JPS6281566A - Quantification method by measurement of fluorescent intensity of fine particle - Google Patents

Quantification method by measurement of fluorescent intensity of fine particle

Info

Publication number
JPS6281566A
JPS6281566A JP22194985A JP22194985A JPS6281566A JP S6281566 A JPS6281566 A JP S6281566A JP 22194985 A JP22194985 A JP 22194985A JP 22194985 A JP22194985 A JP 22194985A JP S6281566 A JPS6281566 A JP S6281566A
Authority
JP
Japan
Prior art keywords
substance
substances
measured
fluorescent
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22194985A
Other languages
Japanese (ja)
Inventor
Tatsuya Mizukoshi
水越 達也
Katsuji Fukui
福井 勝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP22194985A priority Critical patent/JPS6281566A/en
Publication of JPS6281566A publication Critical patent/JPS6281566A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to simultaneously quantify a plurality of substances, in a fluorescent immunoassay using a solid phase, by allowing fine particles different in a particle size to respectively support different responsive substances. CONSTITUTION:Particles are classified, for example, into three kinds in a particle size and three kinds in the presence and absence of the adhesion of a fluorescent dye to form 6 kinds of groups in total. Reagents prepared by respectively supporting 6 kinds of antibodies by the particles of six groups are contacted with a mixture of a specimen solution and a definite amount of a standard substance labelled with a substance different from the aforementioned fluorescent dye and competition reaction is allowed to generate to prepare measuring solutions which are, in turn, measured by a known flow sight meter together having colter volume measuring function and fluorescent intensity measuring function to make it possible to discriminate the groups. The quantity of a substance to be measured is measured by measuring the fluorescent intensity of the fluorescent substance labelled with the standard substance. By this method, the concn. of the substance to be measured at every group can be measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、物質同志の特異的な結合、例えば抗原・抗体
反応を利用した定量方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a quantitative method that utilizes specific binding between substances, such as antigen-antibody reaction.

(従来の技術) 医療分野における微量分析の手法として免疫学的反応を
利用した測定法は、すでに定着しており、その中でも主
流はラジオイムノアッセイ(RIA )である。RIA
 H11959年パーソン、ヤロウらによって、インス
リンの測定法として開発されたのが最初であり、その後
爆発的に普及した。しかしラジオアイントーゾの取シ扱
い、専用の設備、廃棄の際の安全性などの問題、あるい
は標識化合物の寿命等も従来からクローズアノグされて
おり、非放射性の標識法についての研究がさかんに行わ
れてきた。感度的に匹敵するものとして1971年にエ
ンザイムイムノアッセイ(EIA )が登場し、RIA
に代わるものとして注目を浴びてきた。確かに測定項目
によってはRIAと同程度、あるいはそれ以上の感度を
持つことが報告されているし、RIAとは違い抗原抗体
結合型と遊離型との分離いわゆるB74゛74の必要が
ないホモノニアスな系での測定も可能であるという特長
があるが生物学的反応を用いるといった不安定な要素や
、相対的に見た感度、煩雑さなどの問題もあり、今一つ
RIAにとって代わるだけのものがないのが現状であろ
う。ラジオアイントーゾの代わシに螢光プローブを用い
たのが螢光イムノアッセイ(FIA )である。
(Prior Art) Measuring methods using immunological reactions have already been established as microanalysis methods in the medical field, and the mainstream among them is radioimmunoassay (RIA). RIA
It was first developed in 1959 by Persson, Yarrow et al. as a method for measuring insulin, and has since become explosively popular. However, issues such as the handling of radioeintozo, dedicated equipment, safety during disposal, and the lifespan of the labeled compound have long been closed-offs, and research into non-radioactive labeling methods has been actively conducted. It's here. Enzyme immunoassay (EIA) was introduced in 1971 as a method comparable in sensitivity, and RIA
It has attracted attention as an alternative to It is certainly reported that it has the same or higher sensitivity than RIA for some measurement items, and unlike RIA, it is a homogeneous method that does not require separation of the antigen-antibody bound form and the free form. Although it has the advantage of being able to perform measurements using a biological system, there are problems such as instability due to the use of biological reactions, relative sensitivity, and complexity, and there is no suitable alternative to RIA. That would be the current situation. Fluorescent immunoassay (FIA) uses a fluorescent probe instead of radiointosol.

