JPH01270603A - Infrared thickness meter - Google Patents

Infrared thickness meter

Info

Publication number
JPH01270603A
JPH01270603A JP9925088A JP9925088A JPH01270603A JP H01270603 A JPH01270603 A JP H01270603A JP 9925088 A JP9925088 A JP 9925088A JP 9925088 A JP9925088 A JP 9925088A JP H01270603 A JPH01270603 A JP H01270603A
Authority
JP
Japan
Prior art keywords
angle
polarized light
measured
light
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9925088A
Other languages
Japanese (ja)
Other versions
JPH0663749B2 (en
Inventor
Shigeo Takahashi
高橋 重男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP9925088A priority Critical patent/JPH0663749B2/en
Publication of JPH01270603A publication Critical patent/JPH01270603A/en
Publication of JPH0663749B2 publication Critical patent/JPH0663749B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To prevent the generation of a measuring error even when the incident angle of P-polarized beam is shifted from a Brewster angle, by providing a polarizing irradiation means constituted of a cuesta prism and a polarizer, a beam detector and an operation means. CONSTITUTION:The collimation beam from a beam source 3 is brought to two parallel beams by a cuesta prism and P-polarized beam is separated by a polarizer 5 and S-polarized beam is separated by a polarizer 6. The beam from the prism 4 is set so as to be incident to an object 1 to be measured at a Brewster angle. A beam detector 9 detects the P-polarized and S-polarized beams condensed by a lens 8 and an operation means stores not only a relational curve of the incident angle of an S-polarized beam component and the intensity of reflected beam but also a relational expression of the transmission intensity of P-polarized beam expressed by the functions of an incident angle, an angle of refraction and a film thickness. The incident angle and angle of refraction at the time of measurement are calculated on the basis of the relational curve and the measuring signal of S-polarized beam and substituted for the relational expression of P-polarized beam and the film thickness of the object to be measured is calculated on the basis of the measuring signal of the P-polarized beam. By this method, no measuring error appears even when the surface state of the object 1 to be measured is changed and the incident angle of the P-polarized beam is shifted from the Brewster angle.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は赤外線を被測定対象であるシート状被測定体に
透過させ、その吸光度からこの物質の厚さを測定する赤
外線厚み計に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an infrared thickness meter that transmits infrared rays through a sheet-like object to be measured and measures the thickness of the material from its absorbance.

〈従来の技術〉 従来、例えば特開昭60−224002号には、光源か
らの光を偏光子に通しP偏光を取出しブリュースタ角で
被測定体に入射させ、透過光を反射させ、再度、前記被
測定体に透過させ、透過光の吸光度に基づき前記被測定
体の厚さを求める装置が開示されている。
<Prior art> Conventionally, for example, in Japanese Patent Application Laid-Open No. 60-224002, light from a light source is passed through a polarizer to extract P-polarized light, which is incident on a measured object at Brewster's angle, the transmitted light is reflected, and then An apparatus is disclosed that transmits light through the object to be measured and determines the thickness of the object based on the absorbance of the transmitted light.

第4図(a)で示すように、P偏光り7.の入射角φを
ブリュースタ角にしてシート状被測定体1に入射させた
場合、P偏光の反射率はゼロとなり全光量が被測定t*
1に入射し、ミラー2で反射された光が被測定体1に入
射するため、光損失が少なく信号成分の大きな訓定か行
える。
As shown in FIG. 4(a), P-polarized light 7. When the incident angle φ is set to Brewster's angle and the sheet-shaped object 1 is made incident on the object 1, the reflectance of P-polarized light is zero and the total light amount becomes the object t*
1, the light reflected by the mirror 2 is incident on the object to be measured 1, so that training with a large signal component can be performed with little optical loss.

しかしたがら、被測定体1は移動しており、表面状態は
一定でなく P偏光り、の入射角φを常にブリュースタ
角に保つことはできない。第4図<b)はこの状態を示
す。シート状被測定体1の表面状態が変化しPi扁先光
1 pの入射角φがブリ、1−スタ角よりずれた場合、
空気と被測定体1との境界面で反射が起こり、反射光成
分は光損失となる。特開昭60−224002号の場合
、光は被測定体1を2回透過するため光損失は重複され
る。
However, since the object 1 to be measured is moving, its surface condition is not constant, and the incident angle φ of the P-polarized light cannot always be maintained at the Brewster's angle. FIG. 4<b) shows this state. When the surface condition of the sheet-like object 1 changes and the angle of incidence φ of the Pi beam 1p deviates from the 1-star angle,
Reflection occurs at the interface between the air and the object to be measured 1, and the reflected light component becomes optical loss. In the case of JP-A No. 60-224002, the light passes through the object 1 to be measured twice, so that the optical loss is doubled.

