JPS6281567A - Quantification method using particle agglutination reaction - Google Patents

Quantification method using particle agglutination reaction

Info

Publication number
JPS6281567A
JPS6281567A JP22194885A JP22194885A JPS6281567A JP S6281567 A JPS6281567 A JP S6281567A JP 22194885 A JP22194885 A JP 22194885A JP 22194885 A JP22194885 A JP 22194885A JP S6281567 A JPS6281567 A JP S6281567A
Authority
JP
Japan
Prior art keywords
particles
substances
measured
particle size
types
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22194885A
Other languages
Japanese (ja)
Inventor
Tatsuya Mizukoshi
水越 達也
Hisashi Ebisawa
海老沢 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP22194885A priority Critical patent/JPS6281567A/en
Publication of JPS6281567A publication Critical patent/JPS6281567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To make it possible to simultaneously quantify a plurality of substances, in a latex agglutination method, by allowing fine particles different in particle size to respectively support different responsive substances. CONSTITUTION:For example, particles are classified into two kinds in particle size and two kinds in the adhesion of a fluorescent dye and, further, ones having no dye adhered thereto are considered to form 6 groups in total. Reagents prepared by respectively supporting six kinds of antibodies by the particles of the groups are mixed with a specimen solution to prepare measuring solutions which are, in turn, measured by a flow sight meter together having colter volume measuring function and fluorescent intensity measuring function to obtain particle size distribution at every group. The concn. at every substance to be measured can be calculated by this particle size distribution and a plurality of the substances to be measured contained in a specimen can be simultaneously and accurately quantified.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、物質同志の特異的な結合、例えば、抗原抗体
反応などを利用した定量方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a quantitative method that utilizes specific binding between substances, such as antigen-antibody reaction.

(従来の技術) 免疫学的反応を利用した免疫測定法は、特異性、感度に
すぐれ、医療分野などにおいても、頻繁に利用されてい
る。中でもラジオイムノアッセイ(RIA ) 、エン
デイムイムノアノセイ(EIA )は感度、精度に優れ
、微量分析の分野では代表的なものである。RIAにつ
いては、1959年パーンンとヤロウがインスリン測定
法として用いたのをきっかけに世界中に広まシ、現在で
はタンパク質はもちろんホルモン、ウィルス、薬剤等に
も広く応用されている。しかし、その一方で、RI用の
特殊設備の必要性、RI汚染物の廃棄問題、RI標識物
の減衰などの問題があり、非放射性標識物の研究もさか
んに行われてきている。EIAは、こうした研究の中か
ら生まれてきたもので、発表された当時は、数年後には
、すべてRIAとおきかわるだろうとさえ言われていた
方法である。たしかに安全であシ、標識物の安定性が比
較的良く、抗原抗体結合型と遊離型との分離、いわゆる
B/P分離のいらないホモジニアスな系での測定が可能
であるといった長所もあるが、検出に酵素反応という生
物学的なものを利用しているといった不安定な要素もあ
る。また感度についても、測定物質によってはRIA以
上といった例はあるが、一般的にはRIAよシ落ちると
言われておシ今一つRIAにとって代わるに至らないの
が実情である。
(Prior Art) Immunoassay methods that utilize immunological reactions have excellent specificity and sensitivity, and are frequently used in the medical field. Among them, radioimmunoassay (RIA) and endeimmunoassay (EIA) have excellent sensitivity and accuracy, and are representative in the field of trace analysis. In 1959, Pearn and Yarrow used RIA as a method for measuring insulin, and it has spread all over the world, and is now widely applied not only to proteins but also to hormones, viruses, drugs, etc. However, on the other hand, there are problems such as the need for special equipment for RI, the problem of disposal of RI contaminated materials, and the attenuation of RI labeled materials, and research on non-radioactive labeled materials has been actively conducted. EIA was born out of this research, and at the time it was first announced, it was said to be a method that would completely replace RIA in a few years. It is true that it is safe, the stability of the labeled substance is relatively good, and it has the advantage of being able to be measured in a homogeneous system that does not require separation of antigen-antibody bound form and free form, so-called B/P separation. There are also unstable factors such as the use of biological enzyme reactions for detection. In terms of sensitivity, there are cases where the sensitivity is higher than that of RIA depending on the substance to be measured, but in general it is said to be lower than RIA, and the reality is that it cannot even replace RIA.