感度的には、RIAに今−歩およばないが、安全性の点
で問題がなく RIと同様の原理で使用できる上に、B
/’F分離の必要がないホモジニアスな系での測定も可
能なため、欧米諸国では非常によく利用されている。
Although it is not as good as RIA in terms of sensitivity, there is no problem in terms of safety, it can be used on the same principle as RI, and B
/'F It is widely used in Western countries because it can be measured in a homogeneous system that does not require separation.

医療分野において、疾病の発生、進行度、治療効果等を
知る上での特定の生体内物質(マーカー)の変化は非常
に重要な意味を持つ。例えば腫瘍マーカーならば、CA
−125、CA−19−9、AFP 、 CEAなどを
始めとして、かなシの数が知られているが、すべての腫
瘍に共通で、しかも早期発見の手助けとなるようなマー
カーは現在までに知られていない。したがって、検査す
る際、腫瘍存在の可能性、発生部位等を正確に把握する
ためには、多項目のマーカーについて検査し、総合的に
判断するしかてだてがない。ところが現状では、複数の
データーが知シたい場合、その数だけ測定を行うしかな
く、採血の際の患者の苦痛、検査のために要する手間、
時間が増大するばかシであった。
In the medical field, changes in specific biological substances (markers) are extremely important in understanding the occurrence, progression, and therapeutic effects of diseases. For example, if it is a tumor marker, CA
A number of markers are known, including -125, CA-19-9, AFP, and CEA, but to date, there are no known markers that are common to all tumors and that can help in early detection. It has not been done. Therefore, in order to accurately grasp the possibility of the presence of a tumor, its site of occurrence, etc., the only way to perform an examination is to examine multiple markers and make a comprehensive judgment. However, currently, if you want to obtain multiple pieces of data, you have no choice but to measure that number, which causes pain to the patient when blood is drawn, time required for testing, and
It was a fool's errand as time increased.

(発明が解決する問題点) 本発明は、上記問題点を解決するためになされたもので
あり、これまでのFIAでは困難であった、検体中の被
測定物質の量を、正確に測定する方法を提供することを
目的とする。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems, and is capable of accurately measuring the amount of a substance to be measured in a sample, which has been difficult with conventional FIA. The purpose is to provide a method.

(問題点を解決するための手段及び作用)本発明は固相
を用いたFIAの競合法の改善であり、固相として微粒
子を用い、その粒子一つ一つの螢光活性を分析すること
を特徴としており、その要旨は検体中に含まれているn
種の被測定物質のそれぞれの量を、被測定物質のそれぞ
れと特異的に結合するn種の感応物質を担持させた微粒
子を担体として利用して測定する方法であって、粒径の
大きさによって及び/又は螢光物質による標識づげによ
ってn種に判別できる該微粒子を担体として用い、各々
の種類の担体にそれぞれの被測定物質と特異的に結合す
る前記n種の感応物質をそれぞれ担持させたものを試薬
とし、検体中のn種の被測定物質を標準物質として前記
螢光物質とは異なった種類の螢光物質により螢光標識し
、螢光標識された標準物質のそれぞれの一定量と検体と
の混合物を前記試薬に接触させ、感応物質に対する被測
定物質と螢光標識された標準物質の競合反応を起させ、
微粒子の螢光強度を測定することを特徴とする微粒子の
螢光強度測定による定量方法を提供することにある。
(Means and effects for solving the problem) The present invention is an improvement of the competitive method of FIA using a solid phase, and involves using fine particles as the solid phase and analyzing the fluorescent activity of each particle. The main feature is that the n contained in the sample
A method for measuring the amount of each of the various analyte substances using microparticles as carriers carrying n types of sensitive substances that specifically bind to each of the analyte substances. and/or by labeling with a fluorescent substance, the fine particles can be distinguished into n types as carriers, and each type of carrier carries each of the n types of sensitive substances that specifically bind to each analyte. The sample is used as a reagent, and the n types of analyte substances in the sample are used as standard substances and fluorescently labeled with a different type of fluorescent substance than the above-mentioned fluorescent substances, and each of the fluorescently labeled standard substances is contacting the mixture of the sample and the sample with the reagent to cause a competitive reaction between the analyte and the fluorescently labeled standard substance against the sensitive substance;
The object of the present invention is to provide a method for quantitative determination by measuring the fluorescence intensity of fine particles, which is characterized by measuring the fluorescence intensity of the fine particles.