この光損失は検出器において被測定体1における吸光と
判断され誤差要因となる。
This light loss is determined by the detector to be light absorption in the object to be measured 1, and becomes a cause of error.

〈発明が解決しようとする課題〉 本発明で解決し7ようとする技術的課題は、P1扁光を
ブリュースタ角て前記被測定体に入射させ、透過光の吸
光度から前記被測定体の厚さを求める赤外線厚み計にお
いて、前記被測定体の表面状態が変化してP 1m光の
入射角がブリュースタ角よりずれた場合でも測定誤差が
現れないようにすることにある。
<Problem to be Solved by the Invention> The technical problem to be solved by the present invention is to make P1 polarized light incident on the object to be measured at the Brewster angle, and calculate the thickness of the object to be measured from the absorbance of the transmitted light. The object of the present invention is to prevent measurement errors from occurring even when the incident angle of P1m light deviates from the Brewster's angle due to a change in the surface condition of the object to be measured, in an infrared thickness meter for determining the thickness of the object.

く課題を解決するための手段〉 本発明の構成は、前記赤外線厚み計において、a、光源
からの光よつPi光及びS[肩先を分離し、これら光を
同一入射角で前記被測定体に照射する偏光照射手段と、 b、前記被測定体で反射されなS@光成分と、前記被測
定体を透過したP1扁肩先分とを検出する偏光検出手段
と、 C前記S偏光成分の入射角と反射光強度との関係曲線、
並びに前記入射角、屈折角、及び前記膜厚の関数で表わ
されるP偏光の透過光強度の関係式とが記憶され、前記
関係曲線並びに前記SIN光の測定信号に基き測定時に
おりる前記入射角と屈折角とを求め、これらを前記P 
IN光の関係式に代入し、前記P iti光の測定信号
に暴き演算により前記被測定体の膜厚を求める演算手段 とを設け、前記被測定体の表面状態の変化によって前記
P偏光がブリュースタ角よりずれた場合、反射光成分の
影響が測定結果に現れないようにしたことにある。
Means for Solving the Problems> The configuration of the present invention is that, in the infrared thickness gauge, a, the light from the light source, the Pi light, and the S [shoulder tip] are separated, and these lights are directed to the object to be measured at the same angle of incidence. B. Polarized light detection means for detecting the S@ light component that is not reflected by the object to be measured and the P1 flat shoulder portion that has passed through the object to be measured; C. Relationship curve between incident angle and reflected light intensity,
Also, the incident angle, the refraction angle, and a relational expression of the transmitted light intensity of P-polarized light expressed as a function of the film thickness are stored, and the incident angle at the time of measurement is determined based on the relational curve and the measurement signal of the SIN light. and the refraction angle, and convert these into the above P
A calculation means for calculating the film thickness of the object to be measured by substituting it into the relational expression of the IN light and performing an uncover operation on the measurement signal of the P iti light is provided, and the P-polarized light is The purpose is to prevent the influence of the reflected light component from appearing on the measurement results when the angle deviates from the star angle.

く作用〉 前記の技術手段は次のように作用する。即ち、前記光源
からの光を、例えばケスタルプリズムを使って二つの平
行光にし、各々の光路に偏光子を入れP m光、S (
tn光を分離する。これら光をブリュースタ角で前記シ
ート状被測定体に入射させる。
Function> The above technical means works as follows. That is, the light from the light source is converted into two parallel beams using, for example, a Kestal prism, and a polarizer is placed in each optical path to produce P m light, S (
Separate tn light. These lights are made incident on the sheet-like object to be measured at Brewster's angle.

前記被測定体を透過したl)偏光成分及び前記被測定体
で反射されたS偏光成分を、例えばチョッパーを用いた
機械的分離手段によって分離し検出器において各別に光
強度として測定する。P偏光成分の透過光強度はフレネ
ルの式に依存し、入射角、屈折角、膜厚の関数として表
わされる。S偏光成分の反射光強度はフレネルの式によ
って、入射角、屈折角の関数として表わされる。一方、
前記透明物質の屈折率が既知の場合、前記入射角と屈折
角とはスネルの式で関連付けることができる。
The l) polarized light component transmitted through the object to be measured and the S-polarized light component reflected by the object to be measured are separated by a mechanical separation means using, for example, a chopper, and each is measured as a light intensity by a detector. The transmitted light intensity of the P-polarized light component depends on Fresnel's equation, and is expressed as a function of the incident angle, refraction angle, and film thickness. The reflected light intensity of the S-polarized light component is expressed by Fresnel's equation as a function of the incident angle and the refraction angle. on the other hand,
When the refractive index of the transparent material is known, the angle of incidence and the angle of refraction can be related by Snell's equation.