一方、抗原(又は抗体)を担持した微粒子、例えばラテ
ックス粒子に、抗体(又は抗原)を作用させた際に起こ
る凝集をプレート上で肉眼的に判断する゛ラテックス凝
集法”というものかあシ、その簡便性、迅速性も手伝っ
て、近年繁用されている。これについては、視覚に頼る
という定性的な面や感度が落ちる面などから、微量分析
にはむいていないとされているが、最近このラテックス
凝集を数値化する測定法が開発され、注目されている。
On the other hand, there is a method called "latex agglutination method" in which the agglutination that occurs when an antibody (or antigen) is applied to microparticles carrying an antigen (or antibody), such as latex particles, is visually determined on a plate. Due to its simplicity and speed, it has been frequently used in recent years.It is said that it is not suitable for trace analysis due to the qualitative aspect of relying on visual perception and the fact that sensitivity is low. Recently, a measurement method for quantifying latex aggregation has been developed and is attracting attention.

例えば、凝集塊の生成を透過率の変化としてとらえたL
PIA (Latex Photometric Im
muno −assay )について、「検査と技術」
誌第12巻第7号第581頁(1984年)に、LA 
(LatexAgglupination Immun
oassay )について、「医用電子と生体工学」誌
第22巻第4号第39頁(1984年)に紹介されてお
シ、また未凝集の粒子を計測するPACIA (Par
ticle CountingImmunoassay
 )が、r J、 of Immun、Meth、 J
誌の第18巻第33頁(1977年)に紹介されている
For example, L
PIA (Latex Photometric Im
muno-assay), “Inspection and Technology”
Magazine Vol. 12 No. 7 No. 581 (1984), LA
(LatexAgglupination Immun
oassay) was introduced in the Journal of Medical Electronics and Bioengineering, Vol. 22, No. 4, Page 39 (1984), and PACIA (Par
Tickle Counting Immunoassay
) is r J, of Immun, Meth, J
It is introduced in Volume 18, Page 33 of the magazine (1977).

その他、特開昭58−190760.特開昭59−17
3759゜特開昭56−151357などにも、ラテッ
クスを利用した技術が公開されておシ、これらの技術は
、測定対象によってはRIAの感度に匹敵するといわれ
ている。
Others, JP-A-58-190760. Japanese Unexamined Patent Publication 1986-17
Techniques using latex have also been disclosed in JP-A No. 3759-151357, etc., and these techniques are said to be comparable in sensitivity to RIA, depending on the object to be measured.

医療分野において、生体内の物質の変化によって病変等
を知ることはよく行われるが、この際一つのパラメータ
ーの変化のみから正確な判断を下すことは困難な場合が
多い。例えば、腫瘍マーカーとじては代表格のCEAに
ついても、臓器に対する特異性、あるいは良性疾患での
偽陽性などの未解決の問題があるといわれている。こう
した問題の解決のためには、いくつかのノソラメーター
を見て総合的に判断することが必須である。しかし、現
状では知りたい・ぐラメ−ターの数だけ測定を繰シ返・
すか、あるいは各・ぐラメ−ターの総和としての変化を
とらえることができるだけで、同時多項目の測定が可能
になった例がない。そのため、医師の労力はもちろんの
こと採血等による患者の負担、あるいは結果が出るまで
の時間も無視できないものがあった。また測定対象が血
液成分の場合、不純物、妨害物質等の影響で感度が落る
ことも多条あるとされている。
In the medical field, lesions and the like are often detected based on changes in substances within a living body, but in this case it is often difficult to make accurate judgments based solely on changes in one parameter. For example, CEA, which is a typical tumor marker, is said to have unresolved problems such as organ specificity and false positives in benign diseases. In order to solve these problems, it is essential to look at several nosolameters and make a comprehensive judgment. However, at present, it is necessary to repeat measurements for as many parameters as you want to know.
It is only possible to capture changes as a sum total of each parameter, and there is no example in which it has been possible to measure multiple items at the same time. Therefore, not only the labor of the doctor but also the burden on the patient due to blood sampling, etc., and the time required for results to be obtained cannot be ignored. Furthermore, when the target to be measured is blood components, sensitivity is often reduced due to the effects of impurities, interfering substances, etc.

(発明が解決しようとする問題点) 本発明は、上に述べた問題点を解決するためになされた
ものであり、いわゆる”ラテックス凝集法″に代表され
る物質同志の特異的な結合反応により、感応物質を担持
した微粒子の凝集状態を測定する方法を改良して一締体
中の複数の榊溜I窒物質の量を、同時にかつ正確迅速に
測定する方法を提供することにある。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems. Another object of the present invention is to provide a method for simultaneously, accurately and quickly measuring the amount of a plurality of Sakakidame I nitrogen substances in a single compact by improving a method for measuring the agglomeration state of fine particles carrying a sensitive substance.

