JPH03216553A - Method and apparatus for immunoassay due to particles - Google Patents

Method and apparatus for immunoassay due to particles

Info

Publication number
JPH03216553A
JPH03216553A JP1060890A JP1060890A JPH03216553A JP H03216553 A JPH03216553 A JP H03216553A JP 1060890 A JP1060890 A JP 1060890A JP 1060890 A JP1060890 A JP 1060890A JP H03216553 A JPH03216553 A JP H03216553A
Authority
JP
Japan
Prior art keywords
fine particles
particles
measured
image
microparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1060890A
Other languages
Japanese (ja)
Inventor
Satoshi Takahashi
智 高橋
Kazunobu Okano
和宣 岡野
Kenji Yasuda
健二 保田
Daizo Tokinaga
時永 大三
Kazunari Imai
一成 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1060890A priority Critical patent/JPH03216553A/en
Priority to DE19904036288 priority patent/DE4036288A1/en
Publication of JPH03216553A publication Critical patent/JPH03216553A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure many items with high sensitivity by bringing a reaction container, a specimen to be measured and fine particles into contact with each other to bond the fine particles of different kinds corresponding to the kinds of substances to be measured and measuring the kinds of the fine particles and the number thereof. CONSTITUTION:A reaction container 1 to which substances 2, 3 specifically bondable to substances 4, 5 to be measured are fixed, a plurality of the substances 4, 5 to be measured in a specimen to be measured and the substances 6, 8 specifically bondable to the substances 4, 5 to be measured fixed to fine particles 7, 9 are brought to a contact state to be bonded. Next, a reaction container 17 having fine particles 18 caught thereby is placed on the stage of a fluorescence microscope 10 and a filter converting apparatus 13 is set to observe the fluorescence microscopic image of the fine particles 18 by a TV camera 11 and this image is processed by an image processor 12 to compare the fluorescence intensities of all of the fine particles 18 in the image and the kind of the fine particles 18 is discriminated to count the total number of the fine particles and concn. is calculated from the number of the fine particles on the basis of a calculation curve preliminarily prepared from a specimen of known concn. By this method, many items can be measured and the concn. of an antigen can be quantified with high sensitivity.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は,微粒子を用いた免疫測定方法およびその装置
に関するものである。
The present invention relates to an immunoassay method using microparticles and an apparatus therefor.

【従来の技術1 微粒子を使用した免疫測定方法として、表面に抗体を結
合させたラテックス粒子と抗原とを反応させ、抗原抗体
反応によって生成するラテックス粒子の凝集状態を吸光
度または散乱光強度により測定して抗原濃度を測定する
方法が知られている(ぶんせき,16, 605(19
87))。しかし,ラテックス粒子の凝集状態は一定で
はなく分布を持つため、反応液全体の平均値を測定する
これらの方法では、抗原濃度の算出に精度的な問題があ
り、極低濃度の抗原量の定量等が困難であった6 そこで、反応液をフローセルに導いて、セル内を流れる
微粒子の散乱光または蛍光強度を測定する方法が開発さ
れた(検査と技術, 16, 607(1988)、特
開昭62−81567、ジャーナルオブイムノロジカル
メソッズ (J. I+*munol. Method
s) , 18. 33(1977))。この方法によ
れば、個々の凝集塊の大きさを計測することができるこ
とから、抗原濃度の算出精度を向上させることができる
。また、蛍光微粒子を用いて抗原抗体反応を起こさせ、
その凝集像を画像処理することにより凝集状態を解析し
抗原濃度を算定する方法もある(特開昭64−3537
3) .上記従来方法は,ホモジニアス系でラテックス
粒子表面の抗体(または抗原)と抗原(または抗体)と
が反応して凝集をおこすことを利用している.そのため
、抗原過剰領域で抗原抗体反応が抑制される現象、いわ
ゆるブロゾーン現象が避けられない。また、試料中に共
存する散乱体や、色素等の吸収体・蛍光体の影響を完全
に除去することは困難である.さらに、抗原と抗体とが
1対1に結合するとは限らないため、凝集塊の数を計数
する従来方式では特に極低濃度領域での計数値の誤差が
発生しやすいという問題がある。 プロゾーン現象や共存物質の影響を受けない方法として
,特開昭56−151357のようなヘテロジニアス系
の反応がある,しかし、この方法では簡便性・多項目測
定が可能になるが、高感度化に対する配慮がなされてい
ない。 【発明が解決しようとする課題】 本発明の目的は、上記従来技術の問題点を解決し、微粒
子を利用した高感度で多項目測定ができる免疫測定方法
およびその装置を提供することにある。
[Prior art 1] As an immunoassay method using microparticles, latex particles having antibodies bound to their surfaces are reacted with an antigen, and the aggregation state of the latex particles generated by the antigen-antibody reaction is measured by absorbance or scattered light intensity. A method for measuring antigen concentration is known (Bunseki, 16, 605 (19
87)). However, since the aggregation state of latex particles is not constant but has a distribution, these methods, which measure the average value of the entire reaction solution, have accuracy problems in calculating the antigen concentration, making it difficult to quantify the amount of antigen at extremely low concentrations. 6 Therefore, a method was developed in which the reaction solution was introduced into a flow cell and the scattered light or fluorescence intensity of the particles flowing inside the cell was measured (Inspection and Technology, 16, 607 (1988), JP-A No. 1986-81567, Journal of Immunological Methods (J. I++ munol. Method
s), 18. 33 (1977)). According to this method, since the size of each aggregate can be measured, the accuracy of calculating the antigen concentration can be improved. In addition, fluorescent particles are used to cause antigen-antibody reactions,
There is also a method of analyzing the agglutination state by image processing the agglutination image and calculating the antigen concentration (Japanese Patent Application Laid-Open No. 64-3537
3). The conventional method described above uses a homogeneous system in which antibodies (or antigens) on the surface of latex particles react with antigens (or antibodies) to cause agglutination. Therefore, the so-called brozone phenomenon, in which the antigen-antibody reaction is suppressed in the antigen-excess region, cannot be avoided. Furthermore, it is difficult to completely eliminate the effects of scatterers, absorbers, and fluorescent substances such as dyes that coexist in the sample. Furthermore, since antigens and antibodies do not necessarily bind one-to-one, the conventional method of counting the number of aggregates has the problem that errors in counts are likely to occur, especially in extremely low concentration regions. As a method that is not affected by the prozone phenomenon or coexisting substances, there is a heterogeneous reaction method such as that disclosed in JP-A-56-151357.However, although this method is simple and allows multi-item measurement, it has high sensitivity. No consideration has been given to the OBJECTS OF THE INVENTION An object of the present invention is to solve the problems of the above-mentioned conventional techniques and to provide an immunoassay method and an apparatus thereof that can perform multi-item measurements with high sensitivity using microparticles.

