JPS61290362A - Measurement of fine particle size - Google Patents

Measurement of fine particle size

Info

Publication number
JPS61290362A
JPS61290362A JP13088285A JP13088285A JPS61290362A JP S61290362 A JPS61290362 A JP S61290362A JP 13088285 A JP13088285 A JP 13088285A JP 13088285 A JP13088285 A JP 13088285A JP S61290362 A JPS61290362 A JP S61290362A
Authority
JP
Japan
Prior art keywords
measured
particles
measurement
particle
same time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13088285A
Other languages
Japanese (ja)
Inventor
Hiroshi Soga
博 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP13088285A priority Critical patent/JPS61290362A/en
Publication of JPS61290362A publication Critical patent/JPS61290362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To enable an analysis to be automatically performed and obtain correct informations of numerous kinds at the same time by deciding the numerous characters of a fine particle to be measured at the same time by a signal discriminating circuit. CONSTITUTION:The measured value of the size of a particle detected by a detecting sensor 1, after digitized by a preamplifier 2, a peak hold 3 and an A/D converter 4 and temporarily stored (5), is discriminated by a signal discriminating circuit 6 and fed to a corresponding gate 26. On the other hand, the value of fluorescent intensity measured at the same time, after similarly digitized, passes the gate 26 for the corresponding particle size and every group classified by the particle size is stored in a data memory 27, being expressed as a histogram. Thus, the fine particle or the aggregate of fine particles can be automatically analyzed and correct informations of numerous kinds can be obtained at the same time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、微粒子の測定法に関する。詳しくは、微粒子
又は微粒子の集合体を自動的に分析し、同時に多種類の
情報を19る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for measuring fine particles. Specifically, the present invention relates to a method for automatically analyzing fine particles or aggregates of fine particles and simultaneously obtaining various types of information.

[従来の技術] 免疫学の分野で、抗原または抗体を検出するための各種
の方法が研究されている。その中で、フローサイトメト
リー法は、極めて有力な方法である。この方法は、光学
機鼎分析に関するものでありm胞を1個づつ流し、細胞
粒子にレーザー光などをあてて、その散乱光を測定する
ことにより、粒子の大ぎさ、色、或いは、予め細胞を蛍
光物質等で標識づけしておぎ、その蛍光強度測定等によ
り細胞の形質を測定するものである。しかしながら、従
来の方法では、測定に使える蛍光物質や、測定できる波
長等に制約があるため、−回の測定で測れる形質の種類
は限られており、多種類の抗原、抗体等を測定するには
、何回も測定をくり返す必要があり、時間的にも、経費
的にも又、精度の面でも好ましいものとは云えない。
[Prior Art] In the field of immunology, various methods for detecting antigens or antibodies have been studied. Among them, flow cytometry is an extremely effective method. This method is related to optical mechanical analysis, in which cell particles are passed through one cell at a time, a laser beam or the like is applied to the cell particles, and the scattered light is measured. The cells are labeled with a fluorescent substance, etc., and the characteristics of the cells are measured by measuring the fluorescence intensity. However, with conventional methods, there are restrictions on the fluorescent substances that can be used for measurement and the wavelengths that can be measured, so the types of traits that can be measured in one measurement are limited, and it is difficult to measure many types of antigens, antibodies, etc. However, it is necessary to repeat the measurement many times, which is not desirable in terms of time, cost, and accuracy.

[発明が解決しようとする問題点] 本発明は、上記欠点を除去するためになされたもので、
フローサイトメトリー法において、同時にしかも簡便に
多種類の情報を(することにより、測定を効率的かつ正
確に行なうことを目的とする。
[Problems to be Solved by the Invention] The present invention has been made to eliminate the above-mentioned drawbacks.
In the flow cytometry method, the purpose is to perform measurements efficiently and accurately by simultaneously and easily obtaining a wide variety of information.

[問題点を解決覆るだめの手段] 前記目的を達成するためのこの発明の概要は、微粒子を
フローし、測定箇所を通過する微粒子又は微粒子の集合
体のn種の形質を、実質的に同時に測定し、そのうち、
選択された(n−1>種又は(n−2>種以下の形質に
ついての各測定信号について、予め設定した測定信号の
大きさで、各2以上のグループ分けできる信号弁別回路
により、被測定微粒子又は微粒子の集合体がどのグルー
プに所属するかを判定し、残りの1種又は2種以上につ
いての測定信号の大きさを、同一グループ毎、測定信号
の大きさ毎に積算し、微粒子の形質を多項目同時に判定
することを特徴とする微粒子測定法である。ここで、n
は、2又は3以上の自然数である。
[Means for solving and overcoming the problems] The outline of the present invention for achieving the above object is to substantially simultaneously measure n types of characteristics of particles or aggregates of particles passing through a measuring point by flowing particles. Measure and eventually,
For each measurement signal for the selected trait (n-1>species or (n-2>species) Determine which group the particulates or aggregates of particulates belong to, and integrate the magnitude of the measurement signal for the remaining one or more types for each group and for each measurement signal size, and calculate the size of the particulates. This is a particle measurement method characterized by the simultaneous determination of multiple traits.Here, n
is a natural number of 2 or 3 or more.

