JPH01270643A - Method for examination of specimen - Google Patents

Method for examination of specimen

Info

Publication number
JPH01270643A
JPH01270643A JP63100571A JP10057188A JPH01270643A JP H01270643 A JPH01270643 A JP H01270643A JP 63100571 A JP63100571 A JP 63100571A JP 10057188 A JP10057188 A JP 10057188A JP H01270643 A JPH01270643 A JP H01270643A
Authority
JP
Japan
Prior art keywords
particles
particle
antigen
carrier particles
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63100571A
Other languages
Japanese (ja)
Other versions
JPH0731114B2 (en
Inventor
Yuji Ito
勇二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63100571A priority Critical patent/JPH0731114B2/en
Priority to FR8901885A priority patent/FR2627286B1/en
Publication of JPH01270643A publication Critical patent/JPH01270643A/en
Priority to US07/563,853 priority patent/US5162863A/en
Publication of JPH0731114B2 publication Critical patent/JPH0731114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate window processing and to enhance measuring accuracy, by a method wherein the respective particle sizes and optical characteristics of several kinds of carrier particles are combined so as to be clearly distinguished when a flocculation state and a particle kind are detected. CONSTITUTION:Two or more kinds of latex particles different in light transmissivity and a particle size and a specimen to be examined (serum) are received in a specimen liquid container 15. Herein, when the antibody sensitized with the particles coincides with the antigen in serum, antigen-antibody reaction is generated and the same kind of the particles are flocculated. The flow of this sample liquid is irradiated with the laser beam from a laser 1, and forward scattering beam and lateral scattering beam are measured by light detectors 6, 11 and the outputs thereof are inputted to an operation circuit 16 to analyze the particles. That is, when the hystograms of both scattering beams are put together to obtain a sightgram, a plurality of groups appear thereon. By selecting the particle so that each group appears in a spread state, the sightgram easy to perform window processing can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は検体検査方法、特にラテックス粒子等の担体粒
子を用いた免疫検査に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a specimen testing method, particularly to an immunoassay using carrier particles such as latex particles.

[従来の技術] 従来、免疫検査法としてラテックス粒子等の担体粒子を
所定の抗体で感作したものと被検試料を混合して、感作
した抗体が特定しようとする抗原が被検試料に含まれて
いた場合、抗原抗体反応か起きて担体粒子同志が結合し
、担体粒子の凝集状態から抗原の有無或いは抗原の量を
測定する方法が用いられてきた。その際、担体粒子の凝
集状態を判別する方法は、担体粒子を含む懸fA液の光
透過度や光散乱の程度の測定により行なっていた。
[Prior art] Conventionally, as an immunoassay method, carrier particles such as latex particles are sensitized with a predetermined antibody and a test sample is mixed, and the antigen to be identified by the sensitized antibody is detected in the test sample. When the carrier particles are contained, an antigen-antibody reaction occurs and the carrier particles bind to each other, and a method has been used to measure the presence or absence of the antigen or the amount of the antigen based on the state of aggregation of the carrier particles. At that time, the method of determining the agglomeration state of the carrier particles was carried out by measuring the light transmittance and the degree of light scattering of the suspended fA liquid containing the carrier particles.

特にフローサイトメトリ法を用いて、即ち前記懸濁液を
シース液で包んで流体力学的に収斂させて検査位置に個
々の担体粒子を順次流し、検査位置の担体粒子に光ビー
ムを照射して、散乱する散乱光の強度から担体粒子の大
きさを判断することにより、個々の担体粒子の凝集状態
か判断てき、抗原の有無或いは抗原の量を算出して、精
度の高い測定か可能であっフこ。
In particular, using a flow cytometry method, i.e., the suspension is wrapped in a sheath liquid and hydrodynamically converged to sequentially flow individual carrier particles to the test position, and the carrier particles at the test position are irradiated with a light beam. By determining the size of the carrier particles from the intensity of the scattered light, it is possible to determine the state of aggregation of individual carrier particles, and to calculate the presence or absence of antigen or the amount of antigen, making it possible to perform highly accurate measurements. Fuko.