ここで、nは、自然数であるが、2以上の自然数の場合
に特に顕著な効果を発揮する。
Here, n is a natural number, and a particularly remarkable effect is exhibited when n is a natural number of 2 or more.

物質同志の特異的な結合反応の代表的なものは、抗原抗
体反応であるが、それ以外にもホルモンとレセプター、
糖とレクチンなどの反応も利用が可能である。
The typical specific binding reaction between substances is the antigen-antibody reaction, but there are also hormones, receptors,
Reactions such as sugar and lectin can also be used.

抗原抗体反応を例にとシ、さらに詳しく説明する。測定
対象が抗原となり得るもの(ハシテン等も含む)であれ
ば、それに対応する抗体を微粒子に担持させておく。測
定対象によっては、抗原・抗体が逆の組み合わせでもよ
い。
This will be explained in more detail using the antigen-antibody reaction as an example. If the target to be measured is something that can be an antigen (including Hashiten, etc.), the fine particles are made to carry the corresponding antibody. Depending on the object to be measured, the combination of antigen and antibody may be reversed.

本発明では、複数の物質を、同時に定量する為に微粒子
(1〜100μ程度の粒径のそろったもの)を予め、複
数のグループに判別できるように構成しておく。その方
法の一つは、粒径を複数のレベルにそろえておくことで
ある。また粒子を螢光物質で標識づげする場合、螢光物
質の有・無又は濃度、螢光の種類などにより、複数のグ
ループに判別できる。そして、両者を組み合わせること
により、さらに多くの粒子群の判別が可能である。
In the present invention, in order to quantify a plurality of substances at the same time, the microparticles (with a uniform particle size of about 1 to 100 microns) are configured in advance so that they can be distinguished into a plurality of groups. One way to do this is to have multiple levels of particle size. Furthermore, when particles are labeled with a fluorescent substance, they can be classified into a plurality of groups based on the presence/absence or concentration of the fluorescent substance, the type of fluorescence, etc. By combining the two, it is possible to discriminate even more particle groups.

尚、標準物質を螢光物質によって標識づげする際に、複
数種類の螢光物質(例えばFITC(Fluoresc
ein l5othicyanate )とPI (P
ropidiumIodide)など)を使用すれば、
これにより被測定物質の種類の判別と定量が可能であシ
、このような方法も本発明の技術的範囲に入ることはい
うまでもない。
In addition, when labeling a standard substance with a fluorescent substance, multiple types of fluorescent substances (for example, FITC (Fluoresc
ein l5othicyanate) and PI (P
ropidiumIodide) etc.),
This makes it possible to identify and quantify the type of substance to be measured, and it goes without saying that such a method also falls within the technical scope of the present invention.

微粒子としては、例えば赤血球などの細胞、金属、リポ
ソームなどのマイクロカプセル、ポリスチレン等のラテ
ックス粒子等で、粒径1〜100μ程度のものが利用で
きる。
As the fine particles, for example, cells such as red blood cells, metals, microcapsules such as liposomes, latex particles such as polystyrene, etc., and particles having a particle size of about 1 to 100 μm can be used.

微粒子に所定の感応物質、例えば抗体を担持させるには
物理的に吸着させる方法、微粒子上の官能基を利用して
化学的に結合させる方法などが知られている。
In order to make microparticles support a predetermined sensitive substance, such as an antibody, there are known methods such as physical adsorption, chemical bonding using functional groups on the microparticles, and the like.

感応物質とは、被測定物質と特異的に反応する物質をい
い、被測定物質が抗原である場合には。
A sensitive substance is a substance that specifically reacts with a substance to be measured, and when the substance to be measured is an antigen.

その抗原と特異的に反応する抗体である。前述のように
、被測定物質の種類により、ホルモンとレセプター、糖
とレクチンなども利用できる。
An antibody that specifically reacts with that antigen. As mentioned above, depending on the type of substance to be measured, hormones, receptors, sugars, lectins, etc. can also be used.

抗体−抗原反応利用を例に本発明の詳細な説明する。理
解を容易にするためにまずn==1を例にとって説明す
る。
The present invention will be explained in detail using the antibody-antigen reaction as an example. To facilitate understanding, explanation will be given first using n==1 as an example.