測定に先立ち、前記被測定体への入射角を、例えばブリ
、2−スタ角に設定してS 偏光成分の反射光強度を測
定する。これに基き、入射角とS偏光の反射光強度との
検量線を得る。測定時、前記被測定体の表面状態が変っ
て前記入射角がブリュースタ角よりずれた場合、前記S
偏光成分の反射光強度が変化する。この反射光強度から
前記検量線を用いて入射角を求め、これに基き屈折角を
求め、これら入射角と屈折角を前記P 1m光の透過光
強度の関係式に代入して演算により前記被測定体の膜厚
を求める。
Prior to measurement, the incident angle to the object to be measured is set to, for example, a 2-star angle, and the reflected light intensity of the S polarized light component is measured. Based on this, a calibration curve between the incident angle and the reflected light intensity of S-polarized light is obtained. During measurement, if the surface condition of the object to be measured changes and the incident angle deviates from the Brewster angle, the S
The reflected light intensity of the polarized light component changes. The incident angle is determined from this reflected light intensity using the calibration curve, the refraction angle is determined based on this, the incident angle and the refraction angle are substituted into the relational expression for the transmitted light intensity of the P1m light, and the calculation is performed. Determine the film thickness of the object to be measured.

〈実施例〉 以下図面に従い本発明の詳細な説明する。第1図は本発
明実施例装置の光学系を示す分解斜視図である。図中、
第4図における要素と同じ要素には同一符号が付されて
いる。3はレーザ光源、4はケスクープリズムで光源3
がらのコリメート光ご2木の平行光にする。5,6はこ
れら千行光の光路に入れられた偏光子で、例えば偏光子
5によってP 14m光I−3を分離し、偏光子6によ
ってS偏光Lpを分離する。ケスタープリズム4からの
光は被測定体1にブリュースタ角で入射するように設定
される。7は被測定体1を透過しミラー2で反射され再
び被測定体1を透過したP偏光成分と、被測定体1て反
射されたS偏向成分とを分離する回転チョッパーで、表
面にP偏光成分検出用の孔7,7  、Sj4光成分検
出用の孔7゜。
<Example> The present invention will be described in detail below with reference to the drawings. FIG. 1 is an exploded perspective view showing an optical system of an apparatus according to an embodiment of the present invention. In the figure,
Elements that are the same as those in FIG. 4 are given the same reference numerals. 3 is a laser light source, 4 is a Kesku prism light source 3
The collimated light is made into two parallel beams. Polarizers 5 and 6 are placed in the optical path of these 1,000-line lights. For example, the polarizer 5 separates the P14m light I-3, and the polarizer 6 separates the S-polarized light Lp. The light from the Kester prism 4 is set to be incident on the object to be measured 1 at Brewster's angle. 7 is a rotary chopper that separates the P-polarized light component that has passed through the object to be measured 1, been reflected by the mirror 2, and passed through the object to be measured 1 again, and the S-polarized component that has been reflected by the object to be measured 1; Holes 7, 7 for component detection, hole 7° for Sj4 light component detection.

b 7dが設けられ、矢印方間に回転せしめられP偏光成分
とS偏光成分とを交互に検出する。8は集光レンズ、9
はこのレンズで集光されたP偏光成分とS Im光成分
とを検出する光検出器である。
b 7d is provided and rotated in the direction of the arrow to alternately detect the P-polarized light component and the S-polarized light component. 8 is a condensing lens, 9
is a photodetector that detects the P polarized light component and the S Im light component collected by this lens.

次にこのような構成の装置の動作を第2図の説明図に従
い説明を行なう。第2図(a、 )は被測定体1の表面
が変動していない状態を表わし、第2図(b)は被測定
体1の表面がミラー2に対し角度η変動した状態を表わ
す。
Next, the operation of the apparatus having such a configuration will be explained with reference to the explanatory diagram of FIG. FIGS. 2(a, 2) show a state in which the surface of the object to be measured 1 has not changed, and FIG. 2(b) shows a state in which the surface of the object to be measured 1 has changed by an angle η relative to the mirror 2.

