JPH03252542A - Immunoassey and device thereof - Google Patents

Immunoassey and device thereof

Info

Publication number
JPH03252542A
JPH03252542A JP2049287A JP4928790A JPH03252542A JP H03252542 A JPH03252542 A JP H03252542A JP 2049287 A JP2049287 A JP 2049287A JP 4928790 A JP4928790 A JP 4928790A JP H03252542 A JPH03252542 A JP H03252542A
Authority
JP
Japan
Prior art keywords
plasma
specific element
antigen
liquid sample
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2049287A
Other languages
Japanese (ja)
Inventor
Yuji Matsui
祐二 松井
Tetsuya Matsui
哲也 松井
Izumi Yamada
泉 山田
Shigeru Izumi
出海 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2049287A priority Critical patent/JPH03252542A/en
Publication of JPH03252542A publication Critical patent/JPH03252542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To detect an antigen-antibody reaction with high accuracy even with a sample in which impurities coexist by adding a specified quantity of an element which does not exist in serum into a particulate material which causes agglutination and converting particles to plasma by a laser beam incident breakdown. CONSTITUTION:A laser beam 10 emitted from a pulse laser 1 is condensed 2 and forms a beam west in a cell 3. The particulate material added with the specific element in the liquid sample is converted to the plasma by the laser beam incident breakdown therein. Stimulating light 11 emitted from a stimulating light source 4 of the wavelength conformed to the wavelength of the specific element is made incident on this plasma. Fluorescence 12 emitted by the specific element is condensed 5 and is subjected to a wavelength dispersion by a spectroscope 6; thereafter, the fluorescent intensity of the specific element is detected by a photodetector 7 and is converted to an electric signal 13. The signal 13 is inputted to a data processor 8 by which the signal is compared with the data previously inputted thereto and the number of the particles of the agglutinated lump is determined. The particle distribution is thus determined.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液体中の粒子状物質の凝集状態の分析に係り
、特に、微量の抗原抗体反応の検出に好適な抗原抗体反
応生成物の分析方法及びその装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to the analysis of the aggregation state of particulate matter in a liquid, and in particular to the analysis of antigen-antibody reaction products suitable for detecting trace amounts of antigen-antibody reactions. This invention relates to an analytical method and an apparatus for the same.

〔従来の技術〕[Conventional technology]

従来の粒子状物質の凝集を検出する方法である濁度法、
光散乱法では「免疫測定法の新しい活用事例と診断試薬
・治療薬開発への応用」 (昭60年)第114頁から
第129頁において論じられているように、生体試料、
特に、血清の色や濁りの影響を強く受けることになり精
密な測定は困難である、また、光音響分析法でも、特開
昭63−44149号公報に記載のように、血清の色や
濁りの影響を受けないようにする考慮については必ずし
も十分ではなかった。
Turbidity method, which is a conventional method of detecting agglomeration of particulate matter;
In the light scattering method, as discussed in "New Utilization Examples of Immunoassay Methods and Applications to the Development of Diagnostic Reagents and Therapeutic Drugs" (1986), pages 114 to 129, biological samples,
In particular, accurate measurement is difficult because it is strongly influenced by the color and turbidity of the serum.Also, even with photoacoustic analysis, as described in JP-A No. 63-44149, the color and turbidity of the serum However, sufficient consideration was not necessarily given to avoid being influenced by

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、抗原抗体反応の検出・定量する際に試
料中の血清の色や濁りに影響を受けるという点について
必ずしも十分な考慮がされておらず、抗原抗体反応の定
量の精度が良くならない場合もあり得るという問題があ
った。
The above-mentioned conventional techniques do not necessarily give sufficient consideration to the fact that the detection and quantification of antigen-antibody reactions is affected by the color and turbidity of the serum in the sample, and the accuracy of quantifying antigen-antibody reactions is not improved. The problem was that this could happen.