[発明の実施例] 実施例1 よずn−2の例について説明する。[Embodiments of the invention] Example 1 An example of Yozu n-2 will be explained.

微粒子として、測定−ヒ明らかに異なる大きさと判定で
きる粒径、例えば1μ、2μ、3μのラテックス粒子(
以下粒子Δ、B、Cとする)を用い、粒子の異なる大き
さ毎に異なる抗体を固定する。
As fine particles, latex particles with particle sizes that can be clearly determined to be different in size from measurement, such as 1μ, 2μ, and 3μ, are used.
Particles (hereinafter referred to as particles Δ, B, and C) are used to immobilize different antibodies for different sizes of particles.

この粒子を測定対象物の溶解あるいは懸濁した液と混合
し、抗原・抗体反応により、測定対象物を粒子と結合さ
せる。
These particles are mixed with a solution in which the object to be measured is dissolved or suspended, and the object to be measured is bound to the particles through an antigen-antibody reaction.

更に上記液に蛍光標色された抗体を加え、粒子に結合し
た、抗原・抗体反応により測定対象物の量に見合った蛍
光色素が粒子に結合した状態を作り出す。
Further, a fluorescently labeled antibody is added to the above solution, and a state is created in which a fluorescent dye corresponding to the amount of the object to be measured is bound to the particles through an antigen-antibody reaction.

この懸濁液を、フローナイトメーターに流し、まず第1
の測定パラメーターである粒子の大きさ或いは容積によ
り測定信号を弁別する。この弁別された信号A、B、C
を用い、同時に計測された蛍光強度の信号を、その弁別
信号毎即ち、粒子の大きさ毎に、その蛍光信号の大きさ
毎に計数する。
Pour this suspension into a flow night meter, and first
The measurement signal is discriminated based on the particle size or volume, which is a measurement parameter. These discriminated signals A, B, C
The simultaneously measured fluorescence intensity signals are counted for each discrimination signal, that is, for each particle size, and for each fluorescence signal size.

測定対象物として、血液中の物質抗体として、腫瘍マー
カーを使用すれば、腫瘍マーカー毎の血液中の抗原量を
測定することができる。第1図に実施例1実滴のための
信号処理装置のフローチャートを示す。1,21は、そ
れぞれ粒子の大きさ及び蛍光強度測定の検出センサーで
ある。粒子の大きさの測定値は、プリアンプ2、ピーク
ホールド3、AD変換器4で、ディジタル化し、一時記
憶5した後、信号判定回路6で、弁別し、対応するゲー
ト26へ送られる。一方、同時に測定された蛍光強度の
測定値は、同様にディジタル化され、対応する粒子大き
さのゲート26を通過し、粒子の大きさのグループ毎に
、データメモリ27に記憶され、ヒストグラム化される
If a tumor marker is used as a substance in the blood as an antibody to be measured, the amount of antigen in the blood for each tumor marker can be measured. FIG. 1 shows a flowchart of a signal processing device for actual drops in Example 1. 1 and 21 are detection sensors for measuring particle size and fluorescence intensity, respectively. The measured value of the particle size is digitized by a preamplifier 2, a peak hold 3, and an AD converter 4 and temporarily stored in a memory 5, and then discriminated by a signal determination circuit 6 and sent to a corresponding gate 26. On the other hand, the simultaneously measured fluorescence intensity values are similarly digitized, passed through the gate 26 of the corresponding particle size, stored in the data memory 27 for each particle size group, and converted into a histogram. Ru.

第2図に、粒子の径別ヒストグラムを示す。粒子径を、
O〜1,5μ、1.5〜2.5μ、2.5μ〜で、A、
B、Cにグループ分けし、A、B、Cグループ毎の蛍光
強度の測定値を、ヒストグラムにしたものを、第3図に
示す。
FIG. 2 shows a histogram of particles classified by diameter. particle size,
O~1.5μ, 1.5~2.5μ, 2.5μ~, A,
FIG. 3 shows a histogram of the fluorescence intensity measurements for each group A, B, and C, divided into groups B and C.