第1図のケスタープリズム4から偏光子5,6を通って
被測定体1に入射されなP偏光t−P並びにS偏光■7
8は表面か変動していない第2図(a)の状態のとき入
射角φはブリュースタ角で被測定体1に入射している。
P-polarized light t-P and S-polarized light 7 which are not incident on the object to be measured 1 from the Kester prism 4 in FIG. 1 through the polarizers 5 and 6.
8 is incident on the object to be measured 1 at an incident angle φ at Brewster's angle when the surface is not changing as shown in FIG. 2(a).

このうちP偏光Lpの透過率1゛1.はミラー2により
被測定体1を2回透過するので、被測定体1内で吸収か
ないとした場合、フレネルの式に従い ’f’ + P −j < SI n 2φ−S jn
 2 χ) 、/(Sin2 (φ+Z)C’O82(
φ−χ))]2・・・(1) で表わされる(たたし、χ:屈折角)。ブリュースタ角
での入射の場合、 φ十χ−(π/2)    ・・・(2)の関係がある
から、(1)式は、 1゛1P−[(Sin2φ−3jn2χ)/Co52 
(φ−χ)]’  =13)で表わすことが出来る。
Of these, the transmittance of P-polarized light Lp is 1.1. passes through the object 1 to be measured twice by the mirror 2, so if it is not absorbed within the object 1 to be measured, 'f' + P -j < SI n 2φ - S jn according to Fresnel's formula
2 χ) , /(Sin2 (φ+Z)C'O82(
φ−χ))]2...(1) (Tap, χ: refraction angle). In the case of incidence at Brewster's angle, there is the relationship φ1χ-(π/2)...(2), so equation (1) is 1゛1P-[(Sin2φ-3jn2χ)/Co52
(φ-χ)]' = 13).

次に被測定体1の表面かミラー2に対し角度η傾いた場
合(第2図(b))、P偏光L Pの入射角φはブリュ
ースタ角以外で入射する為、空気と被測定体1との境界
面で反射1t、 P 、 R2P 。
Next, when the surface of the object to be measured 1 is tilted at an angle η with respect to the mirror 2 (Fig. 2 (b)), since the incident angle φ of the P-polarized light L P is incident at a angle other than Brewster's angle, the air and the object to be measured are Reflection at the interface with 1t, P, R2P.

R3、R4pが生じ、これらは以下て表わされる。R3, R4p are generated and are represented below.

R+ p −(t、 a R2(φ十η−χ1))/(
t、an  2   (φ 十 η −ト χ 1  
)  )・・・(4) (但し、χ1 :入射角φ十ηに対する屈折角)R2P
= jtan’  (χ、−9S−77>j /(t、
an2 (χ1+φ+η)) ・・・(5) R3p = (jan’  (φ−7722))/(t
an2 (φ−η+χ、)) ・・・(6) (但し、χ2 :入射角φ−ηに対する屈折角)R4p
−(t、 a n 2(χ2−φ十η))/it、an
’(χ2+φ−η)) ・・・(7) 反射率(R)と透過率(T)とは一般にR十’T”=1
        ・・・(8)で表わされ、従って、P
偏光り、の透過’4s ’I” 2pは ’T”、2 −+1−R,・R2・R3P  ・P  
         P      PR,IP+   
      ・・・(9)で与えられる。これに被測定
体1内ての光吸収を考慮した場合、以下のようになる。
R+ p −(t, a R2(φ1η−χ1))/(
t, an 2 (φ 10 η − t χ 1
) )...(4) (However, χ1: refraction angle relative to the incident angle φ1η) R2P
= jtan' (χ, -9S-77>j /(t,
an2 (χ1+φ+η)) ...(5) R3p = (jan' (φ-7722))/(t
an2 (φ-η+χ, )) ... (6) (However, χ2: refraction angle with respect to the incident angle φ-η) R4p
−(t, an 2(χ2−φ10η))/it, an
'(χ2+φ-η)) ...(7) Reflectance (R) and transmittance (T) are generally R + 'T''=1
...(8), therefore, P
Polarization, transmission of '4s 'I' 2p is 'T', 2 -+1-R, ・R2 ・R3P ・P
P PR, IP+
... is given by (9). When light absorption within the object to be measured 1 is taken into consideration, the following results are obtained.

