JPS60111963A - Method and apparatus for analyzing components of body fluids - Google Patents

Method and apparatus for analyzing components of body fluids

Info

Publication number
JPS60111963A
JPS60111963A JP58219753A JP21975383A JPS60111963A JP S60111963 A JPS60111963 A JP S60111963A JP 58219753 A JP58219753 A JP 58219753A JP 21975383 A JP21975383 A JP 21975383A JP S60111963 A JPS60111963 A JP S60111963A
Authority
JP
Japan
Prior art keywords
particles
sample liquid
aggregation
antigen
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58219753A
Other languages
Japanese (ja)
Other versions
JPH0619349B2 (en
Inventor
Shingo Suminoe
伸吾 住江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Tao Medical Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp, Tao Medical Electronics Co Ltd filed Critical Sysmex Corp
Priority to JP58219753A priority Critical patent/JPH0619349B2/en
Publication of JPS60111963A publication Critical patent/JPS60111963A/en
Publication of JPH0619349B2 publication Critical patent/JPH0619349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To rapidly and simply perform the measurement of components in body fluids with high accuracy, by generating antigen antibody reaction by mixing a reagent and a specimen and calculating an agglutination ratio by a predetermined method while flowing the specimen solution. CONSTITUTION:Serum to be examined is diluted with a buffer solution while the diluted solution is mixed with a suspension of polystyrene latex to which the adhesion treatment of an antibody is applied and the resulting mixture is introduced into a reaction tank 5 with a thermostatic apparatus 4 and positive pressure is applied to a sheath tank 7 by a pump 17 through a pressure regulator 8 while said mixture is stirred through a motor 3 to supply the sheath solution and the agglutinated specimen solution to a detection pipe 1 under pressure. Particles are passed through the focus of condensed beam due to the cylindrical lens system 12 of beam from a semiconductor laser source 11 at a high speed in a state arranged into almost one line. Scattered beam by particles is received by a photodiode 16 through a beam blocking plate 15. The output thereof is applied to a microcomputer 26 through an amplifier 21, a limiter 22, an amplifier 23a, filter buffer and a discriminating circuit 25 to calculate an agglutination ratio. By this method, measurement of components in body fluids is performed rapidly and simply with high accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、蛋白質などの体液成分の分析方法と、この
方法に使nJする分析装置とに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for analyzing body fluid components such as proteins, and an analysis apparatus used in this method.

従来例の構成とその問題点 主に血液中に含まれる体液成分は極めて微量なものが多
いが、水分のBp4節、物質の輸送、免疫など生命維持
に重要な役割を果たしている。
Structure of the conventional example and its problems Many body fluid components mainly contained in blood are in extremely small quantities, but they play an important role in maintaining life, such as in the Bp4 node of water, transport of substances, and immunity.

現在まで、これら体液微量成分の測定には、沈降反応、
凝集反応(本質的には沈降反応と同じであるが主に受身
凝集反応を指す)などの免疫学的手法が用いられてきた
Until now, the methods of measuring these trace components of body fluids include sedimentation reactions,
Immunological techniques such as agglutination reactions (essentially the same as precipitation reactions, but mainly referring to passive agglutination reactions) have been used.

沈降反応の代表的なものに免疫電気泳動法、−光放射状
免疫拡散法(SR1D法)などがあり、近年になってラ
ジオイムノアッセイ法)、レーザネフェロメトリ法(L
N法)、エンザイムイムノアソセイ法(EIA法)等が
開発されている。そし°ζ、RIA法、EIA法がナノ
グラム単位、5RID法! LN法がミリグラム11位
の測定法としてルーチン化されている。
Typical precipitation reactions include immunoelectrophoresis and SR1D (radial immunodiffusion), and in recent years, radioimmunoassay) and laser nephelometry (SR1D) have been widely used.
N method), enzyme immunoassay method (EIA method), etc. have been developed. Then °ζ, RIA method, EIA method in nanogram units, 5RID method! The LN method has become routine as the 11th milligram measurement method.

免疫電気泳動法、5RID法は長時間(1日から数日)
かげてゲル内での拡散沈降を見るもので、他の微粒子の
影響や変性等の誤差要因の混入機会が多く精度、再現性
に難があった。
Immunoelectrophoresis and 5RID methods take a long time (1 to several days)
However, since this method involves looking at diffusion and sedimentation within a gel, there are many opportunities for error factors such as the effects of other particles and denaturation to occur, making accuracy and reproducibility difficult.

RI A法、EIA法は感度が高く精度も高いが、放射
線、酵素を使用するため、試薬の調製に時間と労力を要
し、また保管、保存上にも規制があり、細かい配慮を要
求されるので、ノンアイソトビツク的な、より簡便な方
法がめられている。
The RIA method and EIA method are highly sensitive and accurate, but since they use radiation and enzymes, they require time and effort to prepare reagents, and there are regulations regarding storage and storage, which require careful consideration. Therefore, a simpler, non-isotropic method is being sought.

凝集反応の代表的なものとして、1956年にSing
erとPlotzらによって開発されたラテックス凝集
反応がある。この測定法は、反応そのものの感度は非常
に高いのに反し、目視法であるため半定量法であるとい
う弱点があり、沈降反応法の種々の欠点が解決されてい
ない実情にもかかわらず沈降反応法に比較して凝集反応
法の発展は遅れていた。
As a representative example of agglutination reactions, Sing was developed in 1956.
There is a latex agglutination reaction developed by Er and Plotz et al. Although this measurement method has a very high sensitivity of the reaction itself, it has the weakness of being a semi-quantitative method because it is a visual method. The development of the aggregation reaction method was delayed compared to the reaction method.

1970年以降、ラテックス凝集を光学的に定量する方
法が開発されるようになった。Dezelcら、F 、
Hoffman、Lakoche&Co 八ktien
gesellschaft ら(英国特許138439
9 )、日本における沢井らによるものは著名である(
Latex Agglutination Syste
m)。
Since 1970, methods have been developed to optically quantify latex aggregation. Dezelc et al., F.
Hoffman, Lakoche & Co.
Gesellschaft et al. (UK patent 138439)
9), and the one by Sawai et al. in Japan is well-known (
Latex Agglutination System
m).

近年のLAシステム、Lj)IAシステムと呼ばれる機
器がそれらの流れをくむものであり、測定レンジが広く
、迅速でtit度もよく、新しい体液成分測定器として
注目されている。それらはラテックス凝集法(LA法)
とも呼ばれる。
Recent devices called LA systems and Lj)IA systems are a descendant of these systems, and are attracting attention as new body fluid component measuring instruments because of their wide measurement range, speed, and good titness. They are latex agglomeration method (LA method)
Also called.

しかしながら、懸濁試料液全体に近赤外線あるいは可視
光を照射して、グロスで比濁によって定量するため、L
N法と同様、乳び血清、ビリルビン血清、溶血血i’i
 (ヘモグロビン)等の試料の色相や状態差が比濁値に
影響するなどの誤差要因が避けられない。LA法は、L
N法に比べ希釈率も高く、短時間の能率的な測定法なの
で、これらによる誤差はかなり緩和されているが、高濃
度(ヘモグロビン0.25 g /di、ビリルビン2
51■/rU以上)の場合は前記と同様に測定誤差を生
ずる。
However, L
Similar to the N method, chyle serum, bilirubin serum, hemolysate i'i
Error factors such as differences in hue and state of samples such as hemoglobin (hemoglobin) that affect the nephelometric value cannot be avoided. The LA method is
Compared to the N method, the dilution rate is higher and it is an efficient measurement method in a short time, so errors caused by these are considerably reduced.
51 .mu./rU or more), a measurement error occurs as described above.

また、LA法、Ll)IA法の非直線性は誤差発見を困
難にし、測定範囲に制限を与える。また、測定前の自然
凝集差による校正誤差(a度変換誤差)や凝集モード差
による較正誤差も精度向上の面から無視できない誤差要
因である。それは保存中に自然凝集が起こり得るからで
ある。
Furthermore, the nonlinearity of the LA method and the Ll)IA method makes it difficult to detect errors and limits the measurement range. In addition, calibration errors due to natural aggregation differences before measurement (a degree conversion errors) and calibration errors due to aggregation mode differences are also error factors that cannot be ignored from the perspective of improving accuracy. This is because spontaneous aggregation may occur during storage.

発明の目的 この発明の目的は、非凝集粒子、2個凝集粒子、3.4
.5個凝集粒子を個々に直接計数し、凝集の実態を把握
することによって、上記の欠点をカバーし、迅速、簡単
に、より高精度な体液成分δ、り定を可能にする体液成
分分析方法およびその装置を提供することである。
Purpose of the invention The purpose of the invention is to obtain non-agglomerated particles, two-aggregated particles, 3.4
.. A body fluid component analysis method that overcomes the above drawbacks and enables quick, easy, and highly accurate determination of body fluid components δ by directly counting five aggregated particles individually and understanding the actual state of aggregation. and to provide the equipment.

発明の構成 第1の発明の体液成分分析方法は、体液中に含まれる抗
原もしくは抗体と特異的に反応する抗体もしくは抗原を
付着した不溶性担体を含む試薬と試料を混合して抗原抗
体反応を起こさせる工程と、前記抗原抗体反応ずみの試
料液を流しながらこの試料液に含まれている粒子につい
ての凝集程度別の粒子数をめる工程と、式 %式%(1) (ただし、nは凝集数、Pnは凝集数nの粒子の数、M
は凝集数1の粒子(モノマー)の数、kば2以上の任意
の自然数)から凝集率Xをめる工程とを含むものである
Structure of the Invention The method for analyzing body fluid components of the first invention involves mixing a sample with a reagent containing an antibody that specifically reacts with an antigen or antibody contained in a body fluid, or an insoluble carrier to which an antigen is attached, to cause an antigen-antibody reaction. a step of flowing the antigen-antibody-reacted sample solution and counting the number of particles according to the degree of aggregation of particles contained in the sample solution, and a step of calculating the number of particles according to the degree of aggregation of the particles contained in the sample solution, and the formula % formula % (1) (where n is aggregation number, Pn is the number of particles with aggregation number n, M
The method includes the step of calculating the aggregation rate X from the number of particles (monomers) with an aggregation number of 1, where k is an arbitrary natural number of 2 or more.

粒子を大きさく凝集数)によってふるい分け、大きさ別
ごとの粒子数をめ、上式(11によって凝集率Xをめる
から、すなわち、粒子1つずつについてデータを得るこ
とを基本においているから、個別データ、総合データと
もに極めて高昆度なものとなる。比濁法の場合の色相差
、吸光、散乱。
Sort the particles by size and aggregation number), calculate the number of particles for each size, and calculate the aggregation rate Both individual data and comprehensive data are of extremely high quality.Hue difference, light absorption, and scattering in the case of turbidimetry.

干渉等による誤差の問題は生じないし、また、測定前の
自然凝集による誤差の問題も生じず、自然凝集が進行中
のものも測定対象とできる。
There is no problem of errors due to interference or the like, and there is no problem of errors due to natural aggregation before measurement, and even objects in which natural aggregation is in progress can be measured.

第2の発明の体液成分分析方法は、第1の発明(ただし
、nば凝集数、P nは凝集数nの粒子の数、Tは粒子
総数、kは2以上の任意の自然数)から凝集率Yをめる
ものである。
The body fluid component analysis method of the second invention is based on the first invention (where n is the aggregation number, P n is the number of particles with an aggregation number n, T is the total number of particles, and k is any natural number of 2 or more). This is to calculate the rate Y.

この場合、第1の発明に比べて精度が劣る反面、再現性
が高い。その他は第1の発明と同様である。
In this case, although the accuracy is inferior to the first invention, the reproducibility is high. The rest is the same as the first invention.

なお、式(11,f2)の計算は、計算機を用いて自動
的に、または手動で行うほか、筆算で行ってもよい。
Note that the calculation of equation (11, f2) may be performed automatically using a calculator or manually, or may be performed by hand.

第3の発明の体液成分分析装置は、抗体抗原反応ずみの
試料液を送出す試料液送出手段と、この送出された試料
液を受入れて試料液中の粒子を列状に通過させる検出管
と、この検出管に投光し粒子による散乱光を受光して粒
子通過およびその通過粒子の大きさを検出する粒子検出
手段と、この粒子検出手段による検出信号をその大きさ
く凝集数)別に弁別する弁別手段と、弁別した粒子大き
さの信号の数を計数する計数手段と、粒子大きさ別の信
号数から凝集率を算出する演算手段と、その算出結果を
表示する表示手段とを備えたものである。
The body fluid component analyzer of the third invention includes a sample liquid sending means for sending out a sample liquid that has undergone antibody-antigen reaction, and a detection tube that receives the sent sample liquid and allows particles in the sample liquid to pass through in a row. , a particle detection means for projecting light into the detection tube and receiving light scattered by the particles to detect passing particles and the size of the passing particles; and a particle detection means for discriminating the detection signal by the particle detection means according to the size and number of aggregations). A device comprising a discrimination means, a counting means for counting the number of signals of the discriminated particle sizes, a calculation means for calculating an aggregation rate from the number of signals for each particle size, and a display means for displaying the calculation result. It is.

上記凝集率の算出は、前記式(1)または式(2)によ
るのが好ましいが他の式によってもよい。この場合、全
系が自動化されているので、測定精度が高いこともさる
ことながら、とりわけ極めて迅速な処理が行えるという
利点がある。
The calculation of the aggregation rate is preferably based on the above formula (1) or formula (2), but other formulas may be used. In this case, since the entire system is automated, it has the advantage of not only high measurement accuracy but also extremely rapid processing.

第4の発明の体液成分分析装置は、第3の発明において
、粒子検出手段による検出信号を対数的に増幅する増幅
手段を付加し、この増幅手段による増幅信号を弁別手段
によりその信号の大きさく凝集数)別に弁別させるよう
に構成したものである。
A body fluid component analyzer according to a fourth aspect of the present invention is the third aspect of the present invention, further comprising an amplifying means for logarithmically amplifying the detection signal by the particle detecting means, and a discriminating means for determining the magnitude of the amplified signal by the amplifying means. It is configured to discriminate according to the number of agglomerations).

すなわち、通常のリニアな増幅手段を用いた場合には、
2個凝集、3個凝集−一一−−−−−−−と進むにつれ
て振幅中心と振幅のばらつきが対数的に広がるため(第
3図参照)、凝集数(信号大きさ)別の比較が困難とな
る。この対策としてこの第3の発明の対数的増幅手段を
採用すると、その広がりが抑えられ、振幅中心と振幅と
について凝集数別で均一化が図られるため(第4図参照
)その比較が容易、正確に行われ、これによって、測定
精度を一層高いものにできる。
In other words, when using normal linear amplification means,
As the amplitude center and the amplitude dispersion increase logarithmically as we progress from 2 aggregation to 3 aggregation - 11 (see Figure 3), a comparison by the number of aggregations (signal size) is possible. It becomes difficult. When the logarithmic amplification means of the third invention is adopted as a countermeasure against this, the spread is suppressed and the amplitude center and amplitude are made uniform for each aggregation number (see Fig. 4), making it easy to compare them. This can be done accurately, thereby increasing the measurement accuracy.

第5の発明の体液成分分析装置は、第3の発明において
粒子検出手段の改良に係るものであって、試料液中の粒
子を列状に通過させる検出管に対しその中を流れる試料
液の流れ方向に対する垂直方向に対して傾斜する方向か
らレーザビームを照射するレーザ発生器と、試料液内の
粒子による散乱光を前記垂直方向において受光する受光
レンズと、この受光レンズの背後の光電変換手段と、前
記受光レンズのうち前記レーザ発生器存在側とは反対側
の半分を非透光とする遮光手段とを付加したものである
The body fluid component analyzer of the fifth invention is related to the improvement of the particle detection means in the third invention, and includes a detection tube through which particles in the sample liquid are passed in a row. A laser generator that irradiates a laser beam from a direction oblique to a direction perpendicular to the flow direction, a light receiving lens that receives light scattered by particles in the sample liquid in the vertical direction, and a photoelectric conversion means behind the light receiving lens. and a light shielding means for making a half of the light-receiving lens on the side opposite to the side where the laser generator is present non-transparent.

すなわち、発光光軸と受光光軸との間に角度をもたせた
から、反射光の一部がレーザ発生器に戻りノイズを透光
するといったことが防止される。
That is, since there is an angle between the light emitting optical axis and the light receiving optical axis, it is possible to prevent part of the reflected light from returning to the laser generator and transmitting noise.

また、レーザビームの直進光のノイズ成分は散乱光検出
信号に比べてはるかに強大であるが、この直進光の当た
る部分において受光レンズに遮光手段を設けであるから
、直進光のノイズ成分による誤差は避けられ、これらに
よってさらに測定精度を高めることができる。
In addition, the noise component of the straight light of the laser beam is much stronger than the scattered light detection signal, but since the light receiving lens is provided with a light shielding means at the part where the straight light hits, errors due to the noise component of the straight light can be avoided, thereby further increasing measurement accuracy.

半導体レーザはHe −Neレーザに比べてコンパクト
、安価である反面、ノイズが多いのであるが、第5の発
明によれば、ノイズの悪影響を大幅に緩和できるため、
コンパクト、安価な半導体レーザの採用を可能とする。
Semiconductor lasers are more compact and cheaper than He-Ne lasers, but on the other hand they produce a lot of noise. According to the fifth invention, however, the negative effects of noise can be significantly alleviated.
Enables the use of compact and inexpensive semiconductor lasers.

第6の発明の体液成分分析装置は、第3の発明において
、凝集数1の粒子(モノマー)の単位時間当たりの計数
値が減少したときに試料液の送出し量を増加するように
前記試料液送出手段を制御する制御手段を付加したもの
である。
In the body fluid component analyzer of the sixth invention, in the third invention, when the count value of particles (monomer) with an aggregation number of 1 per unit time decreases, the amount of sample liquid delivered is increased. A control means for controlling the liquid delivery means is added.

すなわち、七ツマ−の計数値が減少したということは、
凝集反応速度が速いということであり、凝集成長曲線〔
第6図(A)、(B)参照〕の直線性が落ち、測定精度
が下がることを意味するが、試料液の送出し量を増すこ
とによってその直線性を高いものとし誤差要因を取除く
のである。これによっても高精度な測定が可能となる。
In other words, the number of seven points decreased,
This means that the aggregation reaction rate is fast, and the aggregation growth curve [
(See Figures 6 (A) and (B))), which means that the measurement accuracy decreases, but by increasing the amount of sample liquid delivered, the linearity becomes high and the error factor is removed. It is. This also enables highly accurate measurement.

実施例の説明 体液成分分析装置の一実施例を第1図ないし第6図に基
いて説明する。この分析装置は第1図に示すように、試
料液移送と粒子検出機能をもつ粒子検出ブロックAと、
ノイズ除去と関数増幅機能をもつ信号処理ブロックBと
、パルス振幅弁別とパルス計数表示機能をもつデータ処
理ブロックCとからなる。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the body fluid component analyzer will be described with reference to FIGS. 1 to 6. As shown in Figure 1, this analyzer includes a particle detection block A that has sample liquid transfer and particle detection functions;
It consists of a signal processing block B having noise removal and function amplification functions, and a data processing block C having pulse amplitude discrimination and pulse count display functions.

粒子検出ブロックAは、 (11気泡抜き用電磁弁2を有する検出管1と、検出管
1に計数試料液を圧入するように管接合され、攪拌用モ
ータ3と恒温装置4とを備えた反応タンク5と、抗体あ
るいは抗原を付着処理したポリスチレンラテックス粒子
の浮遊液をタンク5内に注入するよう管接合されたシリ
ンダ6と、検出管1内で計数試料液をシース状(鞘状)
に包んで流すためのシース液を圧入するよう管接合され
たシース液タンク7と、シリンダ6のピストンを駆動す
るDCモータ18と、試料液、シース液を直接あるいは
一段聞圧器8を通して圧送するためのポンプ17と、こ
のモータ18.ポンプ17などをコントロールする制御
回路19よりなる駆動制御装置9からなる試料液送出手
段D(タンク5.シリンダ6およびシース液タンク7の
各液を補充する弁とパイプは図示を省略)、および、 (2)前記検出管1の中心を一列に流れる粒子に、流れ
方向10μm、直角方向300μrnの楕円集束光を照
射するための発光用半導体レーザ(レーザ発生器)11
と、シリンドリカルなレンズ系12と、透過光を遮断す
るビームストッパ(遮光手段)13は粒子散乱光を導く
レンズ系14と、迷光遮光板15と、粒子散乱光を受光
し電気信号に変換するフォトダイオード(光電変換手段
)1Gとからなる光学式粒子検出手段Eから構成されて
いる。
The particle detection block A consists of a detection tube 1 having a solenoid valve 2 for removing bubbles, a reaction tube connected to the detection tube 1 so as to pressurize a counting sample liquid, and equipped with a stirring motor 3 and a constant temperature device 4. A tank 5, a cylinder 6 connected to a tube so as to inject a suspended liquid of polystyrene latex particles to which antibodies or antigens have been attached into the tank 5, and a cylinder 6 in which a counting sample liquid is sheathed in a detection tube 1.
A sheath liquid tank 7 which is pipe-joined to pressurize the sheath liquid to be wrapped and flowed, a DC motor 18 that drives the piston of the cylinder 6, and a sheath liquid tank 7 for pressurizing the sample liquid and sheath liquid either directly or through the one-stage pressure gauge 8. pump 17 and this motor 18. Sample liquid sending means D consisting of a drive control device 9 consisting of a control circuit 19 that controls the pump 17 etc. (valves and pipes for replenishing each liquid in the tank 5, cylinder 6 and sheath liquid tank 7 are not shown), and (2) A light-emitting semiconductor laser (laser generator) 11 for irradiating particles flowing in a line through the center of the detection tube 1 with elliptical focused light of 10 μm in the flow direction and 300 μrn in the perpendicular direction.
, a cylindrical lens system 12, a beam stopper (shading means) 13 that blocks transmitted light, a lens system 14 that guides particle scattered light, a stray light shielding plate 15, and a photodetector that receives particle scattered light and converts it into an electrical signal. It consists of an optical particle detection means E consisting of a diode (photoelectric conversion means) 1G.

信号処理ブロックBは、微小信号増幅回路(アンプ)2
1と、パルス信号をクランプ、クリップするレーザノイ
ズ除去回路(リミッタ)22と、切換スイッチSwによ
って切換えられるリニア増幅器23aと対数(ログ)増
幅器(対数的増幅手段)23bからなる関数増幅回路2
3と、フィルタ、バッファよりなる出力回路24から構
成されている。
Signal processing block B includes a small signal amplification circuit (amplifier) 2
1, a laser noise removal circuit (limiter) 22 that clamps and clips a pulse signal, a linear amplifier 23a and a logarithmic amplifier (logarithmic amplification means) 23b, which are switched by a changeover switch Sw.
3, and an output circuit 24 consisting of a filter and a buffer.

データ処理ブロックCは、パルス振幅弁別回路(すなわ
ち、粒子大きさく凝集数)の弁別手段)25と、弁別し
た粒子大きさ別の信号の数を計数する手段F、粒子大き
さ別の信号数から凝集率を算出する演算手段G、この算
出された凝集率から試料液濃度を算出する演算手段H1
および、前記粒子検出ブロックAの駆動制御回路19を
凝集数1の粒子(モノマー)の単位時間当たりの計数値
の減少、増加に試料液送出し量を増加、減少するように
制御する制御手段1などを内蔵したマイクロコンピュー
タ26と、粒子大きさ別の信号の数。
The data processing block C includes a pulse amplitude discrimination circuit (i.e., discrimination means for particle size and aggregation number) 25, a means F for counting the number of signals for each discriminated particle size, and a means for counting the number of signals for each particle size. Calculating means G for calculating the aggregation rate, and calculating means H1 for calculating the sample liquid concentration from the calculated aggregation rate.
and a control means 1 for controlling the drive control circuit 19 of the particle detection block A to increase or decrease the amount of sample liquid sent out in response to a decrease or increase in the count value of particles (monomer) with an aggregation number of 1 per unit time. A microcomputer 26 with built-in information, etc., and the number of signals for each particle size.

凝集率、試料液濃度などのデータをアナログ的またはデ
ィジタル的に表示するための表示回路27、および、前
記のデータの印字するための印字回路L8とからなる広
義の表示手段Jとから構成されている。
It is composed of a display circuit 27 for displaying data such as aggregation rate and sample liquid concentration in an analog or digital manner, and a display means J in a broad sense consisting of a printing circuit L8 for printing the data. There is.

被検査血清を緩衝液(T、T、B: +−リストリンシ
ンバッファ)で希釈して(Ig−Gの場合4万倍)、抗
体を付着処理したポリスチレンラテックス(0,2〜5
μm直径)を懸濁したラテックス粒子液(L−P液0.
01%)と混合し、恒温装置4付きの反応タンク5に入
れ、モータ3でスクリューを回して沈降を防ぎ、凝集を
助長するために攪拌を行う。
The serum to be tested is diluted (40,000 times for IgG) with a buffer solution (T, T, B: + - ristrinsine buffer), and polystyrene latex (0.2 to 5
A latex particle solution (L-P solution 0.
01%), placed in a reaction tank 5 equipped with a constant temperature device 4, and stirred by rotating a screw with a motor 3 to prevent sedimentation and promote agglomeration.

混合と同時にポンプ17により0.3kg/CIA程度
の陽圧をかけ、調圧器8を通じシースタンク7にも陽圧
をかけ、シース液(0,8%生理食塩水)と凝集サンプ
ル液(反応タンク5内液)を検出管lに圧送する。
At the same time as mixing, a positive pressure of about 0.3 kg/CIA is applied by the pump 17, and positive pressure is also applied to the sheath tank 7 through the pressure regulator 8, and the sheath liquid (0.8% physiological saline) and flocculated sample liquid (reaction tank 5) is pumped into the detection tube 1.

検出管1は、反応タンク5からの凝集サンプル液を中心
にシース液が周囲を鞘状に包み5m/sec程度の速さ
で流れるようにセットされている。上部に気泡抜き用電
磁弁2を設け、シース方向を重力方向にしている。これ
はシース形成口の気泡41着を避け、シース流の形成に
気泡が影響しないようにするためである。また、シース
液が乱れ(形成用ない)、粒子が検出管l内に残ったと
しても、ラテックス粒子は比重がシース液より僅かに重
いため、逆向き時のように検体が代わっても底に粒子が
残留することなく速やかに排出され、したがって、コン
タミ (汚染)が生じない。
The detection tube 1 is set so that the sheath liquid surrounds the aggregated sample liquid from the reaction tank 5 in a sheath shape and flows at a speed of about 5 m/sec. A solenoid valve 2 for removing air bubbles is provided at the upper part, and the direction of the sheath is set in the direction of gravity. This is to avoid air bubbles 41 from forming at the sheath forming port and to prevent air bubbles from affecting the formation of the sheath flow. In addition, even if the sheath liquid is disturbed (not used for formation) and particles remain in the detection tube l, the specific gravity of latex particles is slightly heavier than the sheath liquid, so even if the sample is changed, such as when the sample is turned in the opposite direction, the latex particles will fall to the bottom. Particles are discharged quickly without leaving any residue, therefore no contamination occurs.

検出管1内のシース流形成によって粒子はほぼ一列に連
なった状態で、半導体レーザ11の光がシリンドリカル
レンズ系12によって集束された焦点(粒子流れ方向に
短径10μm、長径は直角方向に300μmの楕円状)
の中を高速に通過する。受光側は顕微鏡の暗視野法の原
理で、粒子のない時はビームストッパ13で遮光される
ため受光出力がなく、粒子が通過すると散乱された光が
迷光遮光板15を経てフォトダイオード16に受光され
る。
Due to the formation of a sheath flow in the detection tube 1, the particles are aligned in a nearly straight line, and the light from the semiconductor laser 11 is focused by the cylindrical lens system 12 to a focal point (with a short axis of 10 μm in the particle flow direction and a long axis of 300 μm in the perpendicular direction). oval)
pass through at high speed. The light receiving side uses the principle of the dark field method of a microscope, and when there are no particles, the light is blocked by the beam stopper 13, so there is no light receiving output, and when a particle passes, the scattered light passes through the stray light shielding plate 15 and is received by the photodiode 16. be done.

発光源の半導体レーザ11は従来のHe −Neレーザ
と比べ、形状1価格とも機器組込用に最適であるが、レ
ーザノイズが多い欠点があるので実用には工夫を要する
。本装置では、受光光軸を粒子の流れる方向を直角とし
、発光光軸を受光光軸と6度角度をずらすことによって
発光の一部が反射して戻ることを防ぎ、戻り光によって
雑音が誘起され雑音が増すことのないように反射による
戻り光を避けている。
Compared to the conventional He--Ne laser, the semiconductor laser 11 serving as the light emitting source is optimal for being incorporated into equipment in terms of size and price, but it has the disadvantage of a lot of laser noise, so it requires some ingenuity for practical use. In this device, the receiving optical axis is perpendicular to the direction in which particles flow, and the emitting optical axis is shifted by 6 degrees from the receiving optical axis to prevent part of the emitted light from being reflected back, and the returned light causes noise. In order to prevent noise from increasing, return light due to reflection is avoided.

第2に、直進光のノイズ成分は信号に比べてはるかに強
大であるので、先頭の受光レンズ14a上のレーザ光直
進光の当たる光軸下半分、つまり半導体レーザ11の存
在側とは反対側の半分を、第2図のように遮光するビー
ムストッパ13で、粒子が無い時は受光面に一切光が入
らないようにしている。
Second, since the noise component of the straight light is much stronger than the signal, the lower half of the optical axis where the straight laser light hits the first light-receiving lens 14a, that is, the side opposite to the side where the semiconductor laser 11 is present. A beam stopper 13 blocks half of the beam from light as shown in FIG. 2, so that no light enters the light-receiving surface when there are no particles.

第3に、粒子からの散乱光以外の色々の角度からの迷光
を遮断し粒子による散乱光のみを通ずだめの0.4 i
n直径のビンボールを有する迷光遮光板15を設けてい
る。
Thirdly, the 0.4 i
A stray light shielding plate 15 having a bottle ball with a diameter of n is provided.

第4に、なお残留する散乱光のノイズ成分は、周波数の
低い誘導波を除去し、信号のベース電圧を定電圧にクラ
ンプした後、ベース電圧上に重畳したノイズをクリップ
するレーザノイズ1徐去回路(リミッタ)22を使うこ
とでノイズ問題を館i決している。
Fourth, the noise component of the scattered light that still remains is removed by removing the low frequency guided wave and clamping the base voltage of the signal to a constant voltage, and then removing the laser noise 1 which clips the noise superimposed on the base voltage. The noise problem is solved by using the circuit (limiter) 22.

フォトダイオード16の出力は、信号処理ブl」ツクB
の増幅回路21で60dB増幅され、レーザノイズ除去
回路22でノイズを除去された後、リニア増幅器23a
を通して増幅後の波形を、横軸にパルス振幅、縦軸に粒
子数(パルス頻度)を取って表現したものが第3図であ
る。リニア増幅器23aの代わりに対数(ログ)増幅器
23bを通した後の波形を同じように表現したものが第
4図である。
The output of the photodiode 16 is processed by the signal processing block B.
After being amplified by 60 dB in the amplifier circuit 21 and having noise removed by the laser noise removal circuit 22, the linear amplifier 23a
FIG. 3 shows the waveform after amplification, with the horizontal axis representing the pulse amplitude and the vertical axis representing the number of particles (pulse frequency). FIG. 4 shows a similar representation of the waveform after passing through a logarithmic (log) amplifier 23b instead of the linear amplifier 23a.

2個If簗、3個凝集と進むにつれて振幅中心と振幅の
ばらつきが対数的に広がることが判る。同じ弁別処理を
して2個凝集、3個凝築−−−−−−−−−の凝集モー
ド別の比較が困難となる。本装置では対数増幅器23b
を使用することによってこの問題を解決している。
It can be seen that as the number of particles increases from 2 to 3, the center of amplitude and the variation in amplitude expand logarithmically. It is difficult to compare the agglomeration modes of two aggregation and three agglomeration by performing the same discrimination process. In this device, the logarithmic amplifier 23b
I solved this problem by using .

弁別回路25では隣接凝集モード電圧のピーク値を与え
る2電圧の中間に弁別電圧を設定し、各弁別電圧で弁別
されたパルスを隣接2弁別電圧毎にエクスクル−シブオ
ア回路を通し、各出力を凝丈モード別計数値として計数
し、マイクロコンピュータ26に送る。
In the discrimination circuit 25, a discrimination voltage is set between the two voltages giving the peak value of the adjacent agglomeration mode voltage, and the pulses discriminated at each discrimination voltage are passed through an exclusive OR circuit for each of the two adjacent discrimination voltages, and each output is condensed. It is counted as a count value for each length mode and sent to the microcomputer 26.

マイクロコンピュータ26は弁別回路25から未凝集(
モノマー)、2個凝集(ダブレッド)。
The microcomputer 26 receives the unagglomerated (
monomer), two agglomerated (doubled).

3個凝集(トリブレット)、4個凝集、5個以上凝集、
ラテックス以外の計数値(サテライト)の6モードのパ
ルス列信号を受け、所定のカウンタ(計数手段F)で所
定のゲート時間(5秒)内の計数を行う。
3 aggregation (triblet), 4 aggregation, 5 or more aggregation,
A pulse train signal of 6 modes of counts other than latex (satellite) is received, and a predetermined counter (counting means F) performs counting within a predetermined gate time (5 seconds).

次に、演算手段Gにより凝集率として次の値を演算し、
結果を所定記憶部に送る。
Next, the calculation means G calculates the following value as the aggregation rate,
Send the result to a predetermined storage unit.

X= (21)2 +3P3 +4P4 +5P5)/
X:凝集率、M:モノマー数、■〕2:ダブレソト数、
P3 ニトリプレット数、P4 :4個凝集数、P5:
5個以上凝集数 第5図および第6図の(A)ないしくC)は、記憶部の
データから最終結果としての濃度計算までをフロートヤ
ードと検量線の取り方とで示したものである。
X= (21)2 +3P3 +4P4 +5P5)/
X: aggregation rate, M: number of monomers, ■]2: double soto number,
P3: Number of nitriplets, P4: Number of 4 aggregation, P5:
5 or more agglutination numbers (A) or C) in Figures 5 and 6 show the process from data in the storage unit to concentration calculation as the final result using float yards and how to draw a calibration curve. .

すなわち、ステップ■で、時刻0での凝集率(自然凝集
率)を測定・算出し、ステップ■で、時刻む1での凝集
率を測定算出し、ステップ■で、時刻t2での凝集率を
測定・算出し、以降同様のことをくり返してステップ■
で、貼刻t nでの凝集率を測定・算出する。以上の結
果として、ステップ■で、凝集成長曲線をめる〔第6図
(A)参照〕。次いでステップ■で、自然凝集を減じて
真の成長曲線をめる〔第6図(B)参照〕。ステップ■
では、測定項目(蛋白質の種類)で最もSZN比の良い
時刻Tでの凝集率を既知の標準の凝集率と比較する。そ
して、ステップ■で、既知の蛋白質濃度と凝集率との相
関関係から、ステップ■でめた凝集率に基いてめるべき
蛋白質濃度に変換する〔第6図(C)参照〕。
That is, in step ■, the aggregation rate at time 0 (natural aggregation rate) is measured and calculated, in step ■, the aggregation rate at time 1 is measured and calculated, and in step ■, the aggregation rate at time t2 is calculated. Measure and calculate, and then repeat the same steps ■
Then, the aggregation rate at t n is measured and calculated. As a result of the above, an agglomerative growth curve is determined in step (2) [see FIG. 6(A)]. Next, in step (2), natural aggregation is reduced to obtain a true growth curve (see FIG. 6(B)). Step ■
Now, the aggregation rate at time T when the SZN ratio is the best for the measurement item (type of protein) is compared with the aggregation rate of a known standard. Then, in step (2), from the correlation between the known protein concentration and the aggregation rate, the desired protein concentration is converted based on the aggregation rate determined in step (2) [see FIG. 6(C)].

凝集率の算出は、他に分母としてトータル値(T:検出
された全パルス数)、分子としてポリマートータル(P
 : P2 +p3+p4+p5) として、y=P/
T−(P2+p3+p4 +p5)/T(ただし、T=
P、 +p2 +p3+p4+p5)とするものその他
があり、組合せにより少しずつ性質の違ったものが得ら
れる。再現性が高いのはY=P/Tである。
The aggregation rate is calculated using the total value (T: total number of detected pulses) as the denominator and the polymer total (P) as the numerator.
: P2 +p3+p4+p5), y=P/
T-(P2+p3+p4 +p5)/T (where T=
P, +p2 +p3+p4+p5) and others, and depending on the combination, products with slightly different properties can be obtained. Y=P/T has high reproducibility.

また、モノマー数を次のように一定にして検量線の直線
性を改善し、測定濃度幅を拡大することができる。また
、誤差混入の発見に役立つ。ずなわら、モノマーパルス
列信号を積分回路を通してアナログ電圧としパルス数が
減るとモータ18が速く回転するように制御手段lから
制御回路19ヘフイードバソクを行う。
Furthermore, by keeping the number of monomers constant as follows, the linearity of the calibration curve can be improved and the measurement concentration range can be expanded. It is also useful for discovering errors. In addition, the monomer pulse train signal is passed through an integrating circuit to an analog voltage, and as the number of pulses decreases, a feed bath is applied from the control means 1 to the control circuit 19 so that the motor 18 rotates faster.

あるいは、反応タンク5にかかる移送圧を、制御回路1
9のポンプ用圧力センサのノλイアスを変化させること
によって前記モノマー数の減少に応じて高(し、検出管
1の試料液量とシース)反量の比を連続的に変化させる
ことができる。それによって、試料液の移送量を増して
見かけ上凝集反応速度を早め、凝集成長曲線をより直線
的にすることができる。
Alternatively, the transfer pressure applied to the reaction tank 5 can be controlled by the control circuit 1.
By changing the λias of the pump pressure sensor 9, the ratio of the sample liquid volume in the detection tube 1 to the sheath volume can be continuously changed in accordance with the decrease in the number of monomers. . Thereby, the amount of sample liquid transferred can be increased, the apparent aggregation reaction rate can be accelerated, and the aggregation growth curve can be made more linear.

なお、印字回路289表示回路27への出力型式の一例
をあげると、 AFP (CX−フェトプロティン):2mg/mp。
In addition, an example of the output type to the printing circuit 289 and display circuit 27 is as follows: AFP (CX-fetoprotein): 2 mg/mp.

CEA (ガン胎児性抗原):Q、5μl! / II
I (2゜Ig−G(免疫グロブリンG): l Om
g/mβなどである。
CEA (carcinoembryonic antigen): Q, 5μl! / II
I (2゜Ig-G (immunoglobulin G): l Om
g/mβ, etc.

上記実施例には下記の事項が含まれている。The above embodiment includes the following items.

■関数増幅回路23が、スイッチによりすJ換えられる
リニア増幅器23aと対数増幅器23bを含むものに構
成されている。
(2) The functional amplifier circuit 23 is configured to include a linear amplifier 23a and a logarithmic amplifier 23b which can be switched by a switch.

■光学式粒子検出手段Eが、発光光軸と受光光軸との間
に角度をもたせてあり、また、発光レンズ14aにビー
ムストッパ13を設けたものに構成されている。
(2) The optical particle detection means E has an angle between the light emitting axis and the light receiving optical axis, and is constructed by providing a beam stopper 13 on the light emitting lens 14a.

■マイクロコンピュータ26の制御手段1から粒子検出
ブロックAの駆動制御回路19にフィードハックをかけ
て、粒子モノマー数減少時に試料液送出し量を増加させ
ることにより七ツマー数を一定に保ち検量線の直線性を
改善している。
■ Feedhacking is applied from the control means 1 of the microcomputer 26 to the drive control circuit 19 of the particle detection block A to increase the amount of sample liquid delivered when the number of particle monomers decreases, thereby keeping the number of seven monomers constant and adjusting the calibration curve. Improves linearity.

第3の発明の実施例として、上記■〜■のうちの何れも
、あるいは何れか2つまたは1つを含まないものが考え
られる。
As an embodiment of the third invention, one that does not include any, any two, or one of the above-mentioned items (1) to (2) can be considered.

第4の発明の実施例として、上記■、■のうち何れか1
つまだは両方を含まないものが考えられる。また、■に
おいてスイッチ3wとリニア増幅器23aを除いたもの
が考えられる。
As an embodiment of the fourth invention, any one of the above ■ and ■
It is conceivable that Tsudama does not include both. Furthermore, it is conceivable that the switch 3w and the linear amplifier 23a are removed from (2).

第5の発明の実施例として、上記■、■のうち何れか1
つまたは両方を含まないものが考えられる。
As an embodiment of the fifth invention, any one of the above ■ and ■
It is possible to consider one that does not include one or both.

第6の発明の実施例として、上記の、■のうら何れか1
つまたは両方を含まないものが七えられる。
As an embodiment of the sixth invention, any one of the above
There are seven items that do not include one or both.

また、方法の発明である第1および第2の発明に関して
は、粒子検出手段は光学式のものに限らないし、試料液
の流し方も第1図のものに限定されない。また、?M:
集率X、Yの自動演算も限定するものではない。もちろ
ん、上記■〜■の有無も問題とはならない。
Further, regarding the first and second method inventions, the particle detection means is not limited to an optical type, and the method of flowing the sample liquid is not limited to that shown in FIG. 1. Also,? M:
The automatic calculation of collection rates X and Y is not limited either. Of course, the presence or absence of the above ■ to ■ does not matter.

発明の効果 体液成分分析方法に関する第1および第トの何れの発明
も、粒子1つずつについて耐染程度のデータを得ること
を基本においているため、測定精度を極めて高いものと
できるという効果を有する。
Effects of the Invention Both the first and third inventions relating to the body fluid component analysis method are based on obtaining data on the degree of stain resistance for each particle, so they have the effect of making the measurement accuracy extremely high. .

また、体液成分分析装置に関する第3ないし第6の何れ
の発明も、測定を極めて高精度かつ迅速に遂行すること
ができるという効果を奏する。さらに、第4の発明にあ
っては、検出信号の振幅中心と振幅のばらつきを抑制す
るため、−JS高精度な測定が可能である。第5の発明
にあっては、コンバク1〜.安価な半導体レーザの採用
を可能としながらも、その欠点であるノイズが大きいこ
とを大幅に緩和できるため、高精度な測定が可能となる
Further, any of the third to sixth inventions relating to the body fluid component analyzer has the effect that measurement can be carried out with extremely high precision and quickly. Furthermore, in the fourth invention, since the amplitude center of the detection signal and the variation in amplitude are suppressed, -JS can be measured with high accuracy. In the fifth invention, the combinations 1 to 1. While it is possible to use an inexpensive semiconductor laser, its disadvantage of large noise can be significantly alleviated, making it possible to perform highly accurate measurements.

第6の発明にあっては、凝集成長曲線の直線性を改善で
き、一層高精度な測定を可能とできる。
In the sixth invention, the linearity of the agglomeration growth curve can be improved, making it possible to perform even more accurate measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は体液成分分析装置の一実施例の構成概念図、第
2図はその遮光手段の正面図、第3図および第4図はパ
ルス振幅と粒子数との相関グラフ、第5図はフローチャ
ート、第6図の(A)、(B)は凝集成長曲線のグラフ
、第6図の(C)は蛋白質濃度と凝集率との相関グラフ
である。 1・−検出管、11−半導体レーザ(レーザ発生器)、
14a−・受光レンズ、13−ビームストッパ(遮光手
段) 、16−フォトダイオード(光電変換手段)、2
3b・一対数増幅器(対数的増幅手段)、25−弁別回
路、D−試料液送出手段、E−粒子検出手段、F −計
数手段、G −演算手段、■−・−制御手段、J −表
示手段
Fig. 1 is a conceptual diagram of the configuration of an embodiment of a body fluid component analyzer, Fig. 2 is a front view of its light shielding means, Figs. 3 and 4 are correlation graphs between pulse amplitude and particle number, and Fig. 5 is In the flowchart, (A) and (B) of FIG. 6 are graphs of aggregation growth curves, and (C) of FIG. 6 is a graph of the correlation between protein concentration and aggregation rate. 1.-detection tube, 11-semiconductor laser (laser generator),
14a--Light receiving lens, 13-Beam stopper (light shielding means), 16-Photodiode (photoelectric conversion means), 2
3b - Logarithmic amplifier (logarithmic amplification means), 25 - discrimination circuit, D - sample liquid delivery means, E - particle detection means, F - counting means, G - calculation means, ■ - - control means, J - display means

Claims (1)

【特許請求の範囲】 +11体液中に含まれる抗原もしくは抗体と特異的に反
応する抗体もしくは抗原を付着した不溶性担体を含む試
薬と試料を混合して抗原抗体反応を起こさせる工程と、
前記抗原抗体反応ずみの試料液を流しながらこの試料液
に含まれている粒子につ(ただし、nは凝集数、Pnは
凝集数nの粒子の数、Mは凝集数1の粒子(モノマー)
の数、kは2以上の任意の自然数)から凝集率Xをめる
工程とを含む体液成分分析方法。 (2)体液中に含まれる抗原もしくは抗体と特異的に反
応する抗体もしくは抗原を付着した不溶性担体を含む試
薬と試料を混合して抗原抗体反応を起こさせる工程と、
前記抗原抗体反応ずみの試料液を流しながらこの試料液
に含まれている粒子につの数、Tは粒子総数、kは2以
上の任意の自然数)から凝集率Yをめる工程とを含む体
液成分分析方法。 (3)抗原抗体反応ずみの試料液を送出す試料液送出手
段と、この送出された試料液を受入れて試料液中の粒子
を列状に通過させる検出管と、この検出管に投光し粒子
による散乱光を受光して粒子通過およびその通過粒子の
大きさを検出する粒子検出手段と、この粒子検出手段に
よる検出信号をその大きさく凝集数)別に弁別する弁別
手段と、弁別した粒子大きさ別の信号の数を計数する計
数手段と、粒子大きさ別の信号数から凝集率を算出する
演算手段と、その算出結果を表示する表示手段とを備え
た体液成分分析装置。 (4)抗原抗体反応ずみの試料液を送出す試料液送出手
段と、この送出された試料液を受入れて試料液中の粒子
を列状に通過させる検出管と、この検小管に投光し粒子
による散乱光を受光して粒子通過およびその通過粒子の
大きさを検出する粒子検出手段と、この粒子検出手段に
よる検出信号を対数的に増幅する増幅手段と、この増幅
手段による増幅信号をその大きさ、(凝集数)別に弁別
する弁別手段と、弁別した粒子大きさ別の信号の数を5
1数する計数手段と、粒子大きさ別の信号数から凝集率
を算出する演算手段と、°その算出結果を表示 、する
表示手段とを備えた体液成分分析装置。 (5)抗原抗体反応ずみの試料液を送出ず試れ1lfk
送出手段と、この送出された試料液を受入れて試料液中
の粒子を列状に通過さ−Uる検出管と、この検出管に対
しその中を流れる試料液の流れ方向に対する垂直方向に
対して傾斜する方向からレーザビームを照射するレーザ
発生器と、試料液内の粒子による散乱光を前記垂直方向
において受光する受光レンズと、この受光レンズの背後
の光電変換手段と、前記受光レンズのうち前記レーザ発
生器存在側とは反対側の半分を非透光とする遮光手段と
、前記光電変換手段からの出力信号をその大きさく凝集
数)別に弁別する弁別手段と、弁別した粒子大きさ別の
信号の数を計数する計数手段と、粒子大きざ別の信号数
から凝集率を算出する演算手段と、その算出結果を表示
する表示手段とを備えた体液成分分析装置。 (6)抗原抗体反応ずみの試料液を送出す試料液送出手
段と、この送出された試料液を受入れて試料液中の粒子
を列状に通過させる検出管と、この検出管に投光し粒子
による散乱光を受光して粒子通過およびその通過粒子の
大きさを検出する粒子検出手段と、この粒子検出手段に
よる検出信号をその大きさく凝集数)別に弁別する弁別
手段と、弁別した粒子大きさ別の信号の数を計数する計
数手段と、凝集数1の粒子(モノマーの単位時間当たり
の計数値が減少したときに試料液の送出し量を増加する
ように前記試料液送出手段と制御する制御手段と、粒子
大きさ別の信号数から凝集率を算出する演算手段と、そ
の算出結果を表示する表示手段とを備えた体液成分分析
装置。
[Claims] +11 A step of causing an antigen-antibody reaction by mixing a sample with a reagent containing an antibody that specifically reacts with the antigen or antibody contained in the body fluid, or an insoluble carrier to which the antigen is attached;
While flowing the antigen-antibody-reacted sample solution, the particles contained in this sample solution (where n is the number of aggregations, Pn is the number of particles with an aggregation number of n, and M is a particle (monomer) with an aggregation number of 1).
, k is any natural number of 2 or more) to calculate the aggregation rate X. (2) a step of causing an antigen-antibody reaction by mixing the sample with a reagent containing an antibody that specifically reacts with the antigen or antibody contained in the body fluid, or an insoluble carrier to which the antigen is attached;
calculating the agglutination rate Y from the number of particles contained in the sample liquid, T is the total number of particles, and k is any natural number of 2 or more while flowing the antigen-antibody-reacted sample liquid. Component analysis method. (3) A sample liquid sending means for sending out a sample liquid that has undergone antigen-antibody reaction, a detection tube that receives this sent out sample liquid and allows particles in the sample liquid to pass through in a row, and a light beam that is projected onto this detection tube. a particle detection means for detecting the passing of particles and the size of the passing particles by receiving scattered light by the particles; a discrimination means for discriminating the detection signal from the particle detection means according to the size (size and number of aggregation); A body fluid component analysis device comprising a counting means for counting the number of signals for each particle size, a calculation means for calculating an aggregation rate from the number of signals for each particle size, and a display means for displaying the calculation result. (4) A sample liquid sending means that sends out a sample liquid that has undergone antigen-antibody reaction, a detection tube that receives the sent sample liquid and allows particles in the sample liquid to pass through in a row, and a light beam that is projected onto the microtube. Particle detection means receives scattered light by particles and detects passing particles and the size of the passing particles; amplification means logarithmically amplifies a detection signal by this particle detection means; A discrimination means for discriminating by size and (aggregation number) and the number of signals for each discriminated particle size are set to 5.
A body fluid component analyzer comprising a counting means for counting, a calculation means for calculating an aggregation rate from the number of signals for each particle size, and a display means for displaying the calculation result. (5) Try 1lfk without sending out the sample solution that has undergone antigen-antibody reaction.
a sending means, a detection tube that receives the sent sample liquid and allows particles in the sample liquid to pass through in a row, and a detection tube that is arranged in a direction perpendicular to the flow direction of the sample liquid flowing therein. a laser generator that irradiates a laser beam from an inclined direction; a light receiving lens that receives light scattered by particles in the sample liquid in the vertical direction; a photoelectric conversion means behind the light receiving lens; a light shielding means for making the half of the side opposite to the side where the laser generator is present non-transparent; a discrimination means for discriminating the output signal from the photoelectric conversion means according to its size (aggregation number); and a discrimination means according to the discriminated particle size. A body fluid component analysis device comprising a counting means for counting the number of signals, a calculation means for calculating an aggregation rate from the number of signals for each particle size, and a display means for displaying the calculation result. (6) A sample liquid sending means for sending out a sample liquid that has undergone an antigen-antibody reaction, a detection tube that receives this sent out sample liquid and allows particles in the sample liquid to pass through in a row, and a light source that emits light into this detection tube. a particle detection means for detecting the passing of particles and the size of the passing particles by receiving scattered light by the particles; a discrimination means for discriminating the detection signal from the particle detection means according to the size (size and number of aggregation); a counting means for counting the number of separation signals; and a control means for controlling the sample liquid delivery means so as to increase the amount of sample liquid delivered when the count per unit time of particles with an aggregation number of 1 (monomer) decreases. A body fluid component analyzer comprising: a control means for calculating the aggregation rate from the number of signals for each particle size; a calculation means for calculating the aggregation rate from the number of signals for each particle size; and a display means for displaying the calculation result.
JP58219753A 1983-11-22 1983-11-22 Body fluid component analysis method and apparatus Expired - Lifetime JPH0619349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58219753A JPH0619349B2 (en) 1983-11-22 1983-11-22 Body fluid component analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58219753A JPH0619349B2 (en) 1983-11-22 1983-11-22 Body fluid component analysis method and apparatus

Publications (2)

Publication Number Publication Date
JPS60111963A true JPS60111963A (en) 1985-06-18
JPH0619349B2 JPH0619349B2 (en) 1994-03-16

Family

ID=16740457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58219753A Expired - Lifetime JPH0619349B2 (en) 1983-11-22 1983-11-22 Body fluid component analysis method and apparatus

Country Status (1)

Country Link
JP (1) JPH0619349B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2607257A1 (en) * 1986-11-25 1988-05-27 Rabelais Universite Francois METHOD FOR ULTRASOUND BIOLOGICAL TREATMENT, IN PARTICULAR FOR IMMUNO-HEMATOLOGICAL TESTS
JPH02170053A (en) * 1988-12-23 1990-06-29 Meiji Seika Kaisha Ltd Method and device for detecting microorganism

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4299597B2 (en) 2002-07-29 2009-07-22 シスメックス株式会社 Hematology analyzer and method
CN104122191B (en) * 2007-10-29 2020-02-18 希森美康株式会社 Cell analyzer and cell analysis method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104726A (en) * 1976-12-10 1978-09-12 Technicon Instr Test method of liquid containing specific antigen ag or antibody ab

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104726A (en) * 1976-12-10 1978-09-12 Technicon Instr Test method of liquid containing specific antigen ag or antibody ab

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2607257A1 (en) * 1986-11-25 1988-05-27 Rabelais Universite Francois METHOD FOR ULTRASOUND BIOLOGICAL TREATMENT, IN PARTICULAR FOR IMMUNO-HEMATOLOGICAL TESTS
JPH02170053A (en) * 1988-12-23 1990-06-29 Meiji Seika Kaisha Ltd Method and device for detecting microorganism

Also Published As

Publication number Publication date
JPH0619349B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
US5162863A (en) Method and apparatus for inspecting a specimen by optical detection of antibody/antigen sensitized carriers
RU2111488C1 (en) Particle agglutination method for simultaneously examining several anolytes in the same sample
JP4796265B2 (en) Immunoassay method and immunoassay device
AU724443B2 (en) Assays using reference microparticles
US5194909A (en) Apparatus and method for measuring volume and hemoglobin concentration of red blood cells
US4766083A (en) Method for the photometric determination of biological agglutination
US3990851A (en) Process and device for measuring antigen-antibody reactions
EP0099266A2 (en) Limited volume method and apparatus for particle counting
JP4712345B2 (en) Patient sample classification based on small-angle light scattering method
JPS5925460B2 (en) Nephelometric immunoassay method and device
CN105008899B (en) Analytical equipment and automatic analysing apparatus
US4204837A (en) Method of rate immunonephelometric analysis
JPH0593726A (en) Method and apparatus for measuring object to be inspected and reagent used therefor
JP3283078B2 (en) Immunological measurement device
JPS6365369A (en) Method for measuring antigen-antibody reaction
JPS60111963A (en) Method and apparatus for analyzing components of body fluids
JP2675895B2 (en) Sample processing method, sample measuring method, and sample measuring device
JP6031552B2 (en) Automatic analyzer and analysis method
JPH0619350B2 (en) Body fluid component analysis method and apparatus
JPH01313737A (en) Inspection device for body to be inspected
JPH0552848A (en) Immunoassay and apparatus
JPH0421821B2 (en)
JPH03274462A (en) Apparatus and reagent for examining specimen
JP2763614B2 (en) Method for determining antigen or antibody concentration by immunoagglutination
JPH01270643A (en) Method for examination of specimen