上記従来例では1種類の抗体を感作した担体杓子しか使
えないのて、−度に1種類の抗原の検査しかできず、犬
f検診等の際に効率化の妨げになっていた。そこて本願
出願人は特願昭63−33482にて、同時に複数種類
の抗原又は抗体の有無、或いは抗原又は抗体の量か測定
可能な検体検査方法を提案した。
In the above-mentioned conventional example, only a carrier ladle sensitized with one type of antibody can be used, and therefore only one type of antigen can be tested at a time, which hinders efficiency in dog examinations and the like. Therefore, in Japanese Patent Application No. 63-33482, the applicant of the present application proposed a sample testing method that can simultaneously measure the presence or absence of multiple types of antigens or antibodies, or the amount of antigens or antibodies.

[発明の目的コ 本発明は前記引例の検体検査方法の更なる改良を行ない
、測定精度を高める検体検査方法の提供を目的とする。
[Object of the Invention] The object of the present invention is to further improve the specimen testing method of the above-mentioned reference and to provide a specimen testing method that improves measurement accuracy.

[目的を達成するための手段コ 上述した目的を達成するため本発明は、第1の抗体又は
抗原か支持され第1の光学特性を備える同−粒子径の第
1の担体オ☆子と、第2の抗体又は抗原か支持され第2
の光学特性を備える同−粒子径の第2の担体粒子とを被
検試料と混合させ、前記担体粒子を検査位置に組状流し
、該検査位置に流される前記担体粒子に光を照射し、前
記担体粒子から第1の方向と第2の方向へ散乱される光
を各々測光し、該測光される第1、第2の光の強度より
サイ[・ダラムを求めて前記担体粒子の凝集状態及び粒
子種類を検知し、面記被検試料内の抗原又は抗体を検査
する検体検査方法において、前記第1の相体粒子と前記
第2の担体粒子のそれぞれのね予行及び光学物・目か前
記ザイトダラム上て分離されるような組合わせを選択す
る。
[Means for Achieving the Object] To achieve the above-mentioned object, the present invention provides a first carrier particle having the same particle size that supports a first antibody or antigen and has a first optical property; A second antibody or antigen is supported by a second antibody or antigen.
second carrier particles having the same particle diameter and having optical properties of are mixed with a test sample, flowing the carrier particles in a set to an inspection position, and irradiating the carrier particles flowing to the inspection position with light, The light scattered in the first direction and the second direction from the carrier particles is measured respectively, and the agglomeration state of the carrier particles is determined by calculating the si [Dullam] from the intensities of the measured first and second lights. and a sample testing method for detecting the type of particles and testing for antigens or antibodies in a sample to be tested, which includes the following steps: Select combinations that are separated on the Zytodarum.

[実施例] 第1図は本発明の実施例の構成図である。[Example] FIG. 1 is a block diagram of an embodiment of the present invention.

本実施例においては担体粒子として有機高分子物質の微
粒子であるラテックス杓子を用いたか、これには限定さ
れず、例えはシリカ、シリカ−アルミナ、アルミナ等の
;1j[機酸化物、鉱物粉末、金属、ざらに)川・つ球
菌や細胞膜片等も使用可能である。
In this example, latex ladle, which is fine particles of an organic polymer material, was used as the carrier particle. Metals, grains, cocci, cell membrane fragments, etc. can also be used.

抗体て感作された複数種のラテックス杓子に血清等の被
検試料を添加したサンプル液の入フたザンブル?1り容
器15ど、シース液である蒸留水の入ったシース液容器
14は各々加圧されて、サンプル液かシース液に包まれ
て細い流れに収斂されてフローセル4内の流通部のほぼ
中央部を通過する。
A sample solution containing a sample liquid made by adding a test sample such as serum to a latex ladle of multiple types sensitized with antibodies? The sheath liquid container 14 containing distilled water, which is the sheath liquid, is pressurized, and is wrapped in sample liquid or sheath liquid and converged into a thin flow, which flows approximately in the center of the flow section in the flow cell 4. pass through the section.