T2 P −((Ao  −K)  ・d/Cosχ1
 )−(1−P、 +   ・R2P ’R3P ’R
a p )・・・(10) (但し、Ao=入射光強度、d:被測定体1の膜厚、K
:定数) 一方、S (b+光1,8の反射強度R18はフレネル
の式に従い、 R13=At;  I−(S i n2f$  Z> 
l 、/’(Sin2 (φ+χ))コ ・・・(]1) で与えられ、第3図のような特性を持つ。被測定体1の
屈折率n、が分かっている場合、入射角φをその屈折率
に対応するブリュースタ角に設定してS偏光I78を被
測定体1に入射させる。そのときの検出光弾度Aよりカ
ーブを特定し、R18の検量線を得る。カーブ自体は変
らないのて一点の4(1J定で検量線を特定することが
てきる。この検量線を用い、59jl光I78の反射光
強度からそのときの入射角φが求まる。
T2 P −((Ao −K) ・d/Cosχ1
)-(1-P, + ・R2P 'R3P'R
a p )...(10) (However, Ao = incident light intensity, d: film thickness of the object to be measured 1, K
: constant) On the other hand, the reflection intensity R18 of S (b+lights 1 and 8 follows Fresnel's formula, R13=At; I-(S in2f$ Z>
l,/'(Sin2(φ+χ))co...(]1) It has the characteristics as shown in FIG. When the refractive index n of the object to be measured 1 is known, the incident angle φ is set to the Brewster angle corresponding to the refractive index, and the S-polarized light I78 is made incident on the object to be measured 1. A curve is specified from the detected optical elasticity A at that time, and a calibration curve of R18 is obtained. Since the curve itself does not change, a calibration curve can be specified at one point 4 (1J constant). Using this calibration curve, the incident angle φ at that time can be determined from the reflected light intensity of the 59jl light I78.

一方、入射角φと屈折角χとはスネルの式によって、 no−8inφ=n、−3inχ ・・・(12) の関係があり、これよりχが求まる(但し、nO:空気
の屈折率)。この結果、(4)〜(7)式の6、η、χ
1.χ2が求まり、R+  、 R2p 。
On the other hand, the angle of incidence φ and the angle of refraction χ have the following relationship according to Snell's formula: no-8inφ=n, -3inχ...(12) From this, χ can be found (where nO: refractive index of air) . As a result, 6, η, χ in equations (4) to (7)
1. χ2 is found, R+, R2p.

R3、Rd、が求まる。更に(10)式における( A
O’ K )は膜厚が既知の材料を用いて測定を行なえ
ば求まる。これらの値を(10)式に代入し7て、P偏
光1−1の透過光]゛2Pの検出強度から被測定体1の
膜厚dが求められる。
R3 and Rd are found. Furthermore, ( A
O' K ) can be found by performing measurements using a material whose film thickness is known. By substituting these values into equation (10), the film thickness d of the object to be measured 1 can be determined from the detected intensity of the transmitted light 2P of the P-polarized light 1-1.

〈発明の効果〉 本発明によれば、前記被測定体の表面状態が変化してP
偏光の入射角がブリ1−スタ角よりすれても測定誤差が
現れない。
<Effects of the Invention> According to the present invention, the surface condition of the object to be measured changes and P
No measurement error occurs even if the incident angle of polarized light is less than the blister angle.

【図面の簡単な説明】 一]、1− 第1図は本発明実施例装置の光学系を示す分解斜視図、
第2図及び第3図は本発明実施例装置の動作を説明する
説明図、第4図は従来装置の欠点を説明する説明図であ
る。
[Brief Description of the Drawings] 1], 1- Fig. 1 is an exploded perspective view showing an optical system of an apparatus according to an embodiment of the present invention;
FIGS. 2 and 3 are explanatory diagrams for explaining the operation of the apparatus according to the embodiment of the present invention, and FIG. 4 is an explanatory diagram for explaining the drawbacks of the conventional apparatus.

Claims (1)