実施例2 n=3で2種の形質についての信号で、グループ分はす
る場合の例について説明する。
Example 2 An example will be described in which n=3 and signals for two types of traits are divided into groups.

実施例1と同様に、粒径1μ、2μ、3μのラテックス
粒子(△、B、C)を用い、各々の径のも(7)ニ”)
 イT、Fr丁C(Fluorescenin 1so
thicyanate)で緑色に標識づけされたものと
(A’ 、B’ 。
Similarly to Example 1, latex particles (Δ, B, C) with particle diameters of 1 μ, 2 μ, and 3 μ were used, and (7) 2”) of each diameter were used.
Lee T, Fr Ding C (Fluorescenin 1so
thicyanate) labeled in green and (A', B'.

C′ )と標識づけされないもの(A、、B、C)を用
意する。粒子(A、B、C,△’ 、B’ 、C’ )
に、異種の抗体を固定する。この粒子を測定対象物の溶
解あるいは、懸濁した液と混合し、抗原・抗体反応によ
り、測定対象物を粒子と結合さぼる。
C') and those that are not labeled (A, , B, C) are prepared. Particles (A, B, C, △', B', C')
Immobilize the heterologous antibody. These particles are mixed with a solution in which the object to be measured is dissolved or suspended, and the object to be measured is bound to the particles through an antigen-antibody reaction.

更に上記液に、上記とは異なる波長の蛍光標識物質PI
(Propidium Iodide)で赤色に蛍光標
色された抗体を加え、粒子に結合した抗原・抗体反応に
より測定対象物の最に見合った蛍光色素が粒子に結合し
た状態を作り出ず。
Furthermore, a fluorescent labeling substance PI having a wavelength different from the above is added to the above liquid.
An antibody fluorescently labeled red with Propidium Iodide (Propidium Iodide) was added, and the antigen-antibody reaction bound to the particles did not create a state in which the most suitable fluorescent dye for the measurement target was bound to the particles.

この懸濁液を実施例1と同様に公知のフローメーターに
流し、まず第1の測定パラメーターである粒子の大きさ
或いは容積により測定信号をA。
This suspension was passed through a known flow meter in the same manner as in Example 1, and a measurement signal was obtained using the first measurement parameter, the particle size or volume.

B、Cに弁別づ−る。次に第2の測定パラメーターであ
る緑色蛍光の強度をはかり、その有無によりΔ、B、C
を△、B、CとA’ 、13’ 、C’ に弁別する。
Discriminate between B and C. Next, measure the intensity of green fluorescence, which is the second measurement parameter, and depending on the presence or absence of it, Δ, B, C
are distinguished into Δ, B, C and A', 13', and C'.

この弁別されたA、B、C,Δ1.B+ 。These discriminated A, B, C, Δ1. B+.

C′について、同時に計測された赤色蛍光の強度をはか
ることにより、6種の異なる抗体A、B。
For C', six different antibodies A and B were detected by measuring the intensity of red fluorescence measured simultaneously.

C,A’ 、B’ 、C’ に対する抗原の指を、同時
に測定できる。
Antigen fingers for C, A', B', and C' can be measured simultaneously.

第4図に、実施例2実施のための信号処理装置のフロー
チャートを示す。
FIG. 4 shows a flowchart of the signal processing device for implementing the second embodiment.

以上説明した方法と同様に測定センサー及びパラメータ
ーを増やせば、nが4以上のものについても同様の測定
ができ、1回の測定で、より多くの情報が得られる。実
施例1,2では、大きさの一定の粒子に、抗体を固定し
たが抗原を固定することも出来るし、実施例2で粒子を
緑色に標識づけしたが、蛍光物質の濃度により、3以上
にグループ分けすることも可能である。
By increasing the number of measurement sensors and parameters in the same manner as in the method described above, it is possible to perform similar measurements for items where n is 4 or more, and more information can be obtained with a single measurement. In Examples 1 and 2, antibodies were immobilized on particles of a fixed size, but it is also possible to immobilize antigens, and in Example 2 the particles were labeled green, but depending on the concentration of the fluorescent substance, It is also possible to group them into

[発明の効果] 以上説明したように、本発明の方法によれば、微粒子又
は微粒子の集合体を、自動的に分析し、同時に多種類の
正確な情報が得られる。
[Effects of the Invention] As explained above, according to the method of the present invention, fine particles or aggregates of fine particles can be automatically analyzed and various types of accurate information can be obtained at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第4図は、本発明を実施するための信号処理装
置のフローチャートであり、第2図、第3図は、測定例
を模式的に示したもので第2図は粒子の径別ヒストグラ
ム、第3図は粒子径グループ毎の蛍光強度の測定値のヒ
ストグラムを示す。
1 and 4 are flowcharts of a signal processing device for carrying out the present invention, and FIGS. 2 and 3 schematically show measurement examples. Another histogram, FIG. 3, shows a histogram of measured values of fluorescence intensity for each particle size group.