この時サンプル液に含まれる個々のラテックス粒子は分
粗さねて1粒或いは凝集した1塊ずつ順次流れる。この
ラテックス粒子の流れに対して、レーザ光源1から出射
されたレーサ光かシリントリ力ルレンス?、3の組によ
って任怠の形状に収斂され11へ射される。ラテックス
粒子に照射される光ヒームの形状は流れに対して横長の
楕円形状である。これはサンプル液の流れの位置か変動
しても流れるラテックス粒子にほぼ均一の強度で光ヒー
ムか照射されるようにするためである。
At this time, the individual latex particles contained in the sample liquid sequentially flow one after another or one after another. For this flow of latex particles, is it the laser light emitted from the laser light source 1 or the syringe force? , 3 converges into a lazy shape and is projected to 11. The shape of the optical beam irradiated onto the latex particles is an ellipse that is horizontally elongated with respect to the flow. This is to ensure that the flowing latex particles are irradiated with a light beam with a substantially uniform intensity even if the position of the flow of the sample liquid changes.

前記ラテックス粒子に光ヒームか照射されると散乱光か
発する。また蛍光測定のためにサンプル液試料を蛍光染
色した場合には同時に蛍光も発生ずる。前記119.乱
光の内、光路)1τj方方向に発−う−る前方散乱光は
集光レンズ5、光検出器6によって測光される。なお照
射された光ヒームか直接、光検出器6に入射するのを[
55<ため光路中集光レンズ5の前方に不図示のストッ
パを設けて直接光を除去している。光検出器6の出力は
演算回路16に人力される。また前記11り乱光の内、
光路に直交場−る側方方向に発する側方散乱光は集光レ
ンズ7て集光され、タイクロイックミラー8て反射され
て光検出器11て測光される。一般には側方散乱光を測
光する方向は本実施例のように直交方向であることか多
いか、直交には限定されず例えは45度方向や[iO度
方向等であっても良い。またサンプル液試料を蛍光染色
した際に散乱光と共に発生ずる微弱な蛍光を測光するた
め、集光レンズ7によって集光されタイクロイックミラ
ー8を通過した蛍光の内、タイクロイックミラー9、光
検出器12の組によって緑色蛍光か検出さね、全反射ミ
ラー1o、光検出器13の組によって赤色蛍光か検出さ
れる。各光検出器の前には各波長域の光のみを1M過さ
せるためのバントパスフィルタ2+、22.23か設置
されている。光検出器11.12.13の信号は演算回
路16に人力され、該演算回路にて粒子解析の演算か行
なわれる。
When the latex particles are irradiated with a beam of light, scattered light is emitted. Further, when a sample liquid sample is fluorescently stained for fluorescence measurement, fluorescence is also generated at the same time. 119 above. Of the scattered light, forward scattered light emitted in the direction of the optical path )1τj is photometered by a condenser lens 5 and a photodetector 6. Note that the irradiated light beam is directly incident on the photodetector 6 [
55, a stopper (not shown) is provided in front of the condensing lens 5 in the optical path to directly remove the light. The output of the photodetector 6 is input to an arithmetic circuit 16 . Also, among the 11 scattered lights,
The side scattered light emitted in the lateral direction perpendicular to the optical path is condensed by a condenser lens 7, reflected by a tychroic mirror 8, and photometered by a photodetector 11. In general, the direction in which side scattered light is photometered is often orthogonal as in this embodiment, but is not limited to orthogonal and may be, for example, a 45 degree direction or an [iO degree direction. In addition, in order to measure the weak fluorescence that is generated together with scattered light when the sample liquid sample is fluorescently dyed, the fluorescence that is focused by the condenser lens 7 and passed through the tichroic mirror 8 is detected by the tichroic mirror 9 and the photodetector. Green fluorescence is detected by a set of 12, and red fluorescence is detected by a set of a total reflection mirror 1o and a photodetector 13. In front of each photodetector, bandpass filters 2+ and 22.23 are installed to allow only 1M of light in each wavelength range to pass through. Signals from the photodetectors 11, 12, and 13 are input to an arithmetic circuit 16, and the arithmetic circuit performs calculations for particle analysis.