本発明の目的は、血清など不純物の混在した試料でも精
度良く抗原抗体反応を検出・定量する方法及び装置、を
提供することにある。
An object of the present invention is to provide a method and apparatus for accurately detecting and quantifying antigen-antibody reactions even in samples containing impurities such as serum.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、凝集を起こす粒子状物質に血清中に存在し
ない元素を一定量添加し、レーザ光入射ブレイクダウン
で一個の凝集塊をプラズマ化し、プラズマ中の上記添加
元素を発光、または、蛍光強度から定量し、凝集塊の粒
子数を求めることを繰り返し、凝集塊の粒子数分布求め
ることにより達成することができる。
The above purpose is to add a certain amount of an element that does not exist in serum to particulate matter that causes aggregation, turn one agglomerate into plasma by laser beam input breakdown, and convert the added element in the plasma into light emission or fluorescence intensity. This can be achieved by repeatedly determining the number of particles in the aggregate and determining the particle number distribution in the aggregate.

〔作用〕[Effect]

以下に、本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図に、本発明により凝集塊の粒子数分布数測定装置
の基本構成の一例を示す、パルスレーザ1より出射した
レーザ光10は収光レンズ2により収光されセル3内で
ビームウェストを形成する。
FIG. 1 shows an example of the basic configuration of an apparatus for measuring the particle number distribution of agglomerates according to the present invention. A laser beam 10 emitted from a pulse laser 1 is condensed by a converging lens 2 and the beam waist is adjusted in a cell 3. Form.

ビームウェスト内に特定の元素を添加した粒子、または
、その凝集塊が存在するとレーザ光入射ブレイクダウン
が起こり粒子がプラズマ化する。このプラズマにホロー
カソードランプなど特定の元素に合わせた波長の励起光
源4から出射した励起光11を入射する。励起光11に
より特定の元素は蛍光12を発する。この蛍光12を集
光系5で集光9分光器6で波長分散した後、特定の元素
の蛍光強度を光検出器7で検出、電気信号13に変換す
る。この電気信号13をデータ処理装置8に入力し、あ
らかじめインプットされているデータと比較することに
より、凝集塊の粒子数を求めることができる。液体試料
をフローしながらこの測定を繰り返すことにより凝集塊
の粒子数分布を求めることができる。
If particles doped with a specific element or aggregates thereof exist within the beam waist, laser beam incidence breakdown occurs and the particles become plasma. Excitation light 11 emitted from an excitation light source 4 having a wavelength matched to a specific element, such as a hollow cathode lamp, is incident on this plasma. A specific element emits fluorescence 12 due to the excitation light 11 . After this fluorescence 12 is wavelength-dispersed by a condensing system 5 and a spectrometer 6, the fluorescence intensity of a specific element is detected by a photodetector 7 and converted into an electric signal 13. By inputting this electrical signal 13 into the data processing device 8 and comparing it with data input in advance, the number of particles in the aggregate can be determined. By repeating this measurement while the liquid sample is flowing, the particle number distribution of the aggregate can be determined.

また、プラズマ中の特定の元素は原子発光14を発する
ので、この原子発光12を集光系5で集光2分光器6で
波長分散し、光検出器7で検出し、以下、上記と同様の
手順で測定可能である。この場合、励起光源4を用いず
に凝集塊の粒子数分布を求めることができる。
Further, since a specific element in the plasma emits atomic luminescence 14, this atomic luminescence 12 is wavelength-dispersed by a condensing system 5 and a condenser 2 spectrometer 6, and detected by a photodetector 7, and the following steps are performed in the same manner as above. It can be measured using the following procedure. In this case, the particle number distribution of the aggregate can be determined without using the excitation light source 4.

〔実施例〕〔Example〕

以下1本発明の一実施例を第2図から第4図により説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 2 to 4.

粒子状物質として粒経が約0.3μmで銅を約5%(重
量濃度)ずつ添加した均一性ラテックス粒子を用いる。
Uniform latex particles having a grain size of approximately 0.3 μm and containing approximately 5% (weight concentration) of copper are used as the particulate material.