(問題点を解決するための手段と作用)前記目的を達成
するためのこの発明の概要は、検体中のn種の被測定物
質のそれぞれの量を、被測定物質のそれぞれと特異的に
結合するn種の感応物質をそれぞれ担持させた粒径のそ
ろっている微粒子を利用して測定する方法であって、粒
径の大きさによって、及び/又は螢光物質あるいは染料
による標識づけによって、n種に判別できる該微粒子を
用い、各々の種類の粒子にそれぞれの被測定物質と特異
的に結合する前記n種の感応物質をそれぞれ担持させた
ものを試薬とし、試薬と検体とを接触させ、その結果生
じた微粒子の凝集状態を測定し、測定結果を微粒子の種
類ごとにグループ分けして集計して、n種の被測定物質
のそれぞれの量を測定することを特徴とする粒子凝集反
応を用いる定量方法である。ここで、nは、2以上の自
然数である。
(Means and effects for solving the problem) The outline of the present invention for achieving the above object is to reduce the amount of each of the n types of analyte substances in a sample by specifically binding to each of the analyte substances. This method uses microparticles of uniform particle size that support n types of sensitive substances, and the n Using the fine particles that can be distinguished into species, each type of particle is loaded with the n types of sensitive substances that specifically bind to the respective analyte as a reagent, and the reagent and the specimen are brought into contact with each other, The particle aggregation reaction is characterized in that the agglomeration state of the resulting particles is measured, the measurement results are grouped according to the type of particles, and the amounts of each of the n types of substances to be measured are measured. This is the quantitative method used. Here, n is a natural number of 2 or more.

物質同志の特異的な結合反応の代表的なものは、抗原抗
体反応であるが、それ以外にも、ホルモンとレセプター
、糖とレクチンなどの反応も利用が可能である。
A typical specific binding reaction between substances is the antigen-antibody reaction, but other reactions such as those between hormones and receptors, sugars and lectins, etc. can also be used.

抗原抗体反応を例にとシ、本発明の内容をさらに詳しく
説明する。測定対象が抗原となシ得るもの(ハシラン等
も含む)であれば、それに対応する抗体を微粒子に担持
させておく。測定対象によっては、抗原・抗体が逆の組
み合わせであってもよい。
The content of the present invention will be explained in more detail by taking an antigen-antibody reaction as an example. If the object to be measured can be an antigen (including Hashiran, etc.), the corresponding antibody is supported on the fine particles. Depending on the object to be measured, the combination of antigen and antibody may be reversed.

本発明では、複数の物質を、同時に定量する為に、微粒
子(0,1〜30μ程度の粒径のそろったもの)を予め
、複数のグループに判別できるように構成しておく。例
えば、粒子の径を複数のレベルにそろえておくこともで
きるし、螢光物質あるいは染料によって標識づけするこ
ともできる。また、これらの組合わせによって、より多
くのグループ分けができる。粒子を螢光物質で標識づけ
する場合、螢光物質の有・無又は濃度、螢光の種類(例
えば、フルオレッセイン(Fluorescein )
とPI (Propidium Iodide )を使
用)などによシ、複数のグループに判別できる。そして
、既述のように粒径を組み合わせることによシ、さらに
多くの粒子群の判別が可能である。
In the present invention, in order to quantify a plurality of substances at the same time, it is configured in advance so that fine particles (with uniform particle sizes of about 0.1 to 30 μm) can be classified into a plurality of groups. For example, the particles can be made to have multiple sizes, or they can be labeled with a fluorescent substance or dye. Further, by combining these, more groupings can be made. When particles are labeled with a fluorescent substance, the presence/absence or concentration of the fluorescent substance, the type of fluorescence (for example, fluorescein)
and PI (Propidium Iodide)), it can be distinguished into multiple groups. Furthermore, by combining particle sizes as described above, it is possible to discriminate even more particle groups.

微粒子としては例えば赤血球などの細胞、金属、リポソ
ーム等のマイクロカプセル、ポリスチレン等のラテック
ス粒子等が利用できる。
Examples of fine particles that can be used include cells such as red blood cells, metals, microcapsules such as liposomes, and latex particles such as polystyrene.

微粒子に所定の感応物質、例えば抗体を担持させるには
物理的に吸着させる方法、微粒子上の官能基を利用して
化学的に結合させる方法などが知られている。
In order to make microparticles support a predetermined sensitive substance, such as an antibody, there are known methods such as physical adsorption, chemical bonding using functional groups on the microparticles, and the like.