【課題を解決するための手段】[Means to solve the problem]

上記目的は,測定試料中の複数の被測定物質のそれぞれ
と特異的に結合する物質を固定化した反応容器と、該被
測定物質のそれぞれと特異的に結合する物質をそれぞれ
固定化した複数の異なる種類の微粒子を使用し、反応容
器に固定化した被測定物質と特異的に結合する物質と,
測定試料中の被測定物質と,微粒子に固定化した被測定
物質と特異的に結合する物質とを接触させて結合させる
ことにより、微粒子を反応容器に捕捉し、異なる種類ご
との微粒子数を計数することにより達成できる6 微粒子を複数の種類に区別するには、蛍光性の微粒子を
使用し、粒径の異なる微粒子、または/および蛍光波長
の異なる微粒子を使用することによって達成できる。例
えば、直径が0.5μmと0.8μmの緑色蛍光を発す
る蛍光微粒子と、直径が0.5μmと0.8μmの赤色
蛍光を発する蛍光微粒子を使用し、個々の微粒子につい
て、その大きさと、緑色蛍光と赤色蛍光の強度比を計測
することで,4種類に微粒子を分類することができる.
また、蛍光を発しない微粒子を組合せても多種類に分類
可能である.例えば、直径が0.5μmと0.8μmの
非蛍光の微粒子と、直径が0.5μmと0.8μmの緑
色蛍光を発する蛍光微粒子を使用し,個々の微粒子につ
いて,その大きさと、緑色蛍光の強度を計測することで
、4種類に微粒子を分類することができる。 反応容器に捕捉した微粒子の種類と数を計測するには、
微粒子の像を画像化し、画像処理することで達成するこ
とができ,顕微鏡、画像入力装置(TVカメラ等)、お
よび画像処理装置からなる装置によって達成できる.ま
ず、画像入力装置により得られた画像をもとに,個々の
微粒子の大きさを測定する.次に、目的の蛍光を検出す
るためのフィルター(例えば干渉フィルター)を通して
各微粒子の蛍光を識別する。このようにして粒径と蛍光
の違いにより複数の微粒子群に分類し、各分類毎の微粒
子数を計数する。 反応容器に捕捉した微粒子の種類と数を計測する別の方
法には、フローサイトメータを使用する方法がある。反
応容器に捕捉された微粒子の結合をはずして反応容器か
ら脱離させ,フローサイトメータで微粒子の大きさと蛍
光強度等を測定し、微粒子の種類毎の微粒子数を計数す
る。反応容器に捕捉された微粒子の結合をはずすには、
機械的な方法として,振動を与える方法やへら等で削り
採る方法、化学的な方法として,尿素等で抗体等を変性
させ解離させる方法がある。 測定試料中の被測定物質および被測定物質と特異的に結
合する物質の組合せとしては、抗原(または抗体)と抗
体(または抗原)が代表的な組合せである。その他にも
、例えばホルモンとレセプター,糖とレクチン等の組合
せ等が可能である。 計数される粒子としては、ポリスチレン,アクリル、ス
チレンーブタジエン共重合体、スチレンーアクリル酸共
重合体等の比重が1〜1.4程度の材質の粒子が適当で
ある。比重が1〜1.4程度の粒子のとき、反応が効果
的に行われる。またその粒径は,5μm以下、特に0.
1〜1μmの範囲が適当である.この粒子の表面に抗体
(または抗原)等を結合させるには、通常知られている
物理吸着、化学結合等が利用できる。 本発明によりヒトα−フェトブロテイン(AFP)、癌
胎児性抗原(CEA).フェリチン、風疹抗体、エイズ
ウィルス抗体、ヒト絨毛性ゴナドトロビン(HCG)等
種々の抗原,抗体、ホルモン等が測定できる。
The above purpose is to provide a reaction vessel in which a substance that specifically binds to each of a plurality of analyte substances in a measurement sample is immobilized, and a plurality of reaction vessels in which a substance that specifically binds to each of the analyte substances in a measurement sample is immobilized. A substance that specifically binds to the analyte immobilized in a reaction container using different types of fine particles;
By bringing the analyte in the measurement sample into contact with a substance that specifically binds to the analyte immobilized on the microparticles, the particles are captured in a reaction container and the number of different types of microparticles is counted. Discrimination of fine particles into multiple types can be achieved by using fluorescent fine particles, and by using fine particles with different particle sizes and/or fine particles with different fluorescence wavelengths. For example, we use fluorescent fine particles with diameters of 0.5 μm and 0.8 μm that emit green fluorescence, and fluorescent fine particles with diameters of 0.5 μm and 0.8 μm that emit red fluorescence. By measuring the intensity ratio of fluorescence and red fluorescence, particles can be classified into four types.
Furthermore, it is possible to classify many types of particles by combining particles that do not emit fluorescence. For example, we use non-fluorescent fine particles with diameters of 0.5 μm and 0.8 μm and fluorescent fine particles that emit green fluorescence with diameters of 0.5 μm and 0.8 μm. By measuring the intensity, fine particles can be classified into four types. To measure the type and number of particles trapped in the reaction vessel,
This can be achieved by creating an image of the particles and performing image processing, and can be achieved using a device consisting of a microscope, an image input device (such as a TV camera), and an image processing device. First, the size of each particle is measured based on the image obtained by the image input device. Next, the fluorescence of each particle is identified through a filter (for example, an interference filter) for detecting the target fluorescence. In this way, particles are classified into a plurality of groups based on differences in particle size and fluorescence, and the number of particles in each classification is counted. Another method for measuring the type and number of particles trapped in a reaction vessel is to use a flow cytometer. The particles captured in the reaction vessel are unbound and released from the reaction vessel, and the size and fluorescence intensity of the particles are measured using a flow cytometer, and the number of particles for each type of particle is counted. To unbind particles trapped in the reaction vessel,
Mechanical methods include applying vibration or scraping with a spatula, and chemical methods include denaturing and dissociating antibodies with urea or the like. A typical combination of a substance to be measured in a measurement sample and a substance that specifically binds to the substance to be measured is an antigen (or antibody) and an antibody (or antigen). Other possible combinations include, for example, combinations of hormones and receptors, sugars and lectins, etc. Suitable particles to be counted are particles of a material having a specific gravity of about 1 to 1.4, such as polystyrene, acrylic, styrene-butadiene copolymer, styrene-acrylic acid copolymer, or the like. The reaction is effectively carried out when the particles have a specific gravity of about 1 to 1.4. Moreover, the particle size is 5 μm or less, especially 0.5 μm or less.
A range of 1 to 1 μm is appropriate. In order to bind antibodies (or antigens) etc. to the surface of these particles, commonly known physical adsorption, chemical bonding, etc. can be used. According to the present invention, human α-fetobrotein (AFP), carcinoembryonic antigen (CEA). Various antigens, antibodies, hormones, etc. such as ferritin, rubella antibodies, AIDS virus antibodies, and human chorionic gonadotrobin (HCG) can be measured.

