling system
US4745320A (en) Induction motor
JP2000253640A (en) Linear vibration motor
JP3849128B2 (en) Linear motor
JP3878939B2 (en) Air-cooled coil unit of linear motor
JP2000228860A (en) Cooler for linear motor
JP2524103Y2 (en) Synchronous linear motor
JP3446563B2 (en) Linear motor
JPH10323012A (en) Linear motor
JP3661978B2 (en) Moving coil linear motor
WO2004088827A1 (en) Cooling structure for linear motor
JP2585817Y2 (en) Synchronous linear motor
JP2585818Y2 (en) Stator for canned linear motor
JP2505857B2 (en) Movable magnet type multi-phase linear motor
JPH1118407A (en) Table feeder of machine tool
JP2002165433A (en) Linear motor
JPS6142264A (en) Cooling fin of linear induction motor
JP2002247831A (en) Linear motor
JP4092550B2 (en) Voice coil linear motor with cooling function
JP2023121896A (en) Movable coil type linear motor
JP3786150B2 (en) Linear motor
JP6764797B2 (en) Linear motor and cooling method for linear motor