感応物質とは、被測定物質と特異的に反応する物質をい
い、被測定物質が抗原である場合には、その抗原と特異
的に反応する抗体である。前述のように、被測定物質の
種類によシ、ホルモンとレセプター、糖とレクチンなど
も利用できる。
The sensitive substance refers to a substance that reacts specifically with a substance to be measured, and when the substance to be measured is an antigen, it is an antibody that specifically reacts with the antigen. As mentioned above, depending on the type of substance to be measured, hormones, receptors, sugars, lectins, etc. can also be used.

抗体−抗原反応利用を例に、本発明の詳細な説明する。The present invention will be explained in detail by taking the use of an antibody-antigen reaction as an example.

抗体を担持した微粒子を含む試薬を、抗原を含む検体と
接触させると、抗原・抗体反応によシ、粒子が凝集する
。検体中の抗原(即ち、被検定物質)の濃度が高い程凝
集の機会が大きく、凝集の程度が犬となる。従って、凝
集の程度、即ち凝集状態を測定すれば、検体中の抗原即
ち、被測定物質の量を知ることができる。但し、被検定
物質の濃度が一定以上高くなるといわゆる地帯現象がお
こシ凝集の程度は低くなる。従って精度よく測定するに
は、検体の濃度を適当にコントロールすることが必要に
なる。
When a reagent containing fine particles carrying antibodies is brought into contact with a specimen containing an antigen, the particles aggregate due to an antigen-antibody reaction. The higher the concentration of the antigen (i.e., test substance) in the specimen, the greater the chance of agglutination, and the degree of agglutination will vary. Therefore, by measuring the degree of agglutination, that is, the state of agglutination, it is possible to know the amount of antigen, ie, the substance to be measured, in the specimen. However, when the concentration of the test substance increases beyond a certain level, a so-called zone phenomenon occurs and the degree of aggregation becomes low. Therefore, for accurate measurement, it is necessary to appropriately control the concentration of the specimen.

凝集の状態の測定法としては、凝集粒子をプレノやラー
ドにし、又は、その顕微鏡写真をとるなどして視覚によ
り観察計数する方法、凝集粒子を含む溶液の吸光度や散
乱光を測定する方法などがあげられる。しかし、これら
の方法は精度の問題や、粒子の種類を区別することは一
般的には容易でない。
Methods for measuring the state of aggregation include a method of visually observing and counting the agglomerated particles by turning them into plano or lard, or taking microscopic photographs, and a method of measuring the absorbance and scattered light of a solution containing the agglomerated particles. can give. However, these methods have problems with accuracy and it is generally not easy to distinguish between particle types.

従って、好ましい実施態様としては、これらの粒子又は
凝集した粒子を一つずつ、フローサイトメトリー法で測
定する方法を挙げることができる。
Therefore, a preferred embodiment is a method in which these particles or aggregated particles are measured one by one by flow cytometry.

フローサイトメトリー法とは、主として光学機器分析に
関するものであり粒子を1個ずつ流し、粒子にレーザー
光などをあてて、その散乱光を測定することによシ、粒
子の大きさ、色、或いは、予め粒子を螢光物質等で標識
づげしておき、その螢光強度測定等によシ粒子の形質を
測定するものである。又、いわゆるコウルターの原理に
よシ、粒子の容量(コウルターゴリウムという)を電気
的に測定する方法によるもの、これと光学測定とを合わ
せたものも利用されている。
Flow cytometry is mainly related to optical instrument analysis, and it allows particles to be flowed through one by one, illuminated with a laser beam, etc., and measured the scattered light. In this method, the particles are labeled in advance with a fluorescent substance, etc., and the characteristics of the particles are measured by measuring the intensity of the fluorescent light. In addition, based on the so-called Coulter's principle, a method of electrically measuring the capacitance of particles (called a Coulter gorium) and a method combining this and optical measurement are also used.