【作用] 本発明によれば、複数の被測定物質のそれぞれに異なっ
た種類の微粒子が結合するため、同一容器内で多種類の
被測定物質を計測でき、多項目化が達成できる。さらに
、被測定物質の1個に対して1個の微粒子が結合するこ
とから、高感度に被測定物質を計測することができる。 【実施例l 以下、本発明の実施例を、AFPとCEAの2つの抗原
を例にとり、多項目計測方法について説明する。 [実施例1] (固定化抗体の調製) マイクロプレートのウェルを反応容器とし、内面にAF
PとCEAに対する抗体を固定化する。平底のマイクロ
プレートのウェルに濃度10μg / m Qの抗ヒト
AFP抗体溶液25μQと濃度10μg/mQの抗CE
A抗体溶液25μQを注入し、2時間間欠的に攪拌し、
反応させて抗ヒトAFP抗体および抗CEA抗体をウェ
ルに固定化する。(微粒子標識抗体の調製) 表面にカルボキシル基を有する蛍光性のラテックス微粒
子を標識物として使用する。直径が0.5μmで、54
0nmの最大蛍光波長を有する微粒子の表面に,カルボ
ジイミド法により,抗ヒトAFP抗体を固定化し(固定
化量約0.7mg/g).微粒子標識抗ヒトAFP抗体
を調製する。さらに、直径が0.5μmで、580nm
の最大蛍光波長を有する微粒子の表面に、カルボジイミ
ド法により,抗CEA抗体を固定化し(固定化量約0.
7mg/g).微粒子標識抗CEA抗体を調製する。 (反応手順) AFPとCE’Aを含む試料血清50μQを抗ヒトAF
P抗体と抗CEA抗体を固定化した反応容器(ウェル)
に注入して、2時間反応させ,測定抗原(A F Pお
よびCEA)を反応容器(ウエル)に捕捉する。その後
、0.5%BSAを含むりん酸緩衝液(0.5%BSA
−PBS)で洗浄し,反応しなかった抗原等を除去する
. 次に、微粒子濃度が0.5%になるように調製した微粒
子標識抗ヒトAFP抗体溶液60μQおよび微粒子標識
抗CEA抗体溶液60μΩを注入し、5時間静置して反
応させ、反応容器(ウエル)に捕捉したヒトAFPおよ
びCEAに微粒子標識抗体を結合させる.次に、0.5
%BSA−PBSで静かに洗浄し、余分の微粒子標識抗
体を除去する.このときの抗原と微粒子標識抗体の結合
状態は、第1図のような模式図で表すことができる.反
応容器(ウェル)1上に固定化された抗ヒトAFP抗体
2と抗CEA抗体3に試料血清中のヒトAFP4とCE
A5が抗原抗体反応により結合する.さらにヒトAFP
4には,抗ヒトAFP抗体6を介して0.5μm径で5
40nmに蛍光ピークを有する微粒子7が結合する.ま
たCEA5には、抗CEA抗体8を介して0.5μm径
で580nmに蛍光ピークを有する微粒子9が結合する
。 第2図に平底のマイクロプレートのウェルに捕捉した微
粒子の径と数を計測する装置の概略図を示す。 装置は、(倒立型の)蛍光顕微鏡10,顕微鏡を読み取
るTVカメラ11,像を解析する画像処理装置12、蛍
光顕微鏡の蛍光検出用フィルタを測定対象に応じて切り
替えるフィルタ変換装111 3.画像処理装1112
とフィルタ変換装置13等を制御するコントローラー1
4、画像を出力するモニターテレビ15、処理結果を出
力する出力装置16とで構成される. 微粒子の捕捉されたマイクロプレートのウェル17を蛍
光顕微鏡10のステージに載せ、ウェル17内の微粒子
18の蛍光顕微鏡像をTVカメラ11で観察し,画像処
理して粒子の種類を識別する。 まず,540nmの蛍光を発する顕微鏡像を測定する。 フィルタ変換装置l3で.540nmの光を透過し、そ
れ以外の光を遮断する干渉フィルターを顕微鏡にセット
する.そのときの像をTVカメラ11で検出し、像の強
度を8ビットにディジタル化して画像処理装1i12の
画像メモリに蓄積する.なお、この操作を64フレーム
行い、蛍光像のS/Nを良くした.この画像より、蛍光
極大値を示す画素の位置とその部分の強度を計算する.
蛍光極大値を示す画素の位置は微粒子の存在位置を示し
,強度はその粒子がどちらの種類の微粒子群に属するか
を判断する指標となる。 次に,同様に580nmの蛍光の顕微鏡像を測定する.
フィルタ変換装置13で.580nmの光を透過し,そ
れ以外の光を遮断する干渉フィルターを顕微鏡にセット
する6そのときの像をTVカメラ11で検出し、像の強
度を8ビットにディジタル化して画像処理装匝12の画
像メモリに蓄積する。上記と同様にこの操作を64フレ
ーム行い、蛍光像のS/Nを良くした。この画像より、
蛍光極大値を示す画素の位置とその部分の強度を計算す
る。 以上より、微粒子の存在位置における540nmの蛍光
強度と580nmの蛍光強度を比較することで、その微
粒子がどちらの微粒子群に属するかが判断できる.例え
ば、580nmの蛍光強度のほうが強い場合は、その微
粒子には抗CEA抗体が結合しており、抗原CEAを検
出していると判断できる。 画像内の全ての微粒子について比較を行い、ヒトAFP
およびCEAに対する各微粒子の総数を計数する。 本方法によりヒトAFPまたはCEA濃度を定量するに
は、あらかじめ濃度が既知の試料で検量線をつくり、そ
れぞれの粒子数から濃度を算定すればよい。 [実施例2] 標識用微粒子として,表面にカルボキシル基を有し,直
径が0.5μmと0.75μmで,i&大蛍光波長がど
ちらも540nmである二種類のラテックス微粒子を使
用する。 抗ヒトAFP抗体をカルボジイミド法により、直径が0
・5μmの微粒子の表面に固定化する(固定化量約0.
7mg/g).さらに、抗CEA抗体をカルボジイミド
法により、直径が0.75μmの微粒子の表面に固定化
する(固定化量約0.7mg/g)・ 実施例1と同じように、マイクロプレートのウェルに抗
ヒトAFP抗体および抗CEA抗体を固定化し、試料,
ついで微粒子標識抗体溶液を反応させ,ウェルに捕捉し
たヒトAFPおよびCEAに微粒子標識抗体を結合させ
る。 微粒子の計測は、実施例1と同じ装!(第2図)で行う
.まず、フィルタ変換装!!13で、540nmの光を
透過し、それ以外の光を遮断する干渉フィルターを顕微
鏡にセットする.そのときの像をTVカメラ11で検出
し、像の強度を8ビットにディジタル化して画像処理装
置12の画像メモリに蓄積する。なお、この操作を64
フレーム行い、蛍光像のS/Nを良くした。この画像よ
り、蛍光極大値を示す画素の位置つまり微粒子の位置と
その部分の強度を求める。 第3図は. I!I定された粒子のヒストグラム(蛍光
強度に対する数量)である。蛍光強度と微粒子の径は相
関することから、ヒストグラムは2つの分布を示す。蛍
光強度の小さい方が,抗ヒトAFP抗体を固定化した0
.5μm径の微粒子であり、蛍光強度の大きい方が,抗
CEA抗体を固定化した0.75μm径の微粒子である
。ヒストグラムより、0.5μm径と0.75μm径の
微粒子の総数を計数することでヒトAFPまたはCEA
濃度を算定することができる。 実施例1と同様に、ヒトAFPまたはCEA濃度を定量
するには、あらかじめ濃度が既知の試料で検量線をつく
り、それぞれの粒子数から濃度を算定すればよい。 [実施例3] 標識用微粒子として、表面にカルボキシル基を有し、直
径が0.5μmで蛍光性(最大蛍光波長が54 0 n
 m)のラテックス微粒子と、直径が同じ0.5μmで
非蛍光性のラテックス微粒子を使用する。 抗ヒトAFP抗体をカルボジイミド法により、蛍光性の
微粒子の表面に固定化する(固定化量約O.7mg/g
)。さらに,抗CEA抗体をカルボジイミド法により、
非蛍光性の微粒子の表面に固定化する(固定化量約Q.
7mg/g)− 実施例1と同じように、マイクロプレートのウエルに抗
ヒトAFP抗体および抗CEA抗体をウエルに固定化し
、試料、ついで微粒子標識抗体溶液を反応させ,ウェル
に捕捉したヒトAFPおよびCEAに微粒子標識抗体を
結合させる. 微粒子の計測は、実施例1と同じ装1i(第2図)で行
う。 まず、透過光でウェル内の粒子像をtR察する.TVカ
メラ11で検出している像を8ビットにデイジタル化し
て、画像処理装!12の画像メモリに蓄積する。この操
作を64フレーム行い、像のS/Nを良くする。得られ
た画像データから微粒子を識別する.径が0.4μm〜
0.6μmの範囲の像を微粒子として認識し、その総数
を測定する。なお、0.4μmより小さいものおよび0
.6μmより大きいものは、ゴミ等と判断して計数から
除外した。測定された微粒子の総数は蛍光性および非蛍
光性の微粒子の総数となる。 次に、フィルタ変換装置13で.540nmの光を透過
し、それ以外の光を遮断する干渉フィルターを顕微鏡に
セットする。そのときの蛍光像をTV力メラ11で検出
し、像の強度を8ビットにデイジタル化して画像処理装
置12の画像メモリに蓄積する。 なお,この操作を64フレーム行い、蛍光像のS/Nを
良くした。この画像より,蛍光を発している微粒子の総
数を計算する。蛍光を発している微粒子はヒトAFPに
結合していると考えられ、この微粒子の総数がヒトAF
P濃度に対応する。さらに透過光で測定し計数した微粒
子の総数から蛍光を発している微粒子の総数を差し引く
ことで、CEA濃度に対応した微粒子数を計算すること
ができる。 実施例1と同様に、ヒトAFPまたはCEA濃度を定量
するには、あらかじめ濃度が既知の試料で検量線をつく
り、それぞれの粒子数から濃度を算定すればよい。 [実施例4] 標識用微粒子として、表面にカルボキシル基を有し,直
径が0.5μmと0.75μmで、最大蛍光波長がどち
らも540nmである二種類のラテックス微粒子を使用
する. 実施例2と同じようにして試薬等を調製する.抗ヒトA
FP抗体をカルボジイミド法により、0.5μm径の微
粒子の表面に固定化し(固定化量約0.7mg/g)、
抗CEA抗体をカルボジイミド法により、0.75μm
径の微粒子の表面に固定化する(固定化量約0.7mg
/g)−さらに,マイクロプレートのウェルに抗ヒトA
FP抗体および抗CEA抗体を固定化し、試料、ついで
微粒子標識抗体溶液を反応させ、ウェルに捕捉したヒト
AFPおよびCEAに微粒子標識抗体を結合させる.ウ
ェルに捕捉した微粒子は、フローサイトメータで計測す
る。そこで,微粒子の結合している反応容器に濃度8M
の尿素0.2mlを注入して微粒子の結合をはがし、微
粒子懸濁液を得る.この微粒子懸濁液をフローサイトメ
ータで解析する.散乱光強度と蛍光強度を同時に測定す
ることで、微粒子の有無、微粒子の大きさ、および微粒
子が蛍光性か非蛍光性かを識別する。散乱光強度より計
算された微粒子径が0.3μm相当以下のものは、ゴミ
等の可能性が高く、計数から除外した。本実施例で使用
した標識用の微粒子は蛍光性の微粒子で、大きさが0.
5μm径と0.75μm径であるため、微粒子の種類の
判別はその蛍光強度の大きさで行う。フローサイトメー
タで検出した微粒子の蛍光強度に対する数量を示すヒス
トグラムは、第3図とほぼ同様になる.ヒストグラムは
2つの分布を示す。蛍光強度の小さい方が、抗ヒトAF
P抗体を固定化した0.5μm径の微粒子であり、蛍光
強度の大きい方が、抗CEA抗体を固定化した0.75
μm径の微粒子である。 ヒストグラムより、0.5μm径と0.75μm径の微
粒子の総数を計数することでヒトAFPまたはCEA濃
度を算定することができる。 実施例2と同様に、ヒトAFPまたはCEA濃度を定量
するには、あらかじめ濃度が既知の試料で検量線をつく
り、それぞれの粒子数から濃度を算定すればよい. なお,実施例1ないし実施例4での微粒子橿識抗体溶液
の微粒子の濃度は、0.01%から5%程度が適当であ
る.比重のやや大きいアクリル系等の微粒子を使用した
場合は、その微粒子濃度は、0.01%から1%程度が
適当となる.その他の微粒子についても,微粒子濃度は
微粒子の比重の大きさや粒径等によって決定される。 本実施例によれば、測定抗原と標識物である微粒子との
結合比率が一定となるため、精度が高く、高感度な定量
が可能になる.また,抗原過剰領域で抗原抗体反応が抑
制される現象、いわゆるプロゾーン現象が生じないため
、高濃度の抗原濃度域での定量も可能である. 【発明の効果】 本発明によれば,被測定物質の種類に応じて異なる種類
の微粒子を結合させることにより、多項目計測が可能に
なる。また、抗原抗体反応等の特異的な反応により、測
定抗原等の被測定物質量の個々に対して微粒子を結合さ
せることができることから、高感度に抗原濃度を定量で
きる。