一定粒径の微粒子に特定の抗体を担持する。一方、検体
中の被測定物質と同一の物質を標準物質としく例えば検
体中の被測定物質が、免疫グロブリンAである場合は、
IgAを標準物質とする)、IgAの一定量に螢光標識
をつけたものを用意し、これを検体と混合する。この混
合液中には、被測定物質(以下Aという)と、螢光標識
づけされた一定量の標準物質(以下A*という)とが共
存する。
A specific antibody is supported on microparticles of a certain size. On the other hand, if the same substance as the analyte in the specimen is used as the standard substance, for example, if the analyte in the specimen is immunoglobulin A,
(IgA is used as a standard substance), prepare a certain amount of IgA with a fluorescent label attached, and mix this with the sample. In this mixed solution, a substance to be measured (hereinafter referred to as A) and a certain amount of a fluorescently labeled standard substance (hereinafter referred to as A*) coexist.

A及びA*は、微粒子に担持された抗体(以下Bという
)に対し、同様の抗原・抗体反応をおこす。
A and A* cause a similar antigen-antibody reaction to antibodies supported on microparticles (hereinafter referred to as B).

従って、混合液と試薬とを接触させると、AとA*とは
、競合してBと抗原・抗体反応をおこす。A*とBとは
、一定量であるから、Aの量が少ない程A*が多くBと
結合することになり、粒子の螢光量は多くなる。逆にA
の量が多いと、粒子の螢光量は少ないことになる。この
原理から、粒子の螢光量を測定することにより、Aの量
を知ることができる。
Therefore, when the mixed solution and the reagent are brought into contact, A and A* compete with each other to cause an antigen-antibody reaction with B. Since A* and B are constant amounts, the smaller the amount of A, the more A* will be combined with B, and the amount of fluorescence of the particles will increase. On the contrary, A
When the amount of is large, the amount of fluorescence of the particles is small. Based on this principle, the amount of A can be determined by measuring the amount of fluorescence of particles.

被測定物質がn種あるときこれを(A、・・・An)と
表わし、それに対応する螢光標識された標準物質及び抗
体を、それぞれ(A、*・・・An*)(B、・・・B
、)とすれば、(A、 、 A1*、 B、)−(An
、 An*、Bn)について同様の関係となり、上記と
同じ原理で、(A1・・・An)の量が測定できる。
When there are n types of substances to be measured, they are expressed as (A,...An), and the corresponding fluorescently labeled standard substances and antibodies are expressed as (A, *...An*) (B,...An), respectively.・・B
, ), then (A, , A1*, B,) - (An
, An*, Bn), and the amount of (A1...An) can be measured using the same principle as above.

但し被測定物質によっては、抗原と抗体の関係が逆にな
る。
However, depending on the substance to be measured, the relationship between antigen and antibody may be reversed.

A 、・・・、Aのグループ分けは、B1.・・・Bn
を1          n 担持させる微粒子を予め、複数のグループに判別できる
ように構成しておく。その方法の一つは、粒径を複数の
レベルにそろえておくことである。
The grouping of A,...,A is B1. ...Bn
The particles carrying 1 n of particles are configured in advance so that they can be classified into a plurality of groups. One way to do this is to have multiple levels of particle size.

本発明では、個々の粒子の螢光強度を測定するのでその
ためには、微粒子の径は、そろえておく必要がある。微
粒子の粒径を、例えば5μのもの(aグルーf)と、1
0μ(bグループ)のものを使用すれば、aグループと
bグループは、公知の方法で十分判別できる。また粒子
を螢光物質で標識づけする場合、螢光物質の有・無又は
濃度、螢光の種類などにより複数のグループに判別でき
る。さらに、標準物質を螢光づげする際、複数の螢光物
質を使用すれば、これによっても、最終的には微粒子の
判別ができる。そして、これらの5組み合わせにより、
さらに多くの粒子群の判別が可能である。
In the present invention, since the fluorescence intensity of each particle is measured, it is necessary to make the diameters of the fine particles the same. The particle size of the fine particles is, for example, 5μ (a glue f) and 1
If 0μ (group b) is used, the a group and b group can be sufficiently distinguished by a known method. Furthermore, when particles are labeled with a fluorescent substance, they can be classified into a plurality of groups based on the presence/absence or concentration of the fluorescent substance, the type of fluorescence, etc. Furthermore, if a plurality of fluorescent substances are used when fluorescing the standard substance, fine particles can ultimately be distinguished. And with these 5 combinations,
It is possible to distinguish even more particle groups.

