JPS61277026A - Method and apparatus for detecting polarization angle - Google Patents

Method and apparatus for detecting polarization angle

Info

Publication number
JPS61277026A
JPS61277026A JP11929885A JP11929885A JPS61277026A JP S61277026 A JPS61277026 A JP S61277026A JP 11929885 A JP11929885 A JP 11929885A JP 11929885 A JP11929885 A JP 11929885A JP S61277026 A JPS61277026 A JP S61277026A
Authority
JP
Japan
Prior art keywords
light
polarized light
angle
incident
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11929885A
Other languages
Japanese (ja)
Other versions
JPH076841B2 (en
Inventor
Shusaku Shigeta
重田 修作
Hidekazu Kimura
英一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP11929885A priority Critical patent/JPH076841B2/en
Publication of JPS61277026A publication Critical patent/JPS61277026A/en
Publication of JPH076841B2 publication Critical patent/JPH076841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to detect the polarization angle of an object to be measured in a non-contact state with high accuracy, by a method wherein P-polarized light and non-polarized light or P-polarized light and S-polarized light are alternately change over to be incident to an object to be measured at the same incidence angle and the intensities of the reflected lights of both lights to calculate the ratio of both intensities and the incident angle minimizing said ratio is detected as a polarization angle. CONSTITUTION:A photoelectric converter element 22 respectively outputs a P-polarized light signal I'rp and a non-polarized light signal I'r proportional to the light receiving intensities of the P-polarized light and the non-polarized light incident while alternately changed over by a rotary disc 8 and both signals are inputted to a ratio operation circuit 23 which, in turn, operates the ratio I'rp/I'r. A min. value detection circuit 24 detects the min. value of the ratio I'rp/I'r inputted from the ratio operation circuit 23. Then, the incident angle minimizing the ratio of the intensities of reflected lights is detected as a polarization angle.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光の屈折率が既知でない物質や、屈折率が既
知であっても測定光と被測定物とのなす角度が検出し難
い樹脂フィルムの様にフレキシブルな物質の偏光角を検
出する方法およびそのための検出装置に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is applicable to substances for which the refractive index of light is not known, and even when the refractive index is known, it is difficult to detect the angle between the measurement light and the object to be measured. The present invention relates to a method for detecting the polarization angle of a flexible substance such as a resin film, and a detection device therefor.

(従来技術) 近年、フィルムの製造技術の進歩に伴って数ミクロンオ
ーダの極薄フィルムの製造が可能になつア去アいスh<
、′+の)ろfr成蒲7ノ1し八小制;宍賎の膜厚の管
理のために、膜厚を高精度で検出することが必要となっ
ている。
(Prior art) In recent years, with the advancement of film manufacturing technology, it has become possible to manufacture ultra-thin films on the order of several microns.
In order to control the film thickness of Shishisha, it is necessary to detect the film thickness with high accuracy.

比較的膜厚の厚いフィルムの膜厚の検出には、厚みを測
定すべき被測定物を形成する物質が有する特性吸収帯域
の波長を有する赤外線(以下、測定光という。)と、特
性吸収帯とは適当に離れた波長を有する参照用の赤外線
(以下、単に参照光という。)とを夫々被測定物に垂直
方向から入射させ、被測定物を透過した測定光の透過強
度と参照先の透過強度とから、測定光の被測定物による
吸光度を求め、この吸光度に基づいて、当該被測定物の
厚みを算定することが行われているが、このような厚み
検出方式では、上記のようなフィルムの極薄化に対処し
うるような検出精度を確保し難い。
To detect the thickness of a relatively thick film, infrared rays (hereinafter referred to as measurement light) having a wavelength in the characteristic absorption band of the material forming the object whose thickness is to be measured (hereinafter referred to as measurement light) and characteristic absorption band A reference infrared ray (hereinafter simply referred to as reference light) having a wavelength appropriately separated from the reference infrared light is incident on the measured object from the perpendicular direction, and the transmitted intensity of the measurement light transmitted through the measured object is calculated from the reference infrared light. The absorbance of the measurement light by the object to be measured is determined from the transmitted intensity, and the thickness of the object to be measured is calculated based on this absorbance. It is difficult to ensure detection accuracy that can cope with ultra-thin films.