[Function] According to the present invention, since different types of fine particles are bonded to each of a plurality of substances to be measured, many types of substances to be measured can be measured in the same container, and multi-item measurement can be achieved. Furthermore, since one fine particle is bound to one substance to be measured, the substance to be measured can be measured with high sensitivity. [Example 1] Hereinafter, a multi-item measurement method will be described as an example of the present invention, taking two antigens, AFP and CEA, as examples. [Example 1] (Preparation of immobilized antibody) A well of a microplate was used as a reaction container, and AF was placed on the inner surface.
Immobilize antibodies against P and CEA. Add 25 μQ of anti-human AFP antibody solution at a concentration of 10 μg/mQ and anti-CE at a concentration of 10 μg/mQ to the wells of a flat-bottomed microplate.
Inject 25 μQ of A antibody solution and stir intermittently for 2 hours.
The anti-human AFP antibody and anti-CEA antibody are immobilized in the wells by reaction. (Preparation of particle-labeled antibody) Fluorescent latex particles having a carboxyl group on the surface are used as a label. The diameter is 0.5μm, 54
An anti-human AFP antibody was immobilized on the surface of microparticles having a maximum fluorescence wavelength of 0 nm by the carbodiimide method (immobilized amount: approximately 0.7 mg/g). Prepare particulate-labeled anti-human AFP antibody. Furthermore, the diameter is 0.5 μm and 580 nm.
An anti-CEA antibody was immobilized by the carbodiimide method on the surface of microparticles having a maximum fluorescence wavelength of approximately 0.
7mg/g). Prepare particulate-labeled anti-CEA antibody. (Reaction procedure) 50 μQ of sample serum containing AFP and CE'A was added to anti-human AF.
Reaction container (well) with immobilized P antibody and anti-CEA antibody
The antigens to be measured (A F P and CEA) are captured in the reaction vessels (wells) by injecting them into the reaction vessel (well) and reacting for 2 hours. Then, phosphate buffer containing 0.5% BSA (0.5% BSA
-PBS) to remove unreacted antigens, etc. Next, 60 μQ of a particle-labeled anti-human AFP antibody solution and 60 μΩ of a particle-labeled anti-CEA antibody solution prepared so that the particle concentration was 0.5% were injected, and left to react for 5 hours. A particle-labeled antibody is bound to human AFP and CEA captured by Next, 0.5
% BSA-PBS to remove excess particulate-labeled antibody. The state of binding between the antigen and the particle-labeled antibody at this time can be represented schematically as shown in Figure 1. Human AFP4 and CE in the sample serum are added to anti-human AFP antibody 2 and anti-CEA antibody 3 immobilized on reaction container (well) 1.
A5 binds through an antigen-antibody reaction. Furthermore, human AFP
4, 5 μm in diameter via anti-human AFP antibody 6.
Fine particles 7 having a fluorescence peak at 40 nm are bound. Furthermore, fine particles 9 having a diameter of 0.5 μm and a fluorescence peak at 580 nm are bound to CEA 5 via anti-CEA antibody 8 . FIG. 2 shows a schematic diagram of an apparatus for measuring the diameter and number of microparticles captured in the wells of a flat-bottomed microplate. The device includes an (inverted) fluorescence microscope 10, a TV camera 11 that reads the microscope, an image processing device 12 that analyzes images, and a filter conversion device 111 that switches the fluorescence detection filter of the fluorescence microscope depending on the measurement target.3. Image processing device 1112
and a controller 1 that controls the filter conversion device 13 and the like.
4. Consists of a monitor television 15 that outputs images, and an output device 16 that outputs processing results. The well 17 of the microplate in which the particles have been captured is placed on the stage of the fluorescence microscope 10, and the fluorescence microscope image of the particles 18 in the well 17 is observed with the TV camera 11, and the type of particle is identified by image processing. First, a microscope image emitting fluorescence at 540 nm is measured. With filter conversion device l3. Set an interference filter on the microscope that transmits 540 nm light and blocks other light. The image at that time is detected by the TV camera 11, and the intensity of the image is digitized into 8 bits and stored in the image memory of the image processing device 1i12. This operation was performed for 64 frames to improve the S/N of the fluorescent image. From this image, calculate the position of the pixel that shows the maximum fluorescence value and the intensity of that part.
The position of the pixel showing the maximum fluorescence value indicates the location of the particle, and the intensity is an index for determining which type of particle group the particle belongs to. Next, measure the fluorescence microscopic image at 580 nm in the same way.
In the filter conversion device 13. An interference filter that transmits 580 nm light and blocks other light is set on the microscope.6 The image at that time is detected by the TV camera 11, and the intensity of the image is digitized into 8 bits and sent to the image processing unit 12. Store in image memory. This operation was performed for 64 frames in the same manner as above to improve the S/N of the fluorescent image. From this image,
The position of the pixel showing the maximum fluorescence value and the intensity of that part are calculated. From the above, by comparing the fluorescence intensity at 540 nm and the fluorescence intensity at 580 nm at the position of the particle, it is possible to determine which particle group the particle belongs to. For example, if the fluorescence intensity at 580 nm is stronger, it can be determined that the anti-CEA antibody is bound to the fine particles and that the antigen CEA is being detected. A comparison was made for all particles in the image, and human AFP