サンプル液容器15には、それぞれ特定の抗体で感作さ
れた光透過度、粒子径の異なる3種類のラテックス粒子
か混在し、これに被検試料である血清を加えたものかサ
ンプル液として入っている。
The sample liquid container 15 contains a mixture of three types of latex particles having different light transmittances and particle sizes, each sensitized with a specific antibody, to which serum, which is a test sample, is added or the sample liquid is added. ing.

このラテックス粒子は、同一種のものは光透過度及び粒
子径か共に等しい。ここでラテックス粒子に感作された
抗体と血清中の抗原とか合致した場合、抗原抗体反応か
起きて同し種類のラテックス粒子同志かくっついて凝集
する。
These latex particles of the same type have the same light transmittance and particle size. When the antibodies sensitized to the latex particles match the antigens in the serum, an antigen-antibody reaction occurs and latex particles of the same type stick together and aggregate.

このサンプル液の流れに光ヒームを照射して前方散乱光
の強度及び側方散乱光の強度から抗原抗体反応検出を行
なう方法を第2図ないし第9図を用いて説明する。
A method of detecting an antigen-antibody reaction from the intensity of forward scattered light and the intensity of side scattered light by irradiating the flow of the sample liquid with a beam of light will be explained with reference to FIGS. 2 to 9.

第2図ないし第4図、及び第8図は同一粒子径で光透過
度か異なる3種類のラテックス粒子に別々の抗体を感作
したものを用いた時の解析結果である。
Figures 2 to 4 and Figure 8 show the analysis results when three types of latex particles having the same particle size but different light transmittances were sensitized with different antibodies.

ある種類のラテックス粒子を流したとき、抗原抗体反応
によって凝集した粒子による前方散乱光のヒストグラム
は、第2図(a)のように表わされる。図中、横軸は光
検出器6によって測光される前方散乱光(FS)の強度
、縦軸は粒子の個数(N)である。前方散乱光強度は粒
子径に依存するため、ラテックス粒子は凝集によって見
かけ上の大きさが変化し、グラフ上てI、、I2,13
のように分離して表示される。これらはそれぞれラテッ
クス粒子の凝集数が1個、2個、3個であると考えられ
る。
When a certain type of latex particles are flowed, the histogram of forward scattered light due to the particles aggregated by the antigen-antibody reaction is expressed as shown in FIG. 2(a). In the figure, the horizontal axis represents the intensity of forward scattered light (FS) measured by the photodetector 6, and the vertical axis represents the number of particles (N). Since the forward scattered light intensity depends on the particle size, the apparent size of latex particles changes due to aggregation, and the graph shows I, , I2, 13
are displayed separately as in . These are considered to have aggregation numbers of 1, 2, and 3 latex particles, respectively.

第2図(b)は側方散乱光のヒストグラムてあり、横軸
は光検出器11によって測光される側方散乱光(SS)
の強度、縦軸は粒子の個数(N)である。側方散乱光強
度は粒子の光透過度によって変化するため、凝集によっ
て凝集塊の光透過度か変化し、グラフ上でJ、、I2.
I3のように分離して表示される。
FIG. 2(b) is a histogram of side scattered light, and the horizontal axis is side scattered light (SS) measured by the photodetector 11.
The vertical axis is the number of particles (N). Since the side-scattered light intensity changes depending on the light transmittance of the particles, the light transmittance of the aggregate changes due to aggregation, and the graph shows J, , I2.
It is displayed separately like I3.