なお、本発明については、粒子どうしの非特異的な凝集
、あるいは抗原抗体反応による凝集を極力時がねばなら
ず、そのために単クローン性抗体を用いるが、機械的な
刺激によって簡単に分散するような比較的大きな粒子を
用いるとか、或いは粒子濃度を稀薄にしておくことが好
ましい。
In addition, in the present invention, it is necessary to take as much time as possible to prevent nonspecific aggregation of particles or aggregation due to antigen-antibody reaction, and for this purpose monoclonal antibodies are used. It is preferable to use relatively large particles, or to keep the particle concentration dilute.

微粒子のグループの判別法、螢光強度の測定法には、顕
微鏡測光なども利用できるが、好ましい実施態様の一つ
としては、これらの粒子を一つずつ、フローサイトメト
リー法で測定する方法を挙げることができる。
Although microscopic photometry can be used to distinguish groups of fine particles and measure fluorescence intensity, one preferred embodiment is to measure these particles one by one using flow cytometry. can be mentioned.

フローサイトメトリー法とは、主として光学機器分析に
関するものであり粒子を1個ずつ流し。
Flow cytometry is mainly concerned with optical instrument analysis, and particles are passed through one by one.

粒子にレーデ−光などをあてて、その散乱光を測定する
ことにより、粒子の大きさ、色、或いは、予め粒子を螢
光物質等で標識づげしておき、その螢光強度測定等によ
り粒子の形質を測定するものである。又、いわゆるコウ
ルターの原理により、粒子の容量(コウルターボリウム
という)を電気的に測定する方法によるもの、これと光
学測定とを合わせたものも利用されている。
The size and color of the particles can be determined by shining a radar light on the particles and measuring the scattered light, or by labeling the particles with a fluorescent substance in advance and measuring the fluorescence intensity. It measures the characteristics of particles. In addition, methods that electrically measure the capacitance of particles (called Coulter's volume) based on the so-called Coulter principle, and methods that combine this and optical measurements are also used.

粒子をn個のグループへ判別するには、例えば粒子径で
3グループ、螢光色素を付着したものとさせない粒子と
を調整すれば合計6グループの粒子を調整できる。この
場合、6種の抗体を各グループの粒子にそれぞれ担持さ
せた試薬を、検体溶液と前記螢光物質とは異った種類で
標識づけされた標準物質の一定量との混合物と接触させ
、競合反応をおこさせた測定液を、コウルターデリウム
測定機能と螢光強度測定機能とを併せもった公知のフロ
ーサイトメーターで測定すると、粒子径と粒子につげた
螢光の有無とにより粒子のグループ分けが出来る。
In order to classify particles into n groups, for example, by adjusting three groups based on particle size, particles with fluorescent dye attached and particles without fluorescent dye, a total of six groups of particles can be prepared. In this case, a reagent in which six types of antibodies are supported on each group of particles is brought into contact with a mixture of a sample solution and a fixed amount of a standard substance labeled with a type different from the fluorescent substance, When the measurement solution in which the competitive reaction has occurred is measured using a known flow cytometer that has both a Coulter Delium measurement function and a fluorescence intensity measurement function, the particles can be detected based on the particle size and the presence or absence of fluorescence attached to the particles. can be divided into groups.

被測定物質の量は、標準物質を標識づけした螢光物質の
螢光強度測定により行われる。両壁光物質は、螢光強度
測定の波長を選定することにより区別され、札の濃度が
、微粒子のグループ毎即ち被測定物質ごとに測定できる
The amount of the substance to be measured is determined by measuring the fluorescence intensity of a fluorescent substance labeled with a standard substance. Double-walled substances can be distinguished by selecting the wavelength of fluorescence intensity measurement, and the concentration of the tag can be measured for each group of particles, ie, for each substance to be measured.

尚、このグループ分けには、特願昭60−130882
に示されている方法が利用できる。
Furthermore, this grouping is based on the patent application No. 130882/1986.
The method shown in can be used.