凝集状態は、粒子又は凝集粒子塊を一つずつ、その大き
さ又は粒子が螢光等で螢光活性をもっている場合はその
螢光強度等を測定して、その各々について、粒子の凝集
状態(即ち、非凝集粒子か2.3,4,5.・・・個の
粒子が凝集しているか?)を判定することによシ測定す
る。ある1種の粒子群について凝集反応の、粒度分布の
測定例を模式的に第1図に示す。n種の粒子群(n種の
被測定物質)を測定する場合には、第1図に相当するグ
ラフがn個得られる。
The agglomeration state can be determined by measuring the size of each particle or agglomerated particle agglomerate, or the fluorescence intensity if the particle is fluorescent or has fluorescent activity, and determining the aggregation state ( That is, the measurement is performed by determining whether the particles are non-agglomerated or 2.3, 4, 5... particles are aggregated. FIG. 1 schematically shows an example of measuring the particle size distribution of a certain type of particle group in an agglomeration reaction. When measuring n types of particle groups (n types of substances to be measured), n graphs corresponding to FIG. 1 are obtained.

粒子をn個のグループへ判別するには、例えば粒子径で
2グループ、螢光色素を2種類使用すれば、4グループ
の粒子を調整できる。さらに螢光色素を付着させない粒
子も調整すれば合計グループの粒子を調整できる。この
場合、6種の抗体を各グループの粒子にそれぞれ担持さ
せた試薬を、検体溶液と混合した測定液を、コウルター
& リウム測定機能と螢光強度測定機能とを併せもった
公知のフローサイトメーターで測定すると、粒子径と特
定波長の螢光の有無とによシ粒子のグループ分けが出来
、これに基づきグループ毎の粒径分布が得られる。
To distinguish particles into n groups, for example, by using two groups based on particle diameter and two types of fluorescent dyes, four groups of particles can be prepared. Furthermore, by adjusting particles to which no fluorescent dye is attached, the total group of particles can be adjusted. In this case, a measurement solution in which six types of antibodies are supported on each group of particles is mixed with a sample solution using a known flow cytometer that has both a Coulter & Lium measurement function and a fluorescence intensity measurement function. When measured, particles can be divided into groups based on the particle size and the presence or absence of fluorescence at a specific wavelength, and based on this, the particle size distribution for each group can be obtained.

との粒径分布により、被測定物質毎の濃度が計算できる
The concentration of each substance to be measured can be calculated from the particle size distribution.

尚このグループ分けには、特願昭60−130882に
示されている弁別回路が利用できる。
For this grouping, the discrimination circuit shown in Japanese Patent Application No. 130882/1982 can be used.

ここに、1種類の粒子を使用して、ヒト血清アルブミン
(ISA )の測定用検量線を作成した、参考例を示す
Here, a reference example is shown in which a calibration curve for measuring human serum albumin (ISA) was created using one type of particles.

(1)試薬の調整 粒径2.02μmの螢光色素含有のポリスチレンビーズ
(固型分1m9)をホウ酸等張緩衝液(BBS ) (
pH8,2)にて洗浄、遠心分離した後、10倍希釈し
た抗H8Aヤギ抗血清を5 ml加え懸濁する。室温で
2時間、4℃で1晩沈降しない程度に攪拌し、抗体のビ
ーズへの吸着を十分に行った後洗浄しpH7,4のリン
酸緩衝食塩水(PBS ) (保護コロイドとして11
 BSAを含有)1.25m1に懸濁する。20分程度
超音波をかけ、再分散を促した後1%懸濁液として試薬
に供す。
(1) Adjustment of reagent Polystyrene beads (solid content: 1 m9) containing a fluorescent dye with a particle size of 2.02 μm were mixed in a boric acid isotonic buffer (BBS).
After washing and centrifugation at pH 8.2), add 5 ml of 10-fold diluted anti-H8A goat antiserum and suspend. The beads were stirred for 2 hours at room temperature and overnight at 4°C until they did not precipitate, and the antibodies were thoroughly adsorbed onto the beads. After washing, the beads were washed with phosphate buffered saline (PBS) at pH 7.4 (11 as a protective colloid).
1.25 ml (containing BSA). After applying ultrasonic waves for about 20 minutes to promote redispersion, a 1% suspension is applied to the reagent.

(11)検量線の作成 異なった濃度のISAを含む標準i (PBS溶液)5
0μlと上記の試薬50μlを混合し、しばらく静置し
た後、5 mlのPBSを加え希釈する。これをフロー
サイトメーターで分析する。分析結果は第2図に示す。
(11) Creation of calibration curve Standard i containing different concentrations of ISA (PBS solution) 5
Mix 0 μl with 50 μl of the above reagent, let stand for a while, then add 5 ml of PBS to dilute. This will be analyzed using a flow cytometer. The analysis results are shown in Figure 2.