この両ヒストグラムを1つまとめて表示したサイトダラ
ムか第2図(C)である。図中、横軸は側方散乱光強度
、縦軸は前方散乱光強度である。第2図(a)の■、と
第2図(b)のJlとは同一粒子によるものであり、ま
た同様に■2J2及びI3.I3の組も同一の粒子塊に
よるものである。よってサイトグラム上には側方散乱光
かJlて、前方散乱光か11の粒子の群と、側方散乱光
かI2て前方散乱光か12の群、側方散乱光かI3て前
方散乱光がI3の群というように3つの群か表われる。
Fig. 2 (C) shows both histograms displayed together. In the figure, the horizontal axis is the side scattered light intensity, and the vertical axis is the forward scattered light intensity. ■■ in FIG. 2(a) and Jl in FIG. 2(b) are the same particles, and similarly ■2J2 and I3. Group I3 is also made of the same particle agglomerate. Therefore, on the cytogram, side scattered light (Jl), forward scattered light (11 groups), side scattered light (I2), forward scattered light (12 groups), and side scattered light (I3), forward scattered light. Three groups appear, such as the group I3.

これは粒子か各々1個あるいは2個、3個の凝集状態で
あると判断することかてきる。以上は抗原抗体反応か起
きて粒子か凝集した場合の説明であるか、目的とする抗
原か存在せず凝集か起きなかった場合は、凝集によるI
2、I2,13J3はグラフ上に表われず、I、、J。
This can be determined to be an agglomeration state of one, two, or three particles. The above is an explanation of the case where an antigen-antibody reaction occurs and the particles agglutinate, or if the target antigen is not present and agglutination does not occur, I
2, I2, 13J3 does not appear on the graph, I,,J.

のみとなる。また4個以上の大きな凝集塊か存在する場
合は第2図(C)の各群を結ぶ破線上に表われる。以上
のようにサイトグラム上に表われる群を見ることによっ
て、求める抗原の存在を検出することかできる。
Only. Furthermore, when four or more large aggregates are present, they appear on the broken line connecting each group in FIG. 2(C). By looking at the groups appearing on the cytogram as described above, the presence of the desired antigen can be detected.

同様に前記ラテックス粒子と粒子径が同一で、光透過度
の異なる別の種類のラテックス粒子を用いて、−抗原か
存在した場合には第3図、第4図に示すようなヒストグ
ラム及びサイトダラムを得ることかできる。
Similarly, using another type of latex particle having the same particle size as the latex particle and having a different light transmittance, - if an antigen is present, a histogram and a cytodrum as shown in FIGS. 3 and 4 are obtained. Can you get it?

第8図は第2図(C)、第3図(C)、第4図(c)の
サイトグラ12を1つにまとめたものである。第8図の
サイトダラムにおいて、各破線上にある群は同一の抗原
(抗体)に関する情報である。これは種類の抗体に対す
る抗原かすべて存在したときのホ吉果である。
FIG. 8 shows the site graphs 12 of FIGS. 2(C), 3(C), and 4(c) combined into one. In the cytodaram of FIG. 8, the groups on each broken line are information regarding the same antigen (antibody). This is a great success when all types of antibodies are present.

ここてWに示すウィンドウ処理を行なうことにより、こ
のウィンドウ中にある粒子の数(カウント数)を調べる
ことは一般に良く用いられる方法である。しかしながら
、第8図の場合は粒子径か同一で光透過度が異なる、す
なわち前方散乱光強度はほぼ同等で、側方散乱光強度の
みか異なるラテックス粒子を選択しているために、サイ
トグラム上で各群が接近しており、一部では重なって表
示されてしまっている。このためウィンドウ処理か難し
い。
Here, it is a commonly used method to perform the window processing shown in W to check the number of particles (count number) within this window. However, in the case of Figure 8, the particle size is the same but the light transmittance is different, that is, the forward scattered light intensity is almost the same, and only the side scattered light intensity is different because the latex particles are selected. The groups are close together, and in some cases they are displayed overlapping each other. This makes window processing difficult.

そこてサイトグラム上に各群か広かりで現われるように
、光透過度と共に粒子径も異なるラテックス粒子を選択
する。第5図は前方散乱光強度(FS)が小さく、側方
散乱光強度(SS)は大きな出力の出るラテックス粒子
によるもの、第6図はFSか太きくSSも大きいラテツ
ク7、粒子、第7図はFSか太きくSSは小さいラテッ
クス粒子によるものである。このような組合わせの3種
類のラテックス粒子を選択することによって、得られる
サイトダラムは第9図のように各群か広く分離され、ウ
ィンドウ処理のしやすいヅイトグラムを得ることができ
る。
Therefore, latex particles with different light transmittances and particle sizes are selected so that each group appears broadly on the cytogram. Figure 5 shows that the forward scattered light intensity (FS) is small and the side scattered light intensity (SS) is caused by latex particles that produce a large output. In the figure, FS is thick and SS is small latex particles. By selecting three types of latex particles in such a combination, the resulting cytodarams are widely separated into groups as shown in FIG. 9, and a zutogram that is easy to perform window processing can be obtained.