この粒子状物質にDNP (2,4−ジニトロフェニル
)化したウシ血清アルブミン(DNA −BSA)を吸
着させてDNP −BSA被覆被覆フラックス試薬製し
た。凝集反応用メジウムは、0.1Mグリシン−0,0
5M塩化ナトリウム−水酸化ナトリウム緩衝溶液(pH
8,2)に0.5%BSAと0.01%非イオン性界面
活性剤を加えたものを用いた0反応用メジウムで稀釈し
た抗血清と、同じく反応用メジウムで0.1%に稀釈し
たラテックス試薬を25μΩずつマイクロピペットで秤
量して、マイクロタイマー・プレート上で振盪させなが
ら6時間反応させ、この反応液をマイクロピペットで吸
いとり、小ビーカに分注しておいた緩衝液10 m Q
に稀釈したものを試料として用いた。
DNP (2,4-dinitrophenyl)-converted bovine serum albumin (DNA-BSA) was adsorbed onto this particulate material to prepare a flux reagent coated with DNP-BSA. The agglutination reaction medium was 0.1M glycine-0.0
5M sodium chloride-sodium hydroxide buffer solution (pH
8,2) with 0.5% BSA and 0.01% non-ionic surfactant diluted in 0 reaction medium and diluted to 0.1% in the same reaction medium. Weigh out 25 μΩ of the latex reagent using a micropipette, react for 6 hours while shaking on a microtimer plate, suck up the reaction solution with a micropipette, and add 10 ml of the buffer that had been dispensed into a small beaker. Q
The diluted solution was used as a sample.

第2図に抗原抗体反応生成物の分析装置の構成図を示す
、パルスレーザは出力300mJ/pulse 、発振
周期20HzのYAGレーザ14であり、YAGレーザ
からのレーザ光27の一部はハーフミラ−15で分岐さ
れ、フォトセル16でモニタする。残りのレーザ光は収
光レンズ17で収光されフローセル18の内部でビーム
ウェストを形成する。フローセル18の内部は試料導入
口19から導入された試料が流れており、ビームウェス
トの内部に粒子状物質、またはその凝集塊が存在すると
1粒子がブレイクダウンを起こしプラズマ化する。この
プラズマにCuホローカソードランプ20より発射する
励起光28 (327,4nm)を照射し、プラズマ状
態のCuが発する蛍光29を集光レンズ21で集光する
。集光した蛍光は干渉フィルタ22を透過させて蛍光以
外の散乱光や迷光をカットし、フォトマル23で検出し
、蛍光強度を電気信号30に変換する。この電気信号3
0でフォトセル16からのモニタ信号32でトリガをか
け、蛍光強度の大きさをMCA (マルチ・チャンネル
・アナライザ)24に入力する。
FIG. 2 shows a configuration diagram of an analyzer for antigen-antibody reaction products. The pulse laser is a YAG laser 14 with an output of 300 mJ/pulse and an oscillation period of 20 Hz, and a part of the laser beam 27 from the YAG laser is transmitted through a half mirror 15. and is monitored by a photocell 16. The remaining laser light is focused by a focusing lens 17 and forms a beam waist inside the flow cell 18 . A sample introduced from the sample introduction port 19 flows inside the flow cell 18, and if particulate matter or its agglomerates are present inside the beam waist, one particle causes breakdown and becomes plasma. This plasma is irradiated with excitation light 28 (327, 4 nm) emitted from a Cu hollow cathode lamp 20, and fluorescence 29 emitted by Cu in a plasma state is focused by a condenser lens 21. The collected fluorescence passes through an interference filter 22 to cut off scattered light and stray light other than fluorescence, is detected by a photomultiplier 23, and the fluorescence intensity is converted into an electrical signal 30. This electric signal 3
0, a trigger is applied by the monitor signal 32 from the photocell 16, and the magnitude of the fluorescence intensity is input to the MCA (multi-channel analyzer) 24.

MCAの記憶内容をコンピュータ25で読み取り。The computer 25 reads the memory contents of the MCA.

この結果をプリンタ26で印字させる。This result is printed by the printer 26.

第3図に、抗DNA−BSAの稀釈倍率でへ百倍と五十
−万二千倍の抗血清を加えた試料中の凝集塊の粒子数分
布を示す、第3図中のPL、P2゜P3.P4は凝集塊
の粒子数が一個、二個、三個。
Figure 3 shows the particle number distribution of aggregates in samples to which anti-DNA-BSA dilution ratios of 100 times and 500,000 times to 52,000 times are added.PL, P2° in Figure 3 P3. For P4, the number of particles in the aggregate is one, two, and three.

四個に対応する。Corresponds to four.