これには、フィルム等の被測定物内における多重反射光
による干渉が大きく影響する。
This is largely influenced by interference caused by multiple reflected light within the object to be measured such as a film.

即ち、厚みが厚い場合には、フィルム内で光束の位相が
ランダム化し、干渉が減少するとともに、測定光に対す
る吸光度が充分に大きく、多重反射に基づく干渉の影響
は実質的に無視てきるが、厚みが薄くなると、干渉の影
響が無視しえなくなってS/N比が低下し、検出精度が
低下するからである。
That is, when the film is thick, the phase of the light flux is randomized within the film, reducing interference, and the absorbance of the measurement light is sufficiently large, so that the influence of interference due to multiple reflections can be virtually ignored. This is because when the thickness becomes thinner, the influence of interference becomes impossible to ignore, the S/N ratio decreases, and the detection accuracy decreases.

本出願人は、P偏光を入射角を変更しながら被測定物に
入射し、その反射光の最少値となる角度を検出し、その
角度での透過光を用いて極薄フィルムの厚みを測定する
装置を特願昭58−183636号特許出願で開示した
The applicant makes P-polarized light incident on the object to be measured while changing the incident angle, detects the angle at which the reflected light reaches the minimum value, and measures the thickness of an ultra-thin film using the transmitted light at that angle. A device for this purpose was disclosed in Japanese Patent Application No. 183636/1983.

しかしこの装置はP偏光の反射光の強弱変化のみで偏光
角を検出しているため、被測定物の表面状態により、ま
た光学軸のいずれの影響も受け、反射光強度の変化が生
ずるので偏光角の精度良い検出には不充分であった。
However, since this device detects the polarization angle only by changes in the intensity of the reflected P-polarized light, the intensity of the reflected light changes due to the surface condition of the object to be measured and the optical axis. This was insufficient for accurate detection of corners.

偏光角は、その角度でP偏光光線が入射されたときに反
射光が零、換言すれば、入射光の全てが当該物質中に透
過される角度として定義され、一般に、物体の屈折率を
n1偏光角をθbとすると、屈折率nと偏光角θbとの
間には、 θb = tan7 ’ n      −・・(1)
の開扉が存在することが知られており、従来より、物体
の偏光角θbは上記(1)式を利用して、物体の屈折率
nから算出していた。
The polarization angle is defined as the angle at which the reflected light is zero when a P-polarized ray is incident at that angle, in other words, all of the incident light is transmitted into the material, and generally the refractive index of the object is n1 When the polarization angle is θb, the relationship between the refractive index n and the polarization angle θb is θb = tan7' n - (1)
It is known that there is an open door, and conventionally, the polarization angle θb of an object has been calculated from the refractive index n of the object using the above equation (1).

しかしながら、上記(1)式を利用して被測定対象物の
屈折率nから偏光角θbを算出するためには、被測定対
象物の屈折率nが既知でなければならない。しかも測定
部位、即ち光の照射部位が測定光に対し偏光角でなけれ
ばならない。しかし、樹脂フィルムの様にフレキシブル
なものや、生産工程中に走行するものや走行に伴うゆら
ぎが存在するものでは、その偏光角θbまたは屈折率n
を非接触でリアルタイムに検出することは実際上困難で
あった。
However, in order to calculate the polarization angle θb from the refractive index n of the object to be measured using the above equation (1), the refractive index n of the object to be measured must be known. Moreover, the measurement site, ie, the light irradiation site, must have a polarization angle with respect to the measurement light. However, for flexible items such as resin films, items that run during the production process, or items that have fluctuations due to running, their polarization angle θb or refractive index n
It has been practically difficult to detect this in real time without contact.