なお本実施例においては3種類の光透過度の異なるラテ
ックス粒子を用いたか、4種類以上を同時に測定するこ
とも可能であるし、また2種類であれは一層明確に区別
することかてきる。
In this example, three types of latex particles having different light transmittances were used, or four or more types could be measured simultaneously, or two types could be distinguished more clearly.

なお本実施例ではラテックス杓子に抗体を感作させたか
、これとは逆にラテックス粒子に抗原を感作させて抗体
を含む被検試料を加えて検査することによって、特定の
抗体の識別をすることも可能である。
In this example, a specific antibody is identified by sensitizing a latex ladle with an antibody or, conversely, by sensitizing a latex particle with an antigen and adding a test sample containing the antibody for testing. It is also possible.

[発明の効果] 以上本発明によれは、同時に複数種の抗原抗体反応を識
別することか可能であり、タイ1−クラム上て各抗原抗
体反応かはっきりと分離されて現われるため、ウィンド
つ処理かしやずく測定)l’+度の高い粒子解析が可能
となる。
[Effects of the Invention] As described above, according to the present invention, it is possible to identify multiple types of antigen-antibody reactions at the same time, and each antigen-antibody reaction appears clearly separated on a tie-breaker. (Kashiyazuku measurement) Particle analysis with high l'+ degree is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成図、第2図ないし第9図
は散乱光測定データの分111図である。 1・・・レーザ光源、2.3・・・シリンドリカルレン
ズ、4・・フローセル、5.7・・・集光レンズ、6.
11.12.13・・・光検出器、8.9・・・タイク
ロイックミラー、10・・・全反射ミラー、14・・・
シース液容器、15・・ザンブル液容器、16・・演算
回路 2                      〉第
30
FIG. 1 is a block diagram of an embodiment of the present invention, and FIGS. 2 to 9 are 111 diagrams of scattered light measurement data. 1... Laser light source, 2.3... Cylindrical lens, 4... Flow cell, 5.7... Condensing lens, 6.
11.12.13...Photodetector, 8.9...Tichroic mirror, 10...Total reflection mirror, 14...
Sheath liquid container, 15...Zambre liquid container, 16...Arithmetic circuit 2〉No. 30

Claims (1)

【特許請求の範囲】 1 第1の抗体又は抗原が支持され第1の光学特性を備
える同一粒子径の第1の担体粒子と、第2の抗体又は抗
原が支持され第2の光学特性を備える同一粒子径の第2
の担体粒子とを被検試料と混合させ、前記担体粒子を検
査位置に順次流し、該検査位置に流される前記担体粒子
に光を照射し、前記担体粒子から第1の方向と第2の方
向へ散乱される光を各々測光し、該測光される第1、第
2の光の強度により前記担体粒子の凝集状態及び粒子種
類を検知し、前記被検試料内の抗原又は抗体を検査する
検体検査方法において、 前記第1の担体粒子と前記第2の担体粒子のそれぞれの
粒子径及び光学特性の組み合わせが前記凝集状態及び粒
子種類の検知の際、明確に区別されるような組合わせで
あることを特徴とする検体検査方法。
[Scope of Claims] 1. A first carrier particle having the same particle diameter that supports a first antibody or antigen and has a first optical property, and a second carrier particle that supports a second antibody or antigen and has a second optical property. A second particle of the same particle size
The carrier particles are mixed with a test sample, the carrier particles are sequentially flowed to a test position, the carrier particles flowed to the test position are irradiated with light, and the carrier particles are mixed with a test sample in a first direction and a second direction. A sample for which the antigen or antibody in the test sample is tested by photometrically measuring the light scattered by each of the carrier particles and detecting the aggregation state and particle type of the carrier particles based on the intensity of the measured first and second lights. In the inspection method, the combination of particle diameters and optical properties of the first carrier particles and the second carrier particles is such that the aggregation state and particle type can be clearly distinguished when detecting the aggregation state and particle type. A specimen testing method characterized by:
JP63100571A 1988-02-15 1988-04-22 Specimen test method Expired - Fee Related JPH0731114B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63100571A JPH0731114B2 (en) 1988-04-22 1988-04-22 Specimen test method
FR8901885A FR2627286B1 (en) 1988-02-15 1989-02-14 METHOD AND APPARATUS FOR EXAMINING A SAMPLE IN IMMUNOLOGY
US07/563,853 US5162863A (en) 1988-02-15 1990-08-08 Method and apparatus for inspecting a specimen by optical detection of antibody/antigen sensitized carriers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63100571A JPH0731114B2 (en) 1988-04-22 1988-04-22 Specimen test method