第4図に、抗DNP −BSA血清の稀釈倍率と本分析
法で求めた凝集塊の平均粒子数の検量線を示す。
FIG. 4 shows a calibration curve of the dilution ratio of anti-DNP-BSA serum and the average number of aggregate particles determined by this analytical method.

この検量線より未知試料の抗DNA −BSA血清の濃
度を求めることができる。
The concentration of the anti-DNA-BSA serum in the unknown sample can be determined from this calibration curve.

なお、誤差はCV=0.3〜3% と良好であつた。Note that the error was good at CV=0.3 to 3%.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、試料中の血清などの不純物に影響なく
凝集塊の粒子数分布を求めることができるので抗原抗体
反応を起こさせた後の試料に特殊な処理を施すことなく
高精度に免疫反応を定量できる効果がある。
According to the present invention, the particle number distribution of aggregates can be determined without affecting impurities such as serum in the sample, so immunization can be performed with high precision without any special treatment of the sample after antigen-antibody reactions have occurred. It has the effect of quantifying the reaction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による免疫物質定量装置の基本構成を示
すブロック図、第2図は本発明の一実施例の構成のブロ
ック図、第3図は試料中の凝集塊の粒子数分布図、第4
図は抗DNA −BSA血清の検量線図である。 1・・・パルスレーザ、2・・・収光レンズ、3・・・
セル、4・・・励起光源、5・・・集光系、6・・・分
光器、7・・・光検出器、8・・・データ処理装置、9
・・・記録計、10・・・レーザ光、11・・・励起光
、12・・・蛍光または原子発光、13・・・信号、1
4・・・YAGレーザ、15・・・ハーフミラ−16・
・・フォトセル、17・・・収光レンズ、18・・・フ
ローセル、19・・・試料導入口、20・・・ホローカ
ソードランプ、21・・・集光レンズ、22・・・干渉
フィルタ、23・・・フォトマル、24・・・マルチ・
チャンネル・アナライザ、25・・・コンピュータ、2
6・・・プロッタ、27・・・レーザ光、28・・・励
起光、29・・・蛍光、30・・・電気信号、31・・
・#入車+導入口 第1図 24 WJ2区 5 6 第 図 MCAの+マシ相し収
FIG. 1 is a block diagram showing the basic configuration of the immune substance quantification device according to the present invention, FIG. 2 is a block diagram of the configuration of an embodiment of the present invention, and FIG. 3 is a particle number distribution diagram of aggregates in a sample. Fourth
The figure is a calibration curve diagram of anti-DNA-BSA serum. 1...Pulse laser, 2...Condensing lens, 3...
Cell, 4... Excitation light source, 5... Condensing system, 6... Spectrometer, 7... Photodetector, 8... Data processing device, 9
...Recorder, 10...Laser light, 11...Excitation light, 12...Fluorescence or atomic emission, 13...Signal, 1
4...YAG laser, 15...Half mirror-16.
... Photocell, 17 ... Condensing lens, 18 ... Flow cell, 19 ... Sample introduction port, 20 ... Hollow cathode lamp, 21 ... Condensing lens, 22 ... Interference filter, 23...Photomaru, 24...Multi...
Channel analyzer, 25...computer, 2
6... Plotter, 27... Laser light, 28... Excitation light, 29... Fluorescence, 30... Electric signal, 31...
・# Entry + inlet Fig. 1 24 WJ 2 section 5 6 Fig. MCA + better balance

Claims (1)