凝集状態の評価方法として、パラメーターとしてa・・
・平均粒子体積、b・・・単量体の個数/分析した個数
(チ)、C・・・二量体の個数/単量体の個数(%)な
どを計算して評価する方法があるが、測定条件によって
最も精度のよいものを選べばよい。第2図よシいずれの
パラメーターでも定量可能のことがわかるが、aが最も
変化率が大きく、この測定に適していることがわかる。
As a method for evaluating the aggregation state, the parameter a...
・There is a method of evaluation by calculating the average particle volume, b...number of monomers/number of analyzed particles (h), C...number of dimers/number of monomers (%), etc. However, the one with the highest accuracy can be selected depending on the measurement conditions. It can be seen from Figure 2 that any parameter can be quantified, but a has the largest rate of change and is suitable for this measurement.

(実施例) ヒトIgG 、 IgMの同時測定 (i)試薬の調整 螢光色素を含むポリスチレンビーズ(2,98μm)及
び含まないポリスチレンビーズ(2,95μm>各々に
、BBS(PH8,2)中4℃でアフィニティー精製の
抗ヒトIgG 、抗ヒ)IgM抗体を別々に担持させる
。十分に担持させた後洗浄し、 PBS (1%BSA
含有)に懸濁させ、超音波処理し、各々を等景況合する
。こうして得られた両ビーズ各々1チの懸濁液を試薬と
して供す。
(Example) Simultaneous measurement of human IgG, IgM (i) Preparation of reagents Polystyrene beads containing (2,98 μm) and polystyrene beads (2,95 μm) without fluorescent dye were each incubated at 4°C in BBS (PH8,2). Affinity-purified anti-human IgG and anti-human IgM antibodies are separately loaded at ℃. After sufficient support, wash and add PBS (1% BSA
(containing), sonicate, and mix each in the same conditions. One suspension of each of the beads thus obtained is used as a reagent.

(11)検量線の作成 IgG 、 IgMの各濃度を含む標準液50μlと上
記試薬50μlを混合し、しばらく静置した後5 ml
のPBSで希釈する。これをフローサイトメーターで螢
光色素の有無によって区別される各々の粒子ごとに凝集
状態を分析する。第3図に分析結果を示+− この結果よシ本発明の方法により複数の被測定物質が、
同時に正確に定量できることがわかる。
(11) Creating a calibration curve Mix 50 μl of the standard solution containing each concentration of IgG and IgM with 50 μl of the above reagent, let stand for a while, and then mix 5 ml.
dilute with PBS. The aggregation state of each particle, which is distinguished by the presence or absence of fluorescent dye, is analyzed using a flow cytometer. Figure 3 shows the analysis results.
It can be seen that accurate quantification is possible at the same time.

(効果) 本願発明の方法によれば、検体中に含まれる、複数の被
測定物質を同時に正確に定量できる。
(Effects) According to the method of the present invention, a plurality of substances to be measured contained in a specimen can be accurately quantified simultaneously.

本発明は、物質どうしの特異的な結合、例えば抗原抗体
反応を利用した測定法、すなわち抗原(抗体)を担持し
た粒子に抗体(抗原)が接触した際に起こる粒子の凝集
という現象を利用した免疫測定法に関してであり、特に
粒子あるいは凝集塊一つ一つを分析することによって、
既存の方法では読み取れ匁い様なわずかな変化を察知し
、その結果として測定感度を上げ、同時多項目の測定を
可能にしたものである。この方法は、各種研究用の微量
分析をはじめとして、臨床検査、薬物の定量など広い分
野で利用できる。測定対象が、抗原となシ得るもの(ハ
シテン等も含む)、あるいは抗体であれば、どのような
分野でも応用可能であり、また抗原抗体以外にも、ホル
モンとレセプター、糖とレクチンにも応用できる。粒子
一つ−つを分析するには、例えば顕微鏡のような手段も
可能であるが、よシ好ましいのはフローサイトメ) +
7−(FCM )の応用である。抗原抗体反応による粒
子の凝集をFCMで分析することによってホモジニアス
な系で未凝集粒子数、粒度分布、平均粒子容積などの/
IPラメーターが測定可能で、LPIA。
The present invention utilizes a measurement method that utilizes specific binding between substances, such as antigen-antibody reactions, that is, the phenomenon of particle aggregation that occurs when antibodies (antigens) come into contact with particles carrying antigens (antibodies). Concerning immunoassays, in particular by analyzing individual particles or aggregates,
Existing methods can detect slight changes such as momme, which increases measurement sensitivity and makes it possible to measure multiple items at the same time. This method can be used in a wide range of fields, including microanalysis for various research purposes, clinical testing, and drug quantification. It can be applied to any field as long as the measurement target is something that can be used as an antigen (including Hashiten, etc.) or an antibody.In addition to antigens and antibodies, it can also be applied to hormones, receptors, sugars, and lectins. can. To analyze individual particles, it is possible to use a microscope, but flow cytometry is preferred.)
This is an application of 7-(FCM). By analyzing particle aggregation due to antigen-antibody reactions using FCM, it is possible to determine the number of unaggregated particles, particle size distribution, average particle volume, etc. in a homogeneous system.
IP parameters can be measured, LPIA.