and count the total number of each microparticle for CEA. In order to quantify the human AFP or CEA concentration using this method, a calibration curve may be prepared in advance using samples whose concentrations are known, and the concentration may be calculated from the number of particles of each. [Example 2] Two types of latex fine particles having a carboxyl group on the surface, diameters of 0.5 μm and 0.75 μm, and both i and large fluorescence wavelengths of 540 nm are used as labeling fine particles. Anti-human AFP antibody was prepared with a diameter of 0 using the carbodiimide method.
・Immobilize on the surface of 5 μm fine particles (immobilization amount approximately 0.
7mg/g). Furthermore, anti-CEA antibody was immobilized on the surface of microparticles with a diameter of 0.75 μm by the carbodiimide method (immobilized amount: approximately 0.7 mg/g). In the same manner as in Example 1, the anti-CEA antibody was immobilized on the surface of fine particles with a diameter of 0.75 μm. Immobilize AFP antibody and anti-CEA antibody, and
Next, a solution of the particle-labeled antibody is reacted to bind the human AFP and CEA captured in the well. Fine particles were measured using the same equipment as in Example 1! (Figure 2). First, a filter conversion device! ! Step 13: Set an interference filter on the microscope that transmits 540 nm light and blocks other light. The image at that time is detected by the TV camera 11, and the intensity of the image is digitized into 8 bits and stored in the image memory of the image processing device 12. Please note that this operation is 64
Frame was performed to improve the S/N of the fluorescent image. From this image, the position of the pixel showing the maximum fluorescence value, that is, the position of the particle, and the intensity of that part are determined. Figure 3 is. I! I is a histogram (quantity versus fluorescence intensity) of determined particles. Since the fluorescence intensity and the particle diameter are correlated, the histogram shows two distributions. The one with lower fluorescence intensity is the one with the anti-human AFP antibody immobilized.
.. These are fine particles with a diameter of 5 μm, and the one with higher fluorescence intensity is the fine particle with a diameter of 0.75 μm on which the anti-CEA antibody is immobilized. Human AFP or CEA was determined by counting the total number of particles with a diameter of 0.5 μm and 0.75 μm from the histogram.
concentration can be calculated. As in Example 1, in order to quantify the concentration of human AFP or CEA, a calibration curve may be prepared in advance using samples whose concentrations are known, and the concentration may be calculated from the number of particles of each. [Example 3] Labeling fine particles had carboxyl groups on the surface, had a diameter of 0.5 μm, and were fluorescent (the maximum fluorescence wavelength was 540 nm).
Non-fluorescent latex fine particles having the same diameter of 0.5 μm as the latex fine particles of m) are used. Anti-human AFP antibody is immobilized on the surface of fluorescent fine particles by the carbodiimide method (immobilized amount is approximately 0.7 mg/g).
). Furthermore, anti-CEA antibody was prepared using the carbodiimide method.
Immobilize on the surface of non-fluorescent fine particles (immobilization amount approximately Q.
7 mg/g) - In the same manner as in Example 1, anti-human AFP antibodies and anti-CEA antibodies were immobilized in the wells of a microplate, and the sample and then the microparticle-labeled antibody solution were reacted, and the human AFP and anti-CEA antibodies captured in the wells were reacted. Bind the particle-labeled antibody to CEA. The measurement of fine particles is performed using the same apparatus 1i (FIG. 2) as in Example 1. First, the particle image inside the well is observed using transmitted light. The image detected by the TV camera 11 is digitized into 8 bits and processed by an image processing device! 12 image memories. This operation is performed for 64 frames to improve the image S/N. Identify particles from the obtained image data. Diameter is 0.4μm~
Images in the range of 0.6 μm are recognized as fine particles, and the total number of particles is measured. In addition, those smaller than 0.4 μm and 0
.. Items larger than 6 μm were judged to be dust and were excluded from counting. The total number of microparticles measured is the total number of fluorescent and non-fluorescent microparticles. Next, in the filter conversion device 13. An interference filter that transmits 540 nm light and blocks other light is set on the microscope. The fluorescent image at that time is detected by the TV camera 11, and the intensity of the image is digitized into 8 bits and stored in the image memory of the image processing device 12. Note that this operation was performed for 64 frames to improve the S/N of the fluorescent image. From this image, the total number of particles emitting fluorescence is calculated. It is thought that the particles emitting fluorescence are bound to human AFP, and the total number of these particles is the human AF.