【特許請求の範囲】 1、液体試料中の特定の元素を添加した粒子状物質をレ
ーザ光入射ブレイクダウンによつてプラズマ化し、プラ
ズマ状態の特定の元素の発光、若しくは蛍光の強度を測
定し、粒子の凝集の有無、及び凝集塊の粒子数分布を求
める免疫分析方法。 2、請求項1の分析方法において、前記凝集は特定の元
素を添加した粒子状物質に担持させた抗体と、液体試料
中の抗原との抗原抗体反応の結果生じたものであること
を特徴とする免疫分析方法。 3、請求項1の分析方法において、凝集の有無、及び凝
集塊の粒子数分布から、液体試料中で免疫反応を起こし
た抗原の濃度を求める免疫分析方法。 4、粒子状物質をブレイクダウンさせるレーザ、液体試
料が注入され、レーザ光が入射されて発生したプラズマ
からの光を外部に放出するセル、プラズマの発光、また
は蛍光を集光、分光し、その強度を測定する光学系及び
光検出器、光検出器からの信号を処理するデータ処理装
置、および前記データ処理装置の出力情報を表示する装
置から成ることを特徴とする免疫分析装置。
[Claims] 1. Particulate matter doped with a specific element in a liquid sample is turned into plasma by laser beam incident breakdown, and the intensity of light emission or fluorescence of the specific element in the plasma state is measured; An immunoassay method that determines the presence or absence of particle aggregation and the particle number distribution of aggregates. 2. The analysis method according to claim 1, wherein the aggregation is a result of an antigen-antibody reaction between an antibody supported on particulate matter added with a specific element and an antigen in a liquid sample. immunoassay method. 3. An immunoassay method according to claim 1, in which the concentration of an antigen that causes an immune reaction in a liquid sample is determined from the presence or absence of agglutination and the particle number distribution of the agglomerates. 4. A laser that breaks down particulate matter, a cell that emits light from the plasma generated by injecting a liquid sample and laser light to the outside, and a cell that collects and spectrally spectra the plasma emission or fluorescence. An immunoassay system comprising an optical system and a photodetector for measuring intensity, a data processing device for processing signals from the photodetector, and a device for displaying output information of the data processing device.
JP2049287A 1990-03-02 1990-03-02 Immunoassey and device thereof Pending JPH03252542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2049287A JPH03252542A (en) 1990-03-02 1990-03-02 Immunoassey and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2049287A JPH03252542A (en) 1990-03-02 1990-03-02 Immunoassey and device thereof

Publications (1)

Publication Number Publication Date
JPH03252542A true JPH03252542A (en) 1991-11-11

Family

ID=12826676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2049287A Pending JPH03252542A (en) 1990-03-02 1990-03-02 Immunoassey and device thereof

Country Status (1)

Country Link
JP (1) JPH03252542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564157A1 (en) * 1992-04-01 1993-10-06 Toa Medical Electronics Co., Ltd. Apparatus for analyzing particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564157A1 (en) * 1992-04-01 1993-10-06 Toa Medical Electronics Co., Ltd. Apparatus for analyzing particles

Similar Documents

Publication Publication Date Title
EP0296136B1 (en) Biospecific multianalyte assay method with labelled microparticles
US4676640A (en) Fluctuation analysis for enhanced particle detection
US5026159A (en) Area-modulated luminescence (AML)
JPH0565822B2 (en)
JPH04337446A (en) Method and device for measuring fine grain and constant quantity method
US4407964A (en) Homogeneous fluoroimmunoassay involving sensing radiation for forward and back directions
JP2683172B2 (en) Sample measuring method and sample measuring device
US6551788B1 (en) Particle-based ligand assay with extended dynamic range
JPS62110155A (en) Reagent and method for immunoassay
Waris et al. Two-photon excitation fluorometric measurement of homogeneous microparticle immunoassay for C-reactive protein
JP2675895B2 (en) Sample processing method, sample measuring method, and sample measuring device
JPH03252542A (en) Immunoassey and device thereof
JPH0843390A (en) Immunological measuring method and its device
JPH0552848A (en) Immunoassay and apparatus
JPH04127061A (en) Immunoassay due to fluorescent minute particles
JPS6128866A (en) Measuring method and apparatus for immuno-reaction using fluctuating intensity of light
Hemmilä Time-resolved fluorometry
EP0433629B1 (en) A method for the qualitative and quantitative determination of antibodies against bacterial antigens by means of the photometric measurement of agglutination
JPS6281566A (en) Quantification method by measurement of fluorescent intensity of fine particle
JPS61173138A (en) Method for measuring immune reaction by intensity fluctuation of light
JPH05249114A (en) Method and instrument for immunological measurement
JPH03274462A (en) Apparatus and reagent for examining specimen
JPH0718879B2 (en) Specimen test method
JPH06300762A (en) Non-separate type apparatus for fluorescent immunoassay
Hemmilä Time-resolved fluorometry: advantages and potentials