LA 、 PACIA等に比べ、パラメーターの数が多
く、精度、感度、共によくなっている。また、FCMの
特性である螢光活性での測定を利用しているため、色素
の有無、量の変化、種類(螢光波長の差)などによる粒
子の区別が可能になシ、同時多項目の測定も容易である
。この方法によって、多項目よシの総合的な判断が必要
な疾患、例えば、心疾患、肝疾患、腎疾患、あるいは凝
固線溶系異常、悪性腫瘍等の診断が大いに簡便、迅速に
なると考えられる。
Compared to LA, PACIA, etc., it has a larger number of parameters and has better accuracy and sensitivity. In addition, because it uses the measurement of fluorescence activity, which is a characteristic of FCM, it is possible to distinguish between particles based on the presence or absence of pigment, changes in amount, type (difference in fluorescence wavelength), etc. It is also easy to measure. It is thought that this method will greatly simplify and speed up the diagnosis of diseases that require comprehensive judgment based on multiple items, such as heart disease, liver disease, kidney disease, abnormalities in the coagulation and fibrinolytic system, and malignant tumors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、凝集反応の粒度分布曲線、 第2図は、H8A濃度とa・・・平均粒子体積、b・・
・単量体の個数/分析した個数、C・・・二量体の個数
/単量体の個数、 の関係を示す検量線、 第3図は、実施例にあげた、IgM 、 IgGの濃度
と平均粒子体積との関係を示す検量線を示す。
Figure 1 shows the particle size distribution curve of the agglutination reaction. Figure 2 shows the H8A concentration and a...average particle volume, b...
・Calibration curve showing the relationship between number of monomers/number of analyzed units, C... number of dimers/number of monomers, Figure 3 shows the concentrations of IgM and IgG mentioned in the examples. A calibration curve showing the relationship between and average particle volume is shown.

Claims (1)

【特許請求の範囲】 1、検体中のn種の被測定物質のそれぞれの量を、被測
定物質のそれぞれと特異的に結合するn種の感応物質を
それぞれ担持させた粒径のそろっている微粒子を利用し
て測定する方法であって、粒径の大きさによって、及び
/又は螢光物質あるいは染料による標識づけによって、
n種に判別できる該微粒子を用い、各々の種類の粒子に
それぞれの被測定物質と特異的に結合する前記n種の感
応物質をそれぞれ担持させたものを試薬とし、試薬と検
体とを接触させ、その結果生じた微粒子の凝集状態を測
定し、測定結果を微粒子の種類ごとにグループ分けして
集計して、n種の被測定物質のそれぞれの量を測定する
ことを特徴とする粒子凝集反応を用いる定量方法。 2、特異的な結合が抗原・抗体反応であることを特徴と
する特許請求の範囲第1項記載の方法。 3、微粒子の凝集状態を、フローサイトメトリーによっ
て測定することを特徴とする特許請求の範囲第1項又は
第2項記載の方法。
[Scope of Claims] 1. Particles of uniform size each carrying n types of sensitive substances that specifically bind to each of the n types of analyte substances in the sample. A method that uses microparticles to measure particles, by particle size and/or by labeling with fluorescent substances or dyes.
Using the fine particles that can be distinguished into n types, each type of particle supports each of the n types of sensitive substances that specifically bind to each analyte as a reagent, and the reagent and the sample are brought into contact. , a particle aggregation reaction characterized by measuring the agglomeration state of the resulting particles, grouping the measurement results by type of particles and totaling them, and measuring the amount of each of the n types of substances to be measured. quantitative method using 2. The method according to claim 1, wherein the specific binding is an antigen-antibody reaction. 3. The method according to claim 1 or 2, wherein the aggregation state of the fine particles is measured by flow cytometry.
JP22194885A 1985-10-07 1985-10-07 Quantification method using particle agglutination reaction Pending JPS6281567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22194885A JPS6281567A (en) 1985-10-07 1985-10-07 Quantification method using particle agglutination reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22194885A JPS6281567A (en) 1985-10-07 1985-10-07 Quantification method using particle agglutination reaction