【特許請求の範囲】 P偏光をブリュースタ角でシート状被測定体に入射させ
、透過光をミラーで反射させ再度、この被測定体に透過
させて、透過光の吸光度に基づき前記被測定体の膜厚を
求める赤外線厚み計において、 a、光源からの光よりP偏光及びS偏光を分離し、これ
ら光を同一入射角で前記被測定体に照射する偏光照射手
段と、 b、前記被測定体で反射されたS偏光成分と、前記被測
定体を透過したP偏光成分とを検出する偏光検出手段と
、 c、前記S偏光成分の入射角と反射光強度との関係曲線
、並びに前記入射角、屈折角、及び前記膜厚の関数で表
わされるP偏光の透過光強度の関係式とが記憶され、前
記関係曲線並びに前記S偏光の測定信号に基き測定時に
おける前記入射角と屈折角とを求め、これらを前記P偏
光の関係式に代入し、前記P偏光の測定信号に基き演算
により前記被測定体の膜厚を求める演算手段 とを設け、前記被測定体の表面状態の変化によって前記
P偏光がブリュースタ角よりずれた場合、反射光成分の
影響が測定結果に現れないようにしたことを特徴とする
赤外線厚み計。
[Scope of Claims] P-polarized light is incident on a sheet-like object to be measured at Brewster's angle, the transmitted light is reflected by a mirror and transmitted through the object again, and the absorbance of the transmitted light is determined based on the absorbance of the object. An infrared thickness meter for determining the film thickness of a film, comprising: a. polarized light irradiation means for separating P-polarized light and S-polarized light from light from a light source and irradiating these lights onto the object to be measured at the same angle of incidence; b. a polarization detection means for detecting an S-polarized light component reflected by the body and a P-polarized light component transmitted through the measured object; c. a relationship curve between the incident angle of the S-polarized light component and the reflected light intensity; A relational expression for transmitted light intensity of P-polarized light expressed as a function of angle, refraction angle, and film thickness is stored, and the incident angle and refraction angle at the time of measurement are calculated based on the relational curve and the measurement signal of S-polarized light. and substituting these into the relational expression of the P-polarized light, and calculating the film thickness of the object to be measured based on the measurement signal of the P-polarized light, and An infrared thickness meter characterized in that when the P-polarized light deviates from the Brewster's angle, the influence of the reflected light component does not appear on the measurement results.
JP9925088A 1988-04-21 1988-04-21 Infrared thickness gauge Expired - Lifetime JPH0663749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9925088A JPH0663749B2 (en) 1988-04-21 1988-04-21 Infrared thickness gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9925088A JPH0663749B2 (en) 1988-04-21 1988-04-21 Infrared thickness gauge

Publications (2)

Publication Number Publication Date
JPH01270603A true JPH01270603A (en) 1989-10-27
JPH0663749B2 JPH0663749B2 (en) 1994-08-22

Family

ID=14242462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9925088A Expired - Lifetime JPH0663749B2 (en) 1988-04-21 1988-04-21 Infrared thickness gauge

Country Status (1)

Country Link
JP (1) JPH0663749B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474910A (en) * 1990-07-17 1992-03-10 Mitsubishi Heavy Ind Ltd Water membrane detector on printing plate of press
JPH0519907U (en) * 1991-03-28 1993-03-12 横河電機株式会社 Sheet-like material thickness measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474910A (en) * 1990-07-17 1992-03-10 Mitsubishi Heavy Ind Ltd Water membrane detector on printing plate of press
JPH0519907U (en) * 1991-03-28 1993-03-12 横河電機株式会社 Sheet-like material thickness measuring device

Also Published As

Publication number Publication date
JPH0663749B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
EP0397388B1 (en) Method and apparatus for measuring thickness of thin films
KR100742982B1 (en) Focused-beam ellipsometer
JPH03205536A (en) Ellipsometer with high resolving power and method of its use
JPH08122211A (en) Spectacle lens measuring device
JPH06317408A (en) Determination of characteristic value of transparent layer using polarization analysis method
CN209400421U (en) A kind of device measuring Fano resonance sensor detectable limit
JPH01270603A (en) Infrared thickness meter
JP3520379B2 (en) Optical constant measuring method and device
RU2302623C2 (en) Ellipsometer
JPS6231289B2 (en)
JP4127513B2 (en) Cholesteric liquid crystal optical element inspection device
JP3021338B2 (en) Extinction ratio measurement method and extinction ratio measurement device
JP3787332B2 (en) Thermal lens absorption analyzer
Karabegov Metrological and technical characteristics of total internal reflection refractometers
JPH02102436A (en) Birefringence measuring method
JPS61277026A (en) Method and apparatus for detecting polarization angle
JP2522480B2 (en) Refractive index measurement method
JPS60249007A (en) Instrument for measuring film thickness
JP2863273B2 (en) Displacement measuring device
JP2529562B2 (en) Ellipsometer
JPS6326763Y2 (en)
JPH0729445Y2 (en) Transparent object thickness measuring device
JPH0458139A (en) Infrared optical device
JPH0325347A (en) Double refraction measuring method
JP2546104Y2 (en) Sheet thickness measuring device