一方、既に述べた偏光角の定義(9従い、屈折率nが未
知の場合に、偏光角の定義に従ってP偏光光線の入射角
度を変化させて行き、反射光強度が最小となる角度を検
出すれば、その角度を偏光角として非接触でリアルタイ
ムで検出することができるものと考えられる。
On the other hand, according to the already mentioned definition of polarization angle (9), when the refractive index n is unknown, the angle of incidence of the P-polarized light beam is varied according to the definition of polarization angle, and the angle at which the reflected light intensity is minimized is detected. For example, it is conceivable that this angle can be detected in real time in a non-contact manner as a polarization angle.

る偏光角の検出に関し、次のような考察を行った。The following considerations were made regarding the detection of the polarization angle.

一般に、第2図に示すように、透明な物体Mに入射角θ
iで入射光Iiを入射すると、一部は物体Mの表面で反
射する反射*; r rとなり、一部は物体Mを透過す
る透過光IOとなる。また、この透過光Ioの一部は上
記物体M内で反射を繰り返し、反射光I’rおよび透過
光I′oとして上記物体Mから出射される。
Generally, as shown in FIG. 2, an incident angle θ
When incident light Ii is incident at point i, part of it is reflected by the surface of object M as reflection *; r r, and part of it becomes transmitted light IO that passes through object M. Further, a part of this transmitted light Io is repeatedly reflected within the object M and is emitted from the object M as reflected light I'r and transmitted light I'o.

いま、自然光、P偏光およびS偏光について夫々入射角
θiを変えると、これら自然光、P偏光およびS偏光の
反射率は、第3図において夫々曲線R,RpおよびRs
で示すように変化する。この第3図の曲線Rpからも分
るように、光学上、P偏光をその物質の偏光角θbで入
射させると、反射率が零となり、反射が起らないことが
知られている(逆に言えば、これが偏光角の定義を与え
る。)そこで、偏光角θbを測定するには、被測定対象
物である物体MにP偏光を入射し、その反射光Irが零
となるようにP偏光の入射角θiを調整−t−4−11
−1’  l””/7’lλI)+缶A i #% Q
 ff1−!−(h 4 h 、?1mス−とができる
Now, when the incident angle θi is changed for natural light, P-polarized light, and S-polarized light, the reflectance of these natural light, P-polarized light, and S-polarized light becomes curves R, Rp, and Rs, respectively in FIG.
Changes as shown in . As can be seen from the curve Rp in Figure 3, it is optically known that when P-polarized light is incident on the material at a polarization angle θb, the reflectance becomes zero and no reflection occurs (reverse In other words, this gives the definition of the polarization angle.) Therefore, to measure the polarization angle θb, P polarized light is incident on the object M to be measured, and the P polarization is adjusted so that the reflected light Ir becomes zero. Adjust the incident angle θi of polarized light-t-4-11
-1'l""/7'lλI) + Can A i #% Q
ff1-! -(h 4 h, ?1m speed is possible.

理論的には、上記のようにして偏光角θbを測定するこ
とができるが、物体Mの表面が平坦でない場合や、表面
によごれや内部ににごり等が存在する場合は、P偏光の
物体Mからの反射光Irが零となる入射角θiを正確に
検出することは困難である。これは物体M表面の湾曲や
凹凸あるいはよごれ等が偏光角θbの検出時の誤差要素
として作用し、物体Mに入射するP偏光の入射位置によ
って入射角θiが変化したり反射率が変化し、真の偏光
角θbを検出することができないからである。
Theoretically, it is possible to measure the polarization angle θb as described above, but if the surface of the object M is not flat, or if there is dirt on the surface or turbidity inside, it is possible to measure the polarization angle θb. It is difficult to accurately detect the incident angle θi at which the reflected light Ir from the ray becomes zero. This is because the curvature, unevenness, dirt, etc. on the surface of the object M act as error elements when detecting the polarization angle θb, and the incident angle θi changes and the reflectance changes depending on the incident position of the P-polarized light incident on the object M. This is because the true polarization angle θb cannot be detected.

ところで、上記のような物体Mの雑音となる因子に対し
ては、第3図において曲線RおよびRsで夫々示す自然
光およびS偏光の反射率も同様に変化する。
By the way, with respect to the above-mentioned noise factor of the object M, the reflectance of natural light and S-polarized light shown by curves R and