JPH01313737A - Inspection device for body to be inspected - Google Patents

Inspection device for body to be inspected

Info

Publication number
JPH01313737A
JPH01313737A JP14609588A JP14609588A JPH01313737A JP H01313737 A JPH01313737 A JP H01313737A JP 14609588 A JP14609588 A JP 14609588A JP 14609588 A JP14609588 A JP 14609588A JP H01313737 A JPH01313737 A JP H01313737A
Authority
JP
Japan
Prior art keywords
sample liquid
light
latex
irradiated
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14609588A
Other languages
Japanese (ja)
Inventor
Moritoshi Miyamoto
守敏 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14609588A priority Critical patent/JPH01313737A/en
Publication of JPH01313737A publication Critical patent/JPH01313737A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To detect a latex grain lump with high accuracy even by a small quantity of sample liquid by allowing an irradiating light to transmit through the sample liquid in an optical cell plural times. CONSTITUTION:The sample liquid of a latex suspension of prescribed concentration stored in an optical cell 2 is irradiated by a laser beam emitted from a light source 1. The light which has transmitted through the sample liquid is reflected by a mirror 3 and the optical path is loop back, and the sample liquid is irradiated by the light again. The light which has transmitted through the sample liquid again is detected as to its light intensity by a photodetector 5 through a condensing lens 4, and inputted to an arithmetic circuit 10. In the arithmetic circuit 10, absorbance is calculated from the transmitting light intensity which has been detected, and an immunity reaction inspection is executed by a well-known method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は免疫学的診断法として微量の抗原または抗体の
検出に用いられる検体検査装置、例えばラテックス凝集
反応を光学的に測定して抗原または抗体の検出を行なう
装置に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is a specimen testing device used for detecting trace amounts of antigen or antibodies as an immunodiagnostic method, for example, by optically measuring latex agglutination reaction to detect antigens or antibodies. The present invention relates to a device for detecting antibodies.

[従来の技術] 特定の抗体または抗原で感作した不溶性担体粒子(例え
ばラテックス粒子)が所定濃度で浮遊する懸濁液に抗原
または抗体を含む被検試料(例えば血清)を加えた懸濁
液を用意して照射光を照射する。その時、懸濁液中のラ
テックス粒子が分散状態にある場合は粒子径よりはるか
に長い波長の光は、第7図(a)のようにラテックス粒
子の存在にあまり影響されずに透過する。すなわち大き
な強度の透過光が得られる。ところが抗原抗体反応によ
って前記感作されたラテックスが互いに結合し大きな粒
子径の粒子塊を形成し、凝集した粒子塊の粒子径が光の
波長に近づくと、第7図(b)のように粒子によって光
は散乱して透過光強度が減少する。この透過光強度の時
間的な変化を捕えた反応速度から懸濁液の濃度を測定し
て分析する反応速度分析法や、反応が終了した後に懸濁
液の透過光強度や散乱光強度を測定して分析する反応終
端分析法等が従来から一般に知られている。これによっ
て被検試料中の特定の抗原量または抗体量を測定するこ
とが可能となり、免疫学的診断が行なわれていた。
[Prior Art] A suspension in which a test sample (e.g. serum) containing an antigen or antibody is added to a suspension in which insoluble carrier particles (e.g. latex particles) sensitized with a specific antibody or antigen are suspended at a predetermined concentration. Prepare and irradiate the irradiation light. At that time, if the latex particles in the suspension are in a dispersed state, light with a wavelength much longer than the particle diameter is transmitted without being greatly affected by the presence of the latex particles, as shown in FIG. 7(a). That is, transmitted light with high intensity can be obtained. However, due to the antigen-antibody reaction, the sensitized latex binds to each other to form particle agglomerates with large particle diameters, and when the particle diameter of the aggregated particle agglomerates approaches the wavelength of light, the particles form as shown in FIG. 7(b). The light is scattered and the transmitted light intensity is reduced. There is a reaction rate analysis method that measures and analyzes the concentration of the suspension from the reaction rate that captures the temporal change in the intensity of transmitted light, and measures the intensity of transmitted light and scattered light of the suspension after the reaction is completed. Reaction termination analysis methods have been generally known for a long time. This has made it possible to measure the amount of a specific antigen or antibody in a test sample, and has been used for immunological diagnosis.

一例として、第5図のように透明な容器である光学セル
14の中に試料液である所定濃度のラテックス粒子懸濁
液を蓄え、それに対してレーザ光源11からレーザ光を
照射し、その透過光強度を光検出器16で検出して吸光
度を求め、試料液中の反応混合物の大きさや量を検出し
、それによってラテックス粒子の凝集状態の判断ができ
、目的とする抗原または抗体の量を定量することができ
る。
As an example, as shown in FIG. 5, a latex particle suspension of a predetermined concentration, which is a sample liquid, is stored in an optical cell 14, which is a transparent container, and a laser beam is irradiated onto it from a laser light source 11. The light intensity is detected by the photodetector 16 to determine the absorbance, and the size and amount of the reaction mixture in the sample solution can be detected, thereby determining the aggregation state of the latex particles and determining the amount of the target antigen or antibody. Can be quantified.

[発明が解決しようとしている問題点]しかしながら、
上記従来例のようにラテックス粒子懸濁液の吸光度によ
ってラテックス粒子の凝集塊の大きさを検出する場合、
第6図に示すようにラテックス粒子塊の粒径が大きくな
るに従い吸光度は直線的に増加するが、照射光の波長が
400nmや600nmといった短い波長の場合は、ラ
テックス粒径がある一定の大きさを越えると、逆に吸光
度のグラフは低下してしまい、透過光強度から求まフた
吸光度に対して2つの粒径が対応してしまい、どちらの
粒径が正しい値か判断することができなかりた。そこで
吸光度のグラフが低下しないような長い波長の光、例え
ば波長800nmの光を用いた場合には、ある粒径(約
1.0μm)以上になると粒径の変化に対して吸光度の
変化が小さく、測定感度が悪いという問題点があった。
[Problem that the invention seeks to solve] However,
When detecting the size of latex particle aggregates by the absorbance of a latex particle suspension as in the conventional example above,
As shown in Figure 6, as the particle size of the latex particle agglomerates increases, the absorbance increases linearly, but when the wavelength of the irradiated light is short, such as 400 nm or 600 nm, the latex particle size remains constant. If this value is exceeded, the absorbance graph will decrease, and two particle sizes will correspond to the absorbance determined from the transmitted light intensity, making it difficult to judge which particle size is the correct value. There wasn't. Therefore, when using light with a long wavelength such that the absorbance graph does not decrease, for example, light with a wavelength of 800 nm, the change in absorbance becomes small when the particle size exceeds a certain value (approximately 1.0 μm). However, there was a problem in that the measurement sensitivity was poor.

本発明は上述した問題点の解決、すなわち測定感度の高
い検体検査装置の提供を目的とする。同時に少ない試料
液でも高感度の測定が可能な検体検査装置の提供を目的
とする。
The present invention aims to solve the above-mentioned problems, that is, to provide a sample testing device with high measurement sensitivity. The object of the present invention is to provide a sample testing device that can simultaneously perform highly sensitive measurements even with a small amount of sample liquid.

[問題点を解決するための手段] 上述した問題点を解決するため、試料液に照射光を照射
し透過光強度を測定することにより試料液中の粒子の凝
集状態を測定する検体検査装置において、前記照射光を
複数回試料液中を通過させる手段を備える。
[Means for Solving the Problems] In order to solve the above-mentioned problems, in a specimen testing device that measures the state of aggregation of particles in a sample liquid by irradiating the sample liquid with irradiation light and measuring the intensity of the transmitted light. , comprising means for causing the irradiation light to pass through the sample liquid multiple times.

[第1実施例コ 以下、本発明の実施例を図面を用いて詳細に説明する。[First embodiment Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の第1実施例の構成図であり、レーザ光
源1(波長800nmの半導体レーザ)から発射された
レーザ光は、光学セル2の中に蓄えられた所定濃度のラ
テックス懸濁液の試料液に照射される。試料液を透過し
た光はミラー3により反射され光路が折り返され、再び
試料液に照射される。再び試料液を透過した光は集光レ
ンズ4を介して光検出器5で光強度が検出され、演算回
路10に入力される。演算回路10において、検出され
た透過光強度から吸光度が算出され、周知の方法にて免
疫反応検査が行なわれる。
FIG. 1 is a block diagram of a first embodiment of the present invention, in which laser light emitted from a laser light source 1 (semiconductor laser with a wavelength of 800 nm) emits a latex suspension of a predetermined concentration stored in an optical cell 2. The sample liquid is irradiated. The light that has passed through the sample liquid is reflected by the mirror 3, the optical path is turned back, and the sample liquid is irradiated again. The light intensity of the light that has passed through the sample liquid again is detected by the photodetector 5 via the condensing lens 4, and is input to the arithmetic circuit 10. In the arithmetic circuit 10, absorbance is calculated from the detected transmitted light intensity, and an immune reaction test is performed using a well-known method.

実施例においては、照射光が試料液中を2回透過するこ
とによって透過距離が2倍となる。この時の吸光度と粒
径の関係はグラフは第2図に示すように、1回透過に比
べてグラフの傾きも全体的に約2倍となっており、従来
のような1回透過の時にはラテックス粒径1.0μm以
上でグラフの傾きが小さく正確な粒径が求めにくかった
ものが、グラフの傾きが約2倍に大きくなることでラテ
ックス粒径が求めやすくなっている。すなわち測定感度
も約2倍に高くなっている。
In the example, the irradiation light passes through the sample liquid twice, thereby doubling the transmission distance. The relationship between absorbance and particle size at this time is shown in Figure 2, where the overall slope of the graph is approximately twice that of the one-time transmission. When the latex particle size was 1.0 μm or more, the slope of the graph was small and it was difficult to determine the accurate particle size, but the slope of the graph is about twice as large, making it easier to determine the latex particle size. In other words, the measurement sensitivity is also approximately twice as high.

なお本実施例ではミラーを1つ設けて反射させることに
より、照射光を試料液中に2回透過させているが、ミラ
ーをさらに複数個設け、照射光を複数回試料液中を透過
させることによりさらに感度を上げることができる。こ
れにより光学セル2が小さく、試料液が少量であっても
感度の高い測定が可能となる。
In this example, the irradiated light is transmitted through the sample liquid twice by providing one mirror and reflecting it, but it is also possible to provide a plurality of mirrors and cause the irradiated light to pass through the sample liquid multiple times. The sensitivity can be further increased. As a result, even if the optical cell 2 is small and the sample liquid is small, highly sensitive measurement is possible.

[実施例2] 第3図は本発明の第2実施例の構成図である。[Example 2] FIG. 3 is a block diagram of a second embodiment of the present invention.

光学セル2の片面にはミラー反射部9がコーティングさ
れており、試料液を透過した照射光はミラー反射部9で
反射される。これにより第1実施例と同様の効果が得ら
れる。
One side of the optical cell 2 is coated with a mirror reflection part 9, and the irradiated light that has passed through the sample liquid is reflected by the mirror reflection part 9. As a result, the same effects as in the first embodiment can be obtained.

[実施例3] 第4図は本発明の第3実施例の構成図である。[Example 3] FIG. 4 is a block diagram of a third embodiment of the present invention.

光路中、光学セル2とミラー3の間にはハーフミラ−6
が設けられ、ハーフミラ−6で反射された光は集光レン
ズ7を介して光検出器8で受光される。光検出器8の出
力は光検出器5と同様演算回路10に入力される。この
構成において試料液を1回だけ透過した光は光検出器8
で検出され、試料液を2回透過した光は光検出器5で検
出される。なおミラー3、ハーフミラ−6を3組以上設
けて各々の出力を取り出して選択的に検出することも当
然可能である。
A half mirror 6 is placed between the optical cell 2 and the mirror 3 in the optical path.
is provided, and the light reflected by the half mirror 6 is received by a photodetector 8 via a condenser lens 7. The output of the photodetector 8 is input to the arithmetic circuit 10 similarly to the photodetector 5. In this configuration, the light that has passed through the sample liquid only once is detected by the photodetector 8.
The light that has passed through the sample liquid twice is detected by the photodetector 5. Of course, it is also possible to provide three or more sets of mirrors 3 and half mirrors 6 and extract the output from each for selective detection.

これにより、試料液を複数回透過して透過光光路長が長
くなると光量が小さくなり、雑音の影響が大きくなって
S/N比が悪くなる場合に、最適な光量が得られる出力
を選択して測定することができる。
This allows you to select the output that provides the optimal amount of light when the sample liquid is passed through the sample liquid multiple times and the optical path length of the transmitted light becomes longer, resulting in a smaller amount of light, which increases the influence of noise and worsens the S/N ratio. can be measured.

[発明の効果] 以上本発明によれば、照射光を複数回光学セル中の試料
液を透過させることにより、少ない試料液でも精度良く
ラテックス粒子塊を検出することができ、それにより抗
原または抗体の量を精度良く検出することができる。
[Effects of the Invention] As described above, according to the present invention, by transmitting irradiation light through the sample liquid in the optical cell multiple times, it is possible to detect latex particle clusters with high accuracy even with a small amount of sample liquid, thereby detecting antigens or antibodies. The amount of can be detected with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の構成図、第2図は実施例
におけるラテックス粒径と吸光度との関係を表わすグラ
フ、 第3図は第2実施例の構成図、 第4図は第3実施例の構成図、 第5図は従来例の構成図、 第6図は客羊#名各種波長におけるラテックス粒径と吸
光度の関係を表わすグラフ、 第7図は測定原理の説明図 であり、図中、 1・・・半導体レーザ、2・・・光学セル、3・・・ミ
ラー、4・・・集光レンズ、5・・・光検出器、6・・
・ハーフミラ−110・・・演算回路 /ρ ラーfックス樟仁才邑 いmノ ラテ・ンクス#イそしゆノ
Fig. 1 is a block diagram of the first embodiment of the present invention, Fig. 2 is a graph showing the relationship between latex particle size and absorbance in the embodiment, Fig. 3 is a block diagram of the second embodiment, and Fig. 4 is a graph showing the relationship between the latex particle size and absorbance in the embodiment. The configuration diagram of the third embodiment, Figure 5 is the configuration diagram of the conventional example, Figure 6 is a graph showing the relationship between latex particle size and absorbance at various wavelengths, and Figure 7 is an explanatory diagram of the measurement principle. Yes, in the figure: 1... Semiconductor laser, 2... Optical cell, 3... Mirror, 4... Condensing lens, 5... Photodetector, 6...
・Half mirror 110...Arithmetic circuit/rho

Claims (1)

【特許請求の範囲】[Claims] 1、試料液に照射光を照射し透過光強度を測定すること
により試料液中の粒子の凝集状態を測定する検体検査装
置において、前記照射光を複数回試料液中を透過させる
手段を備えることを特徴とする検体検査装置。
1. A specimen testing device that measures the state of aggregation of particles in a sample liquid by irradiating the sample liquid with irradiation light and measuring the transmitted light intensity, including means for transmitting the irradiation light through the sample liquid multiple times. A sample testing device featuring:
JP14609588A 1988-06-14 1988-06-14 Inspection device for body to be inspected Pending JPH01313737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14609588A JPH01313737A (en) 1988-06-14 1988-06-14 Inspection device for body to be inspected

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14609588A JPH01313737A (en) 1988-06-14 1988-06-14 Inspection device for body to be inspected

Publications (1)

Publication Number Publication Date
JPH01313737A true JPH01313737A (en) 1989-12-19

Family

ID=15400024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14609588A Pending JPH01313737A (en) 1988-06-14 1988-06-14 Inspection device for body to be inspected

Country Status (1)

Country Link
JP (1) JPH01313737A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300547A (en) * 2004-04-14 2005-10-27 Spectromedical Inc Spectroscopic method and apparatus for analyte measurement
WO2012127650A1 (en) * 2011-03-23 2012-09-27 エイブル株式会社 Turbidity measurement device
WO2022239641A1 (en) * 2021-05-13 2022-11-17 日本特殊陶業株式会社 Water quality sensor and method for measuring concentration of substance in water
US11583109B2 (en) 2005-09-12 2023-02-21 Rtc Industries, Inc. Product management display system with trackless pusher mechanism

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300547A (en) * 2004-04-14 2005-10-27 Spectromedical Inc Spectroscopic method and apparatus for analyte measurement
US11583109B2 (en) 2005-09-12 2023-02-21 Rtc Industries, Inc. Product management display system with trackless pusher mechanism
WO2012127650A1 (en) * 2011-03-23 2012-09-27 エイブル株式会社 Turbidity measurement device
WO2022239641A1 (en) * 2021-05-13 2022-11-17 日本特殊陶業株式会社 Water quality sensor and method for measuring concentration of substance in water
JPWO2022239641A1 (en) * 2021-05-13 2022-11-17

Similar Documents

Publication Publication Date Title
US5162863A (en) Method and apparatus for inspecting a specimen by optical detection of antibody/antigen sensitized carriers
JPS5925460B2 (en) Nephelometric immunoassay method and device
NO750639L (en)
US9459271B2 (en) Analyzer and automatic analyzer
US4988630A (en) Multiple beam laser instrument for measuring agglutination reactions
US4889815A (en) Nephelometric method for determination of an antigen or antibody content in whole blood
US4799796A (en) Method and apparatus for measuring immunological reaction with the aid of phase-modulation of light
JPH01313737A (en) Inspection device for body to be inspected
JP2675895B2 (en) Sample processing method, sample measuring method, and sample measuring device
JPS6319560A (en) Method for discriminating prozone in immunoreaction
JP6031552B2 (en) Automatic analyzer and analysis method
JPH03154850A (en) Specimen inspecting device
US4240753A (en) Method for the quantitative determination of turbidities, especially of immune reactions
JPS60111963A (en) Method and apparatus for analyzing components of body fluids
JPH0574020B2 (en)
JPS61173138A (en) Method for measuring immune reaction by intensity fluctuation of light
JPS6314295B2 (en)
JPH0556817B2 (en)
JPH01207663A (en) Method and instrument for sample inspection
JPH01314949A (en) Apparatus for examination of specimen
JPH03274463A (en) Method and apparatus for examining specimen
JPH03274462A (en) Apparatus and reagent for examining specimen
JPS6165144A (en) Instrument for measuring immune reaction using intensity fluctuation of light
JPH01270643A (en) Method for examination of specimen
JPS58187860A (en) Optical measurement of emmunological agglutination