Claims (1)

【特許請求の範囲】[Claims] 微粒子をフローし、測定箇所を通過する微粒子又は微粒
子の集合体のn種の形質を、実質的に同時に測定し、そ
のうち、選択された(n−1)種又は(n−2)種以下
の形質についての各測定信号について、予め設定した測
定信号の大きさで各2以上のグループ分けできる信号弁
別回路により、被測定微粒子又は微粒子の集合体がどの
グループに所属するかを判定し、残りの1種又は、2種
以上についての測定信号の大きさを、同一グループ毎、
測定信号の大きさ毎に積算し、微粒子の形質を多項目同
時に判定することを特徴とする微粒子測定法。
The characteristics of n types of particles or aggregates of particles passing through the measurement location are measured substantially simultaneously, and among them, the characteristics of selected (n-1) or (n-2) or less species are measured. For each measurement signal regarding a trait, a signal discrimination circuit that can divide each measurement signal into two or more groups based on the magnitude of the measurement signal set in advance determines which group the measured particle or particle aggregate belongs to, and determines the remaining group. The magnitude of the measurement signal for one type or two or more types is determined for each group.
A particle measurement method characterized by integrating the magnitude of each measurement signal and determining multiple characteristics of particles at the same time.
JP13088285A 1985-06-18 1985-06-18 Measurement of fine particle size Pending JPS61290362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13088285A JPS61290362A (en) 1985-06-18 1985-06-18 Measurement of fine particle size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13088285A JPS61290362A (en) 1985-06-18 1985-06-18 Measurement of fine particle size

Publications (1)

Publication Number Publication Date
JPS61290362A true JPS61290362A (en) 1986-12-20

Family

ID=15044900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13088285A Pending JPS61290362A (en) 1985-06-18 1985-06-18 Measurement of fine particle size

Country Status (1)

Country Link
JP (1) JPS61290362A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191043A (en) * 1987-02-03 1988-08-08 Omron Tateisi Electronics Co Cell analyzer
JPH03504276A (en) * 1988-05-11 1991-09-19 サンバント・エイエス Analysis method
US8620059B2 (en) 2007-12-13 2013-12-31 Fpinnovations Characterizing wood furnish by edge pixelated imaging

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191043A (en) * 1987-02-03 1988-08-08 Omron Tateisi Electronics Co Cell analyzer
JPH03504276A (en) * 1988-05-11 1991-09-19 サンバント・エイエス Analysis method
US8620059B2 (en) 2007-12-13 2013-12-31 Fpinnovations Characterizing wood furnish by edge pixelated imaging

Similar Documents

Publication Publication Date Title
US4499052A (en) Apparatus for distinguishing multiple subpopulations of cells
US4717655A (en) Method and apparatus for distinguishing multiple subpopulations of cells
US4599307A (en) Method for elimination of selected cell populations in analytic cytology
EP0175545B1 (en) Measuring intensity fluctuations and determining an analyte thereby
US5028545A (en) Biospecific multianalyte assay method
CA1248873A (en) Particles and procedures for the determination of antigens and/or antibodies using the particles
US11726031B2 (en) Fluorescent spectrum correcting method and fluorescent spectrum measuring device
JPH0565822B2 (en)
JPH0379666B2 (en)
CA2842681A1 (en) Instrument and method for optical particle sensing
Givan Flow cytometry: an introduction
JPS61225656A (en) Sample inspector
US6551788B1 (en) Particle-based ligand assay with extended dynamic range
AU1938197A (en) Multi-antigen serological diagnosis
JPS61290362A (en) Measurement of fine particle size
JPS6281567A (en) Quantification method using particle agglutination reaction
CN110312926B (en) Method for analyzing a plurality of droplets and selecting specific droplets therefrom and related device
JPS6281566A (en) Quantification method by measurement of fluorescent intensity of fine particle
JPH01270643A (en) Method for examination of specimen
JPH0718879B2 (en) Specimen test method
Ortolani Standards, Setup, Calibration, and Control Techniques
JP2001183377A (en) Immunological inspection method for many items
US20040090613A1 (en) Method for measuring the volume of cells or particles
JPS62112067A (en) Subset analysis method and reagent
JPH0627112A (en) Immunological measurement method