(実施例1) (1)ヒト血清アルブミン(H8A )の測定(i)試
薬の調整 ポリスチレンビーズ(平均粒径5.29μm)固型分と
して5〜を5 mlのリン酸緩衝食塩水(PBSPH7
,4)に懸濁する。それに10倍希釈した抗H3Aヤギ
抗血清5 mlを加え、室温で6時間ゆるやかに攪拌し
た後、4℃で1晩ゆるやかに攪拌する。
(Example 1) (1) Measurement of human serum albumin (H8A) (i) Preparation of reagent Polystyrene beads (average particle size 5.29 μm) 5 to 5 ml of phosphate buffered saline (PBSPH7) as solid content
, 4). Add 5 ml of 10-fold diluted anti-H3A goat antiserum to the mixture, stir gently at room temperature for 6 hours, and then gently stir at 4°C overnight.

そして、遠心分離にて洗浄した後、保護コロイドとして
1チの牛血清アルブミンを含むPBS 5 mlに懸濁
し、固型分0.1%のラテックス試薬として試験に供す
る。
After washing by centrifugation, it is suspended in 5 ml of PBS containing 1 g of bovine serum albumin as a protective colloid, and used as a latex reagent with a solid content of 0.1% for testing.

(11)検量線の作成 異なる濃度のH8Aを含む標準液100μlにFITC
標識の1(SA (10til/ml )を100 p
Hずつ加える。この混合液に試薬を100μl加えたの
ち、約1時間ゆるやかに振盪する。その後、遠心分離に
より反応液を完全に取シ除き3 mlのPBSに懸濁す
る。この懸濁液をセルアナライザーによって分析し、第
1図に示す様な検量線を得た。縦軸はioo、ooo個
の粒子を分析した際の、最も数が多かった螢光強度(ピ
ーク値)と、全体の螢光活性の平均値である。
(11) Creating a calibration curve Add FITC to 100 μl of standard solution containing H8A at different concentrations.
Labeled 1(SA (10til/ml) at 100p
Add H at a time. After adding 100 μl of the reagent to this mixed solution, the mixture was gently shaken for about 1 hour. Thereafter, the reaction solution was completely removed by centrifugation and suspended in 3 ml of PBS. This suspension was analyzed using a cell analyzer to obtain a calibration curve as shown in FIG. The vertical axis represents the most common fluorescence intensity (peak value) when ioo and ooo particles were analyzed, and the average value of the overall fluorescence activity.

(実施例2) ヒトIgG 、 IgMの同時測定 (1)試薬の調整 a、ヒトIgG分析用試薬 ポリスチレンピーズ(5,29μm)の固型分5mgを
ホウ酸緩衝食塩水(BBS  pH8,2) 2.5 
mlに懸濁させ、0.2 m97m1のアフィニティー
精製した抗ヒトIgG抗体(ヤギ) 2.5 mlと混
合する。室温で2時間、4℃で一晩ゆるやかに攪拌した
後、遠心分離し、PBS (1%BSA ) 5 ml
に懸濁し0.1%のラテックス試薬を得る。
(Example 2) Simultaneous measurement of human IgG and IgM (1) Preparation of reagents a. Reagent for human IgG analysis 5 mg of solid content of polystyrene beads (5.29 μm) was added to borate buffered saline (BBS pH 8.2) 2 .5
ml and mixed with 2.5 ml of 0.2 ml of affinity purified anti-human IgG antibody (goat). After gently stirring at room temperature for 2 hours and overnight at 4°C, centrifuge and add 5 ml of PBS (1% BSA).
to obtain a 0.1% latex reagent.

b、ヒトIgG分析用試薬 ポリスチレンピーズ(10μm)、抗ヒトIgMのアフ
ィニティー精製抗体(ヤギ)を用いて、aと同様の操作
を行い、最終的に0.2係のラテックス試薬5 mlを
得る。
b. Human IgG analysis reagent Perform the same procedure as a using polystyrene beads (10 μm) and anti-human IgM affinity purified antibody (goat) to finally obtain 5 ml of 0.2 latex reagent.

(11)検量線の作成 ■FITC標識のIgG 、 IgM、各々30 pg
/mlを含む混合液 ■(i)−a、bで調整した試薬の等景況合物。
(11) Creation of standard curve ■ FITC-labeled IgG, IgM, 30 pg each
/ml ■ (i) Isometric mixture of the reagents prepared in a and b.

■各々異なる濃度のIgG 、 IgMを含む標準液。■Standard solutions containing different concentrations of IgG and IgM.