Publications (2)

Publication Number Publication Date
JPH01270643A true JPH01270643A (en) 1989-10-27
JPH0731114B2 JPH0731114B2 (en) 1995-04-10

Family

ID=14277594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63100571A Expired - Fee Related JPH0731114B2 (en) 1988-02-15 1988-04-22 Specimen test method

Country Status (1)

Country Link
JP (1) JPH0731114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191090A1 (en) * 2012-06-21 2013-12-27 シャープ株式会社 Microchip, and analytical apparatus using microchip

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616872A (en) * 1979-07-13 1981-02-18 Ortho Diagnostics Automatized identification and counting method of and apparatus for subclass of specified blood cell
JPS6281567A (en) * 1985-10-07 1987-04-15 Showa Denko Kk Quantification method using particle agglutination reaction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616872A (en) * 1979-07-13 1981-02-18 Ortho Diagnostics Automatized identification and counting method of and apparatus for subclass of specified blood cell
JPS6281567A (en) * 1985-10-07 1987-04-15 Showa Denko Kk Quantification method using particle agglutination reaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191090A1 (en) * 2012-06-21 2013-12-27 シャープ株式会社 Microchip, and analytical apparatus using microchip

Also Published As

Publication number Publication date
JPH0731114B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US5162863A (en) Method and apparatus for inspecting a specimen by optical detection of antibody/antigen sensitized carriers
EP0175545B1 (en) Measuring intensity fluctuations and determining an analyte thereby
JP4201058B2 (en) Method for characterizing samples based on intermediate statistical data
JPH0565822B2 (en)
JPH0754324B2 (en) Test agent for measuring antigen and / or antibody in liquid sample
JPH0447265B2 (en)
JPH04337446A (en) Method and device for measuring fine grain and constant quantity method
JPS60501228A (en) Analysis method for immunoreactive substances, etc.
JP2675895B2 (en) Sample processing method, sample measuring method, and sample measuring device
JPH03154850A (en) Specimen inspecting device
JPH0486546A (en) Specimen inspection device
JPS6281567A (en) Quantification method using particle agglutination reaction
US20030013083A1 (en) Particle analysis as a detection system for particle-enhanced assays
JPH03272466A (en) Multiple immunologocal evaluating analyzing system
JPH01270643A (en) Method for examination of specimen
JPH01207663A (en) Method and instrument for sample inspection
JPH0783819A (en) Particle measuring apparatus
EP0433629B1 (en) A method for the qualitative and quantitative determination of antibodies against bacterial antigens by means of the photometric measurement of agglutination
JPH04127061A (en) Immunoassay due to fluorescent minute particles
JPH03274462A (en) Apparatus and reagent for examining specimen
JPS61290362A (en) Measurement of fine particle size
JPH03216553A (en) Method and apparatus for immunoassay due to particles
JPS6281566A (en) Quantification method by measurement of fluorescent intensity of fine particle
JPH01313737A (en) Inspection device for body to be inspected
JPH02138851A (en) Particle measuring apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees