JPH0552848A - Immunoassay and apparatus - Google Patents
Immunoassay and apparatusInfo
- Publication number
- JPH0552848A JPH0552848A JP21185891A JP21185891A JPH0552848A JP H0552848 A JPH0552848 A JP H0552848A JP 21185891 A JP21185891 A JP 21185891A JP 21185891 A JP21185891 A JP 21185891A JP H0552848 A JPH0552848 A JP H0552848A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- fine particles
- antigen
- sample
- immunoassay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、生体成分中の微量物質
の計測に係り、特に血液等の試料中の特定物質を簡便に
かつ高感度に測定する免疫測定に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to measurement of trace substances in biological components, and more particularly to immunoassay for measuring specific substances in samples such as blood easily and with high sensitivity.
【0002】[0002]
【従来の技術】血液等の試料中の微量成分を高感度に測
定するために、抗原抗体反応を利用した免疫測定法が開
発されている。試料中の抗原と試薬として添加した抗体
の間に多次元の結合が生じ、凝集塊となる。これを光学
的に測定する。さらに測定感度を上げるために、ラテッ
クス凝集法が用いられている。抗原あるいは抗体を結合
させたラテックス粒子を試薬として用い、対応する試料
中の抗体あるいは抗原との凝集の度合いを散乱光強度測
定,濁度測定,電気抵抗検出,光音響検出などによって
感度を向上させたものである。それぞれの方法について
は、例えば臨床病理 臨時増刊53号 71頁 197
5年、日本臨床検査自動化学会会誌 9卷678頁 1
984年、アナリティカル ケミストリー 59巻 2
519頁1987年(Anal.Chem.59,2519,
(1987))に論じられている。しかしながら、反応
した微粒子試薬と反応しなかった微粒子試薬が共存した
状態で計測するため、抗原濃度の低い領域では感度が悪
かった。これを改善するように、反応後の粒子試薬を凝
集ごとに計測する方法が開発されている。これについて
は例えば日本臨床検査自動化学会会誌 12巻 294
頁1987年に記載の粒度分布測定法がある。2. Description of the Related Art An immunoassay utilizing an antigen-antibody reaction has been developed in order to measure a trace component in a sample such as blood with high sensitivity. Multidimensional binding occurs between the antigen in the sample and the antibody added as a reagent to form an aggregate. This is measured optically. The latex agglutination method is used to further increase the measurement sensitivity. Using latex particles to which an antigen or antibody is bound as a reagent, the degree of aggregation with the antibody or antigen in the corresponding sample is improved by scattering light intensity measurement, turbidity measurement, electrical resistance detection, photoacoustic detection, etc. It is a thing. Regarding each method, for example, Clinical Pathology Extra Number 53, p. 71, 197.
5 years, Journal of the Japan Society for Clinical Laboratory Automation 9 pages 678 1
984, Analytical Chemistry, Volume 59, 2
519 p. 1987 (Anal. Chem. 59, 2519,
(1987)). However, since the measurement was carried out in the presence of the reacted fine particle reagent and the non-reacted fine particle reagent, the sensitivity was poor in the low antigen concentration region. In order to improve this, a method of measuring the particle reagent after the reaction for each aggregation has been developed. About this, for example, Journal of Japan Society for Clinical Laboratory Automation, Vol. 12, 294
There is a particle size distribution measuring method described in page 1987.
【0003】[0003]
【発明が解決しようとする課題】上記抗原抗体反応に基
づく従来の測定方法に関しては、常に抗原過剰の反応条
件下での処理方法,共存物質による干渉を避ける方法な
どが不可避の問題となる。溶液内抗原抗体反応では、極
端な抗原過剰の場合に異常低値を示し、誤った測定値を
提出することになる。また血清中に通常存在するヘモグ
ロビン、あるいは乳びが増量した場合、高度希釈を行っ
ても光散乱や光吸収が起こるように、試料からの共存物
の影響が免れない。With respect to the conventional measuring methods based on the above-mentioned antigen-antibody reaction, there are unavoidable problems such as a treatment method under antigen excess reaction conditions and a method of avoiding interference by coexisting substances. In the in-solution antigen-antibody reaction, an abnormally low value is shown in the case of an extreme excess of antigen, and an incorrect measurement value will be submitted. Further, when hemoglobin or chyle normally present in serum is increased, coexisting substances from the sample are inevitable because light scattering and light absorption occur even if highly diluted.
【0004】さらにラテックス粒子を用い溶液内抗原抗
体反応させた後、そのまま濁度または散乱光強度測定す
る場合は、未反応微粒子試薬の影響を受け、高感度検出
不可という問題がある。Further, when the turbidity or the scattered light intensity is measured as it is after the antigen-antibody reaction in solution using latex particles, there is a problem that high-sensitivity detection cannot be performed due to the influence of the unreacted fine particle reagent.
【0005】凝集ごとに測定する方法の場合、光散乱法
による検知では、検出粒子の大きさに限界(波長のオー
ダ)がある一方、反応試薬に大きい粒子を用いると反応
効率が落ちる。In the case of the method of measuring each agglutination, in the detection by the light scattering method, there is a limit in the size of the particles to be detected (wavelength order), while the reaction efficiency decreases when large particles are used as the reaction reagent.
【0006】電気抵抗検出法では、検出粒子の大きさは
アパーチュアの大きさに制限される。アパーチュアを小
さくするとつまりやすく現実的でない。また光散乱法と
同様に外来のゴミ(粒子)の影響を受け、小さい粒子が
使えないという制約がある。光音響検出による方法で
は、粒径と励起光波長が一致する領域で感度は共鳴的に
増加するが、それ以下の領域では感度が非常に低いた
め、小さい粒子への適用は難しい。In the electric resistance detection method, the size of the detection particles is limited to the size of the aperture. If the aperture is made small, it is easy to put it down and it is not realistic. Further, similarly to the light scattering method, there is a restriction that small particles cannot be used due to the influence of foreign dust (particles). In the method using photoacoustic detection, the sensitivity resonates in a region where the particle diameter and the excitation light wavelength match, but the sensitivity is very low in a region below that, and it is difficult to apply it to small particles.
【0007】また、上記測定方法は凝集に含まれる粒子
数に対し、測定信号がリニアでないため、正確な大きさ
が測定できない。Further, in the above measuring method, since the measurement signal is not linear with respect to the number of particles included in the agglomeration, the accurate size cannot be measured.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
に、本発明は反応試薬に用いる微粒子として、キサンテ
ィン,ローダミンなどの蛍光色素を表面に結合させた、
もしくは内部に含有させたラテックス粒子を用いる。反
応後の反応液をフローセルに導入し、フローセルに光を
照射する。試料中の微粒子から凝集ごとに発生する強度
の異なる蛍光を検知することにより、凝集状態を測定す
る方法を用いる。In order to solve the above-mentioned problems, the present invention has fluorescent dyes such as xanthine and rhodamine bound to the surface as fine particles used in a reaction reagent.
Alternatively, latex particles contained therein are used. The reaction liquid after the reaction is introduced into the flow cell, and the flow cell is irradiated with light. A method of measuring the agglutination state is used by detecting the fluorescence generated from the fine particles in the sample and having different intensities for each agglutination.
【0009】[0009]
【作用】上記のように本発明方法では、粒子が蛍光性な
ので、微小な粒子の測定も容易に行える。したがって反
応に都合の良い小さい粒子を試薬として用いることがで
きる。As described above, in the method of the present invention, since the particles are fluorescent, fine particles can be easily measured. Therefore, small particles convenient for the reaction can be used as reagents.
【0010】本発明方法では、蛍光検出のため、血清成
分または外来ゴミ,粒子などの影響を受けにくい。Since the method of the present invention detects fluorescence, it is unlikely to be affected by serum components, foreign debris, particles or the like.
【0011】また本発明方法は凝集ごとに検出している
ので、未反応の粒子試薬の影響なく測定できる。Since the method of the present invention detects each aggregation, the measurement can be performed without the influence of the unreacted particle reagent.
【0012】さらに蛍光強度は粒子中の色素含有量に比
例するので、本発明方法に依れば、凝集の大きさ(微粒
子の数)に対しリニアな応答が得られ、正確な凝集状態
の把握が可能である。Further, since the fluorescence intensity is proportional to the dye content in the particles, according to the method of the present invention, a linear response is obtained with respect to the size of aggregation (the number of fine particles), and the accurate aggregation state can be grasped. Is possible.
【0013】[0013]
【実施例】本発明の実施例を図面を用いて説明する。Embodiments of the present invention will be described with reference to the drawings.
【0014】ラテックス凝集反応の一例を図1により説
明する。An example of the latex agglutination reaction will be described with reference to FIG.
【0015】蛍光色素を含有する非抗原性のラテックス
粒子が担体となって、その表面に特異抗体(あるいは抗
原)が結合されており、血清などの試料中の抗原(ある
いは抗体)の存在下で抗原抗体反応により、ラテックス
粒子が抗原を介して互いに結合し、反応条件に応じた大
きさ分布をもつ凝集体を形成する。Non-antigenic latex particles containing a fluorescent dye serve as a carrier, and a specific antibody (or antigen) is bound to the surface of the latex particle, and in the presence of the antigen (or antibody) in a sample such as serum. The antigen-antibody reaction causes the latex particles to bind to each other via the antigen to form an aggregate having a size distribution according to the reaction conditions.
【0016】次に吸光度法や濁度法で検出できなかった
濃度領域(例えば10−11M)の抗原を上記のように、
免疫反応させて得た試料溶液をフローセルに導入し、本
法によって蛍光検出した。反応前と反応後の測定結果を
それぞれ図2に示した。図に示したように反応前、すな
わちブランクのヒストグラムには、蛍光微粒子試薬を反
映する一本のピークが現れたのに対して、反応後のヒス
トグラムには、前記のピーク以外に、凝集に対応した何
本のピークが得られた。この結果より、抗原の濃度が非
常に低い場合でも、ブランクとの違いがはっきり認めら
れたことから、本発明は従来法より感度が高く、定量範
囲が広いことが分かり、また未反応の微粒子試薬の影響
を受けないことが分かった。[0016] The antigen then absorbance method and could not be detected by turbidimetry concentration regions (e.g., 10- 11 M) as described above,
The sample solution obtained by immunoreaction was introduced into a flow cell, and fluorescence was detected by this method. The measurement results before and after the reaction are shown in FIG. As shown in the figure, one peak reflecting the fluorescent fine particle reagent appeared in the histogram before the reaction, that is, in the blank histogram, whereas in the histogram after the reaction, in addition to the above peaks, it corresponds to aggregation. How many peaks were obtained. From this result, even when the concentration of the antigen was very low, the difference from the blank was clearly recognized, which shows that the present invention has higher sensitivity than the conventional method and has a wide quantitative range, and the unreacted fine particle reagent. I was not affected by.
【0017】さらに、図2の測定データに基づいて、蛍
光強度を凝集の大きさに対してプロットした。その結
果、図3に示したように、凝集の大きさすなわち微粒子
の数に比例して蛍光強度が増大していることを判明し
た。したがって本法は外来ゴミ,粒子等の影響なく凝集
状態を正確に把握できることが分かった。Further, the fluorescence intensity was plotted against the size of aggregation based on the measurement data of FIG. As a result, as shown in FIG. 3, it was found that the fluorescence intensity increased in proportion to the size of aggregation, that is, the number of fine particles. Therefore, it was found that this method can accurately grasp the state of aggregation without the influence of foreign debris and particles.
【0018】次に本発明を実施する装置の一例を示す。Next, an example of an apparatus for carrying out the present invention will be shown.
【0019】図4は計数装置の概略を説明するものであ
る。凝集反応させた後の反応液は試料導入装置1より導
入され、ポンプ17により、チューブ2を通って一定流
速でフローセル3に送られる。レーザ8から発振された
レーザ光をレンズ9により絞りフローセル3中を流れる
試料流に照射する。粒子がレーザビームを通過する際に
発せられるパルス状の蛍光をレンズ10で集光し、フィ
ルタ11を通過させて光電子増倍管12で検出する。光
電子増倍管12で電気信号に変換した出力はアンプ13
で増幅し、波高分析器15に入力する。波高分析器15
ではあらかじめ設定しておいた上限および下限を与える
2種の閾値の間にあるパルスのみをカウントする。パル
スの数が粒子数になる。試料導入装置1にスイッチ4を
設け、試料導入と同時にトリガ信号5をディレイタイマ
6に送り、ディレイ時間をおいて、測定開始の指示信号
7を波高分析器15に入力し測定操作を開始させる。波
高分析器15にて1次処理結果14をパーソナルコンピ
ュータ16に送り、データ処理し結果を表示する。FIG. 4 illustrates the outline of the counting device. The reaction liquid after the agglutination reaction is introduced from the sample introduction device 1 and is sent by the pump 17 through the tube 2 to the flow cell 3 at a constant flow rate. Laser light emitted from the laser 8 is applied to the sample flow flowing through the diaphragm flow cell 3 by the lens 9. The pulsed fluorescence emitted when the particles pass through the laser beam is condensed by the lens 10, passes through the filter 11, and is detected by the photomultiplier tube 12. The output converted into an electric signal by the photomultiplier tube 12 is an amplifier 13
It is amplified by and input to the wave height analyzer 15. Wave height analyzer 15
Then, only the pulses between two types of thresholds that give the upper and lower limits set in advance are counted. The number of pulses becomes the number of particles. A switch 4 is provided in the sample introduction device 1, a trigger signal 5 is sent to the delay timer 6 at the same time as the sample introduction, and a measurement start instruction signal 7 is input to the wave height analyzer 15 after a delay time to start the measurement operation. The wave height analyzer 15 sends the primary processing result 14 to the personal computer 16 to perform data processing and display the result.
【0020】パーソナルコンピュータ16では予め設定
しておいたプログラムに従って、指示信号18をだし、
測定操作の進行を制御する。The personal computer 16 issues an instruction signal 18 according to a preset program,
Control the progress of the measurement operation.
【0021】また励起光としてアルゴンガスレーザやヘ
リウムネオンレーザなどの気体レーザ、またはYAGレ
ーザなどの固体レーザや半導体レーザ、またはこれらの
発振線を基本波とした第2または第3高調波を用いるこ
とができる。As the excitation light, a gas laser such as an argon gas laser or a helium neon laser, a solid-state laser such as a YAG laser or a semiconductor laser, or a second or third harmonic having the oscillation line of these as a fundamental wave can be used. it can.
【0022】[0022]
【発明の効果】簡便な操作でかつ高感度な測定が出来
る。従来の試薬作製技術をそのまま利用出来る。EFFECTS OF THE INVENTION It is possible to perform highly sensitive measurement with a simple operation. The conventional reagent production technology can be used as it is.
【図1】ラテックス凝集反応の一例を示す図である。FIG. 1 is a diagram showing an example of a latex agglutination reaction.
【図2】反応前と反応後試料のヒストグラムを示す図で
ある。FIG. 2 is a diagram showing histograms of samples before and after reaction.
【図3】蛍光強度と凝集の大きさとの関係を示す図であ
る。FIG. 3 is a diagram showing the relationship between fluorescence intensity and the size of aggregation.
【図4】測定装置の一例を示す構成図である。FIG. 4 is a configuration diagram showing an example of a measuring device.
1…インジェクタ、2…チューブ、3…フローセル、4
…トリガー、8…レーザ、9…レンズ、10…レンズ、
11…フィルタ、12…光電子増倍管、13…アンプ、
15…波高分析器、16…パソコン、17…ポンプ。1 ... Injector, 2 ... Tube, 3 ... Flow cell, 4
… Trigger, 8… Laser, 9… Lens, 10… Lens,
11 ... Filter, 12 ... Photomultiplier tube, 13 ... Amplifier,
15 ... Wave height analyzer, 16 ... PC, 17 ... Pump.
Claims (5)
試薬を準備し、該試薬と測定すべき試料を反応させて、
試料中に含まれる抗原又は抗体を介して生じる微粒子の
凝集状態を計測することにより、試料中の抗原濃度又は
抗体濃度を測定する免疫測定法において、微粒子が蛍光
性であり、反応後の微粒子の凝集状態の計測を1凝集塊
ごとに蛍光強度を検知することにより行なうことを特徴
とする免疫測定法。1. A reagent in which the surface of fine particles is sensitized with an antibody or an antigen is prepared, and the reagent is reacted with a sample to be measured,
In an immunoassay for measuring the antigen concentration or antibody concentration in a sample by measuring the aggregation state of the fine particles generated through the antigen or antibody contained in the sample, the particles are fluorescent and An immunoassay method characterized in that the aggregation state is measured by detecting the fluorescence intensity for each aggregate.
直径が0.5μm以下であることを特徴とする免疫測定
法。2. An immunoassay method characterized in that the fine particles according to claim 1 are spherical and have a diameter of 0.5 μm or less.
リメタクリル酸メチル,ポリヒドロキシエチルメタクリ
ルレート、のうちいずれかを主成分とし、蛍光色素を粒
子の表面に結合させるか、もしくは粒子の内部に含有さ
せることを特徴とする免疫測定法。3. The fine particles according to claim 1 containing polystyrene, poly (methyl methacrylate) or poly (hydroxyethyl methacrylate) as a main component and binding a fluorescent dye to the surface of the particle, or to the inside of the particle. An immunoassay characterized by containing it.
分が、ローダミン,ニールブルー,ニールレッド,メチ
レンブルー,チオニンクロリド,フルオレセイン,テキ
サスレッド,アクリジンオレンジ,フィコビリタンパク
であることを特徴とする免疫測定法。4. A component which imparts fluorescence to the fine particles according to claim 1, is rhodamine, Neil blue, Neil red, methylene blue, thionine chloride, fluorescein, Texas red, acridine orange, phycobiliprotein. Immunoassay.
含む試薬を反応容器に分注する機構,反応後の反応液を
フローセルに導入する機構,フローセルに光を照射し、
試料中の微粒子から発生する蛍光を検出する機構、およ
び得られた信号を処理する機構からなることを特徴とす
る免疫測定装置。5. A mechanism for dispensing a sample into a reaction container, a mechanism for dispensing a reagent containing fine particles into a reaction container, a mechanism for introducing a reaction solution after reaction into a flow cell, and a flow cell irradiated with light.
An immunoassay device comprising a mechanism for detecting fluorescence generated from fine particles in a sample and a mechanism for processing the obtained signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21185891A JPH0552848A (en) | 1991-08-23 | 1991-08-23 | Immunoassay and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21185891A JPH0552848A (en) | 1991-08-23 | 1991-08-23 | Immunoassay and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0552848A true JPH0552848A (en) | 1993-03-02 |
Family
ID=16612769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21185891A Pending JPH0552848A (en) | 1991-08-23 | 1991-08-23 | Immunoassay and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0552848A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001096868A3 (en) * | 2000-06-12 | 2003-01-30 | Sysmex Corp | Immunoassay and immunoassay apparatus |
JP2009258034A (en) * | 2008-04-21 | 2009-11-05 | Fujifilm Corp | Method and apparatus for detecting radiation light from surface plasmon, sample cell for detecting radiation light from surface plasmon and kit |
JP2010190880A (en) * | 2008-04-18 | 2010-09-02 | Fujifilm Corp | Method and apparatus for detecting optical signal, sample cell for detecting optical signal, and kit for detecting optical signal |
JP2010223802A (en) * | 2009-03-24 | 2010-10-07 | Fujifilm Corp | Light signal detection method |
-
1991
- 1991-08-23 JP JP21185891A patent/JPH0552848A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001096868A3 (en) * | 2000-06-12 | 2003-01-30 | Sysmex Corp | Immunoassay and immunoassay apparatus |
CN1317394C (en) * | 2000-06-12 | 2007-05-23 | 希森美康株式会社 | Immunoassay and immunoassay apparatus |
JP4796265B2 (en) * | 2000-06-12 | 2011-10-19 | シスメックス株式会社 | Immunoassay method and immunoassay device |
JP2010190880A (en) * | 2008-04-18 | 2010-09-02 | Fujifilm Corp | Method and apparatus for detecting optical signal, sample cell for detecting optical signal, and kit for detecting optical signal |
JP2009258034A (en) * | 2008-04-21 | 2009-11-05 | Fujifilm Corp | Method and apparatus for detecting radiation light from surface plasmon, sample cell for detecting radiation light from surface plasmon and kit |
JP2010223802A (en) * | 2009-03-24 | 2010-10-07 | Fujifilm Corp | Light signal detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4725140A (en) | Method of measuring specific binding reaction with the aid of polarized light beam and magnetic field | |
US4421860A (en) | Homogeneous fluoroimmunoassay involving autocorrelation processing of optically sensed signals | |
US4407964A (en) | Homogeneous fluoroimmunoassay involving sensing radiation for forward and back directions | |
JPS5990053A (en) | Antigen-antibody reaction measuring device | |
JP2683172B2 (en) | Sample measuring method and sample measuring device | |
EP0256474A2 (en) | Method and apparatus for detecting particular particulate substance | |
JP3283078B2 (en) | Immunological measurement device | |
JPH0580980B2 (en) | ||
JPH0552848A (en) | Immunoassay and apparatus | |
JP3436982B2 (en) | Immunoassay method and device | |
JP2675895B2 (en) | Sample processing method, sample measuring method, and sample measuring device | |
JP3400430B2 (en) | Biospecific homogeneous assays using solid-phase, two-photon excitation and confocal fluorescence detection | |
JPS6128866A (en) | Measuring method and apparatus for immuno-reaction using fluctuating intensity of light | |
JPH03154850A (en) | Specimen inspecting device | |
JPH04127061A (en) | Immunoassay due to fluorescent minute particles | |
JPS61128169A (en) | Immunological analysis | |
Mitchell et al. | Fiber optic filter fluorometer for improved analysis of absorbing solutions | |
JPS61173138A (en) | Method for measuring immune reaction by intensity fluctuation of light | |
JPH076985B2 (en) | Method for measuring antigen-antibody reaction | |
JPS63247644A (en) | Method for measuring immune reaction | |
JPH0556817B2 (en) | ||
JPH03252542A (en) | Immunoassey and device thereof | |
JPH03274462A (en) | Apparatus and reagent for examining specimen | |
JPH06300762A (en) | Non-separate type apparatus for fluorescent immunoassay | |
JPH01270643A (en) | Method for examination of specimen |