■、■を100μl、■を200μl混合し2時間の反
応の後遠心分離し、PBSに再懸濁し、セルアナライザ
ーで分析する。すなわちコールタ−の原理により、5.
29μmと10βmのビーズは完全に区別され、その各
々のビーズについて、螢光活性を調べるわけである。分
析結果を第2図に示す。
Mix 100 μl of ①, ① and 200 μl of ②, and after 2 hours of reaction, centrifuge, resuspend in PBS, and analyze with a cell analyzer. That is, according to Coulter's principle, 5.
Beads of 29 .mu.m and 10 .beta.m are completely differentiated, and the fluorescent activity of each bead is examined. The analysis results are shown in Figure 2.

(効果) 本願発明の方法により、検体中に含まれる1又は複数の
被測定物質を同時に正確に測定できる。
(Effects) According to the method of the present invention, one or more substances to be measured contained in a specimen can be simultaneously and accurately measured.

この分析の好ましい実施態様は微粒子の大きさ、螢光活
性の同時測定をする機能をもつフローサイトメl−!J
 −(FCM )の利用である。FCMを利用すること
によって、粒径の差、粒子自体に持たせた螢光色素の種
類、量の差、等により微粒子を区別し、その各々につい
て、抗原抗体反応に起因する螢光活性を測定することが
可能になり、結果として同時多項目の測定が可能になる
A preferred embodiment of this analysis is a flow cytometer capable of simultaneously measuring particle size and fluorescence activity. J
- (FCM). By using FCM, fine particles can be differentiated based on differences in particle size, type and amount of fluorescent dye contained in the particles, etc., and the fluorescent activity caused by antigen-antibody reactions can be measured for each particle. As a result, it becomes possible to measure multiple items simultaneously.

こうして同時複数項目の測定が可能になると、総合的な
診断をする上で大きな手助けになシ、偽陽性、偽陰性の
ような誤診断の減少、また各疾患の早期発見などに大き
く寄与するであろう。
If it becomes possible to measure multiple items simultaneously in this way, it will be of great help in making a comprehensive diagnosis, and it will greatly contribute to the reduction of misdiagnoses such as false positives and false negatives, as well as the early detection of various diseases. Probably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は)ISAの濃度と螢光強度との関係、第2図は
、IgG及びIgMの濃度と螢光強度との関係を示す測
定例のグラフである。
FIG. 1 is a graph of a measurement example showing the relationship between the concentration of ISA and fluorescence intensity, and FIG. 2 is a graph showing the relationship between the concentration of IgG and IgM and fluorescence intensity.

Claims (1)

【特許請求の範囲】 1、検体中に含まれているn種の被測定物質のそれぞれ
の量を、被測定物質のそれぞれと特異的に結合するn種
の感応物質を担持させた微粒子を担体として利用して測
定する方法であって、粒径の大きさによって及び/又は
螢光物質による標識づけによってn種に判別できる該微
粒子を担体として用い、各々の種類の担体にそれぞれの
被測定物質と特異的に結合する前記n種の感応物質をそ
れぞれ担持させたものを試薬とし、検体中のn種の被測
定物質を標準物質として前記螢光物質とは異なった種類
の螢光物質により螢光標識し、螢光標識された標準物質
のそれぞれの一定量と検体との混合物を前記試薬に接触
させ、感応物質に対する被測定物質と螢光標識された標
準物質の競合反応を起させ、微粒子の螢光強度を測定す
ることを特徴とする微粒子の螢光強度測定による定量方
法。 2、特異的な結合が抗原・抗体反応であることを特徴と
する特許請求の範囲第1項記載の方法。 3、微粒子の螢光強度を、フローサイトメトリーによっ
て測定することを特徴とする特許請求の範囲第1項又は
第2項記載の方法。
[Scope of Claims] 1. The amount of each of the n types of analyte contained in the sample is determined by a carrier comprising fine particles carrying n types of sensitive substances that specifically bind to each of the analyte substances. In this method, the microparticles, which can be distinguished into n types by particle size and/or labeling with a fluorescent substance, are used as carriers, and each type of carrier is loaded with each substance to be measured. The above-mentioned n types of sensitive substances that specifically bind to the above-mentioned fluorescent substances are used as reagents, and the n types of analyte substances in the specimen are used as standard substances and fluorescent substances of a different type from the above-mentioned fluorescent substances are used as reagents. A mixture of a predetermined amount of each of the optically labeled and fluorescently labeled standard substances and the sample is brought into contact with the reagent to cause a competitive reaction between the analyte and the fluorescently labeled standard substance against the sensitive substance, and A quantitative method by measuring the fluorescence intensity of fine particles, characterized by measuring the fluorescence intensity of the particles. 2. The method according to claim 1, wherein the specific binding is an antigen-antibody reaction. 3. The method according to claim 1 or 2, wherein the fluorescence intensity of the fine particles is measured by flow cytometry.
JP22194985A 1985-10-07 1985-10-07 Quantification method by measurement of fluorescent intensity of fine particle Pending JPS6281566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22194985A JPS6281566A (en) 1985-10-07 1985-10-07 Quantification method by measurement of fluorescent intensity of fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22194985A JPS6281566A (en) 1985-10-07 1985-10-07 Quantification method by measurement of fluorescent intensity of fine particle