Corresponds to P concentration. Further, by subtracting the total number of particles emitting fluorescence from the total number of particles measured and counted using transmitted light, the number of particles corresponding to the CEA concentration can be calculated. As in Example 1, in order to quantify the concentration of human AFP or CEA, a calibration curve may be prepared in advance using samples whose concentrations are known, and the concentration may be calculated from the number of particles of each. [Example 4] Two types of latex fine particles having a carboxyl group on the surface, having diameters of 0.5 μm and 0.75 μm, and both having a maximum fluorescence wavelength of 540 nm are used as fine particles for labeling. Prepare reagents in the same manner as in Example 2. anti-human A
The FP antibody was immobilized on the surface of fine particles with a diameter of 0.5 μm by the carbodiimide method (immobilized amount approximately 0.7 mg/g),
Anti-CEA antibody was 0.75μm by carbodiimide method.
Immobilize on the surface of fine particles of the same diameter (immobilized amount approximately 0.7 mg
/g) - Additionally, anti-human A was added to the wells of the microplate.
The FP antibody and anti-CEA antibody are immobilized, and the sample is reacted with a solution of the particle-labeled antibody to bind the particle-labeled antibody to the human AFP and CEA captured in the well. The particles captured in the wells are measured using a flow cytometer. Therefore, a concentration of 8M was added to the reaction vessel containing the fine particles.
Inject 0.2 ml of urea to remove bonds from the fine particles to obtain a fine particle suspension. This fine particle suspension is analyzed using a flow cytometer. By simultaneously measuring the scattered light intensity and fluorescence intensity, it is possible to identify the presence or absence of microparticles, the size of the microparticles, and whether the microparticles are fluorescent or non-fluorescent. Particles with a diameter of 0.3 μm or less calculated from the intensity of scattered light were likely to be dust, and were excluded from counting. The labeling fine particles used in this example were fluorescent fine particles with a size of 0.
Since the diameters are 5 μm and 0.75 μm, the type of fine particles can be determined based on the intensity of their fluorescence. The histogram showing the quantity of particles detected by the flow cytometer relative to their fluorescence intensity is almost the same as in Figure 3. The histogram shows two distributions. The one with lower fluorescence intensity is anti-human AF.
These are fine particles with a diameter of 0.5 μm on which P antibody is immobilized.
They are microparticles with a diameter of μm. From the histogram, the human AFP or CEA concentration can be calculated by counting the total number of particles with a diameter of 0.5 μm and 0.75 μm. As in Example 2, in order to quantify the human AFP or CEA concentration, a calibration curve may be prepared in advance using samples whose concentrations are known, and the concentration may be calculated from the number of particles of each. In addition, the concentration of fine particles in the fine particle recognition antibody solution in Examples 1 to 4 is suitably about 0.01% to 5%. When using fine particles such as acrylic particles with a rather large specific gravity, the appropriate concentration of the fine particles is about 0.01% to 1%. Regarding other fine particles, the fine particle concentration is determined by the specific gravity, particle size, etc. of the fine particles. According to this example, since the binding ratio between the antigen to be measured and the fine particles as the labeling substance is constant, highly accurate and sensitive quantification is possible. Furthermore, since the so-called prozone phenomenon, in which antigen-antibody reactions are suppressed in areas with excess antigen, does not occur, quantification in high antigen concentration ranges is also possible. [Effects of the Invention] According to the present invention, multi-item measurement becomes possible by combining different types of fine particles depending on the type of substance to be measured. In addition, since microparticles can be bound to individual amounts of a substance to be measured, such as an antigen to be measured, by a specific reaction such as an antigen-antibody reaction, the antigen concentration can be quantified with high sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は,実施例1であげた,抗原と微粒子標識抗体の
結合状態を示す模式図である. 第2図は,実施例1で説明した,顕微画像処理による装
置構成の概略図である。 第3図は、実施例2(および実施例4)で説明した,微
粒子の蛍光強度と微粒子数との関係を示したヒストグラ
ムである。 符号の説明 1・・・反応容器(ウエル)  2・・・抗ヒトAFP
抗体3・・・抗CEA抗体    4・・・ヒトAFP
5・・・CEA        6・・・抗ヒトAFP
抗体7,9,・・・微粒子    8・・・抗CEA抗
体lO・・・蛍光顕微鏡     l1・・・TVカメ
ラ12・・・画像処理装置    l3・・・フィルタ
変換装置l4・・・コントローラ    15・・・モ
ニターテレビl6・・・出力装!17・・・反応容器第 1図
FIG. 1 is a schematic diagram showing the binding state of an antigen and a particle-labeled antibody as described in Example 1. FIG. 2 is a schematic diagram of the configuration of the apparatus for microscopic image processing described in the first embodiment. FIG. 3 is a histogram showing the relationship between the fluorescence intensity of particles and the number of particles, which was explained in Example 2 (and Example 4). Explanation of symbols 1... Reaction container (well) 2... Anti-human AFP
Antibody 3...Anti-CEA antibody 4...Human AFP
5...CEA 6...Anti-human AFP
Antibodies 7, 9,... Fine particles 8... Anti-CEA antibody lO... Fluorescence microscope l1... TV camera 12... Image processing device l3... Filter conversion device l4... Controller 15...・Monitor TV l6...output device! 17...Reaction vessel Figure 1

Claims (1)

【特許請求の範囲】 1、測定試料中の複数の被測定物質のそれぞれと特異的
に結合する物質を固定化した反応容器と、該被測定物質
のそれぞれと特異的に結合する物質をそれぞれ固定化し
た複数の異なる種類の微粒子を使用し、該反応容器と測
定試料と該微粒子を接触させることにより、微粒子を反
応容器に捕捉し、微粒子の種類と微粒子数を計数するこ
とを特徴とする粒子による免疫測定方法。 2、蛍光性の微粒子を使用することを特徴とする特許請
求の範囲第1項記載の粒子による免疫測定方法。 3、微粒子の大きさによって、または/および微粒子の
蛍光波長によって、複数の種類に識別することのできる
微粒子を使用することを特徴とする特許請求の範囲第1
項または第2項記載の粒子による免疫測定方法。 4、画像入力装置と、画像入力装置により得られる微粒
子の像を画像処理する装置とからなる粒子による免疫測
定装置。 5、フローサイトメトリにより、微粒子を解析処理する
ことを特徴とする特許請求の範囲第1項または第2項ま
たは第3項記載の粒子による免疫測定方法。 6、個々の微粒子の大きさ、または/および蛍光波長を
計測して複数の種類に分類し、同じ種類の微粒子毎にそ
の数を計数する処理を行うことを特徴とする特許請求の
範囲第4項記載の粒子による免疫測定装置。 7、個々の微粒子の大きさ、または/および蛍光波長を
計測して複数の種類に分類し、同じ種類の微粒子毎にそ
の数を計数する処理を行うことを特徴とする特許請求の
範囲第5項記載の粒子による免疫測定方法。
[Scope of Claims] 1. A reaction container in which a substance that specifically binds to each of a plurality of analyte substances in a measurement sample is immobilized, and a substance that specifically binds to each of the analyte substances in a measurement sample is immobilized, respectively. A particle characterized by using a plurality of different types of microparticles, and by bringing the microparticles into contact with the reaction container, a measurement sample, and the microparticles, the microparticles are captured in the reaction container, and the types of microparticles and the number of microparticles are counted. immunoassay method. 2. The immunoassay method using particles according to claim 1, characterized in that fluorescent fine particles are used. 3. Claim 1, which uses fine particles that can be distinguished into a plurality of types depending on the size of the fine particles and/or the fluorescence wavelength of the fine particles.
An immunoassay method using particles according to item 1 or 2. 4. A particle-based immunoassay device comprising an image input device and a device for image processing an image of particles obtained by the image input device. 5. The method for immunoassay using particles according to claim 1, 2, or 3, characterized in that the microparticles are analyzed by flow cytometry. 6. Claim 4, characterized in that the size and/or fluorescence wavelength of each fine particle is measured, the particles are classified into a plurality of types, and the number of fine particles of the same type is counted. An immunoassay device using the particles described in 2. 7. A process of measuring the size and/or fluorescence wavelength of individual fine particles, classifying them into a plurality of types, and counting the number of fine particles of the same type is performed. Immunoassay method using particles described in Section 2.
JP1060890A 1989-11-15 1990-01-22 Method and apparatus for immunoassay due to particles Pending JPH03216553A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1060890A JPH03216553A (en) 1990-01-22 1990-01-22 Method and apparatus for immunoassay due to particles
DE19904036288 DE4036288A1 (en) 1989-11-15 1990-11-14 Immunological dye - using marker particles carrying antigen or antibody reactive with analyte previously immobilised on vessel wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1060890A JPH03216553A (en) 1990-01-22 1990-01-22 Method and apparatus for immunoassay due to particles

Publications (1)

Publication Number Publication Date
JPH03216553A true JPH03216553A (en) 1991-09-24

Family

ID=11754957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1060890A Pending JPH03216553A (en) 1989-11-15 1990-01-22 Method and apparatus for immunoassay due to particles

Country Status (1)

Country Link
JP (1) JPH03216553A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682454A (en) * 1992-05-25 1994-03-22 Sanyo Electric Co Ltd Immunoassay device
JP2009192222A (en) * 2008-02-12 2009-08-27 Fujifilm Corp Immunoassay method
WO2017150517A1 (en) * 2016-02-29 2017-09-08 富士フイルム株式会社 Kit for determining quantity of substance to be assayed in biological sample
WO2017150518A1 (en) * 2016-02-29 2017-09-08 富士フイルム株式会社 Kit for determining quantity of bile acid in biological sample and method for determining quantity of bile acid in biological sample
JP2020169994A (en) * 2019-04-03 2020-10-15 メクウィンズ, エセ.アー.Mecwins, S.A. Method for optically detecting biomarkers

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682454A (en) * 1992-05-25 1994-03-22 Sanyo Electric Co Ltd Immunoassay device
JP2009192222A (en) * 2008-02-12 2009-08-27 Fujifilm Corp Immunoassay method
US8110403B2 (en) 2008-02-12 2012-02-07 Fujifilm Corporation Immunoassay method
WO2017150517A1 (en) * 2016-02-29 2017-09-08 富士フイルム株式会社 Kit for determining quantity of substance to be assayed in biological sample
WO2017150518A1 (en) * 2016-02-29 2017-09-08 富士フイルム株式会社 Kit for determining quantity of bile acid in biological sample and method for determining quantity of bile acid in biological sample
JPWO2017150517A1 (en) * 2016-02-29 2018-12-20 富士フイルム株式会社 Kit for quantifying a substance to be measured in a biological sample
US10883986B2 (en) 2016-02-29 2021-01-05 Fujifilm Corporation Kit for quantitatively determining bile acid in biological sample, and method for quantitatively determining bile acid in biological sample
US11255849B2 (en) 2016-02-29 2022-02-22 Fujifilm Corporation Kit for quantitatively determining substance to be measured in biological sample
JP2020169994A (en) * 2019-04-03 2020-10-15 メクウィンズ, エセ.アー.Mecwins, S.A. Method for optically detecting biomarkers

Similar Documents

Publication Publication Date Title
AU724443B2 (en) Assays using reference microparticles
RU2111488C1 (en) Particle agglutination method for simultaneously examining several anolytes in the same sample
AU670489B2 (en) Light scatter-based immunoassay without particle self aggregation
McHugh Flow microsphere immunoassay for the quantitative and simultaneous detection of multiple soluble analytes
US5567627A (en) Method and composition for the simultaneous and discrete analysis of multiple analytes
JPH0754324B2 (en) Test agent for measuring antigen and / or antibody in liquid sample
US6551788B1 (en) Particle-based ligand assay with extended dynamic range
AU6367894A (en) Immunoassay for determination of cells
JPH04337446A (en) Method and device for measuring fine grain and constant quantity method
JPH09509248A (en) Test method
JP2002526743A (en) Analyte detection calculation method
JP2005510706A5 (en)
Fulwyler et al. Flow Microsphere Immunoassay for the Quantitative and SimultaneousDetection of Multiple Soluble Analytes
JPH0572113A (en) Fine particle measurement and quantitative determination using fine particle
JP2005077301A (en) Immunological detection carrier and measuring method
JPH03216553A (en) Method and apparatus for immunoassay due to particles
JPH03216554A (en) Method and apparatus for particle labelling immunoassay
JPS6281567A (en) Quantification method using particle agglutination reaction
JPH03167475A (en) Method and apparatus for immunoassay
JPH04127061A (en) Immunoassay due to fluorescent minute particles
JP2745705B2 (en) Antigen / antibody assay
JPH03156370A (en) Method and apparatus for immunoassay
JPS6281566A (en) Quantification method by measurement of fluorescent intensity of fine particle
JP2009085703A (en) Method of high-sensitivity immunoassay
JPS622163A (en) Measurement of bodily liquor component