Publications (1)

Publication Number Publication Date
JPS6281567A true JPS6281567A (en) 1987-04-15

Family

ID=16774662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22194885A Pending JPS6281567A (en) 1985-10-07 1985-10-07 Quantification method using particle agglutination reaction

Country Status (1)

Country Link
JP (1) JPS6281567A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301584A1 (en) 1987-07-31 1989-02-01 Fujirebio Kabushiki Kaisha Immunological measuring method
FR2627286A1 (en) * 1988-02-15 1989-08-18 Canon Kk Antigens optical detection for immunity investigation - using carriers illuminated by laser, forward and lateral scattered light collected by photodetectors connected to microprocessor
JPH01207663A (en) * 1988-02-15 1989-08-21 Canon Inc Method and instrument for sample inspection
JPH01270643A (en) * 1988-04-22 1989-10-27 Canon Inc Method for examination of specimen
JPH02504076A (en) * 1988-03-08 1990-11-22 シュムネ Microorganism detection and counting device and method
JPH032565A (en) * 1989-05-30 1991-01-08 Olympus Optical Co Ltd Immunoassay
US5162863A (en) * 1988-02-15 1992-11-10 Canon Kabushiki Kaisha Method and apparatus for inspecting a specimen by optical detection of antibody/antigen sensitized carriers
US5532140A (en) * 1994-03-23 1996-07-02 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for suspending microparticles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301584A1 (en) 1987-07-31 1989-02-01 Fujirebio Kabushiki Kaisha Immunological measuring method
JPS6435373A (en) * 1987-07-31 1989-02-06 Fujirebio Kk Method and device for high-sensitivity immunoassay
FR2627286A1 (en) * 1988-02-15 1989-08-18 Canon Kk Antigens optical detection for immunity investigation - using carriers illuminated by laser, forward and lateral scattered light collected by photodetectors connected to microprocessor
JPH01207663A (en) * 1988-02-15 1989-08-21 Canon Inc Method and instrument for sample inspection
US5162863A (en) * 1988-02-15 1992-11-10 Canon Kabushiki Kaisha Method and apparatus for inspecting a specimen by optical detection of antibody/antigen sensitized carriers
JPH02504076A (en) * 1988-03-08 1990-11-22 シュムネ Microorganism detection and counting device and method
JPH01270643A (en) * 1988-04-22 1989-10-27 Canon Inc Method for examination of specimen
JPH032565A (en) * 1989-05-30 1991-01-08 Olympus Optical Co Ltd Immunoassay
US5532140A (en) * 1994-03-23 1996-07-02 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for suspending microparticles

Similar Documents

Publication Publication Date Title
RU2111488C1 (en) Particle agglutination method for simultaneously examining several anolytes in the same sample
US6159748A (en) Evaluation of autoimmune diseases using a multiple parameter latex bead suspension and flow cytometry
US5374531A (en) Immunoassay for determination of cells
US4521521A (en) Particle reagent size distribution measurements for immunoassay
JPH03502246A (en) Coagulation methods for the analysis of substances
JP2000503404A (en) Assays using reference microparticles
CN110133277A (en) Multi-scale analysis quality testing is fixed
US6551788B1 (en) Particle-based ligand assay with extended dynamic range
JP2005510706A5 (en)
CN108291909B (en) Analyte detection and methods thereof
JP2005502871A (en) Particle homogeneous assay using laser-excited fluorescence detection capillary electrophoresis
Waris et al. Two-photon excitation fluorometric measurement of homogeneous microparticle immunoassay for C-reactive protein
US6933106B2 (en) Platelet immunoglobulin bead suspension and flow cytometry
JP2001033454A (en) Method and apparatus for determining substance to be detected on porous solid-phase ligand measuring test piece
JPS6281567A (en) Quantification method using particle agglutination reaction
JP2005077301A (en) Immunological detection carrier and measuring method
JP2603843B2 (en) Measuring method of antigen or antibody
JP2005506515A (en) Standard diluent for multi-species testing
JPS618664A (en) Specific connection fluid type blood corpuscle counting method
US20140011190A1 (en) Method for performing a rapid test
JPS6281566A (en) Quantification method by measurement of fluorescent intensity of fine particle
JP3618797B2 (en) Immunoassay
JP3916189B2 (en) Reagent for immunoassay and immunoassay
JPS6336151A (en) Quantitative determination of fine particle by measuring fluorescent intensity
CN114814243B (en) Quantitative detection kit and method applied to protein antigen