Publications (1)

Publication Number Publication Date
JPS6281566A true JPS6281566A (en) 1987-04-15

Family

ID=16774679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22194985A Pending JPS6281566A (en) 1985-10-07 1985-10-07 Quantification method by measurement of fluorescent intensity of fine particle

Country Status (1)

Country Link
JP (1) JPS6281566A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301584A1 (en) 1987-07-31 1989-02-01 Fujirebio Kabushiki Kaisha Immunological measuring method
JPS6435268A (en) * 1987-06-16 1989-02-06 Wallac Oy Assay of biologically specific multiple object to be analyzed
WO2002061427A1 (en) * 2001-01-31 2002-08-08 Novozymes A/S Method of analysing granular composition by fluorescence analysis
US7642086B2 (en) 2005-08-09 2010-01-05 Canon Kabushiki Kaisha Labeled probe bound object, method for producing the same and method for using the same
CN104101586A (en) * 2014-07-23 2014-10-15 中国计量科学研究院 Value defining method for microsphere fluorescent intensity standard substance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435268A (en) * 1987-06-16 1989-02-06 Wallac Oy Assay of biologically specific multiple object to be analyzed
EP0301584A1 (en) 1987-07-31 1989-02-01 Fujirebio Kabushiki Kaisha Immunological measuring method
WO2002061427A1 (en) * 2001-01-31 2002-08-08 Novozymes A/S Method of analysing granular composition by fluorescence analysis
CN100445745C (en) * 2001-01-31 2008-12-24 诺和酶股份有限公司 Method of analyzing granular composition by fluorescene analysis
US7642086B2 (en) 2005-08-09 2010-01-05 Canon Kabushiki Kaisha Labeled probe bound object, method for producing the same and method for using the same
CN104101586A (en) * 2014-07-23 2014-10-15 中国计量科学研究院 Value defining method for microsphere fluorescent intensity standard substance

Similar Documents

Publication Publication Date Title
US5374531A (en) Immunoassay for determination of cells
TW297094B (en)
CA1248873A (en) Particles and procedures for the determination of antigens and/or antibodies using the particles
US4108972A (en) Immunological reagent employing radioactive and other tracers
JP3553601B2 (en) Test method
JPH03502246A (en) Coagulation methods for the analysis of substances
JP4554766B2 (en) Blood analysis method and blood analysis kit
JPH0565822B2 (en)
EA017380B1 (en) Detection of antigens carried by erythrocytes and of anti-erythrocyte antibodies
JPH01163662A (en) Detection of antigen and/or antibody and test kit for detection
CA2905165A1 (en) Automated immunoanalyzer system for performing diagnostic assays for allergies and autoimmune diseases
JPH06317593A (en) Assay using specific solid-phase carrier for organism
KR920000056B1 (en) Process for the determination of a specifically bindable substance
US6551788B1 (en) Particle-based ligand assay with extended dynamic range
JP2005510706A5 (en)
US6933106B2 (en) Platelet immunoglobulin bead suspension and flow cytometry
Waris et al. Two-photon excitation fluorometric measurement of homogeneous microparticle immunoassay for C-reactive protein
JP2005506515A (en) Standard diluent for multi-species testing
JPS6281567A (en) Quantification method using particle agglutination reaction
JPS6281566A (en) Quantification method by measurement of fluorescent intensity of fine particle
US20140011190A1 (en) Method for performing a rapid test
JPS6336151A (en) Quantitative determination of fine particle by measuring fluorescent intensity
JP3618797B2 (en) Immunoassay
JP2004536042A (en) Phycoerythrin labeled thyronine analogs and assays using said labeled analogs
JPH01158354A (en) Reagent and method for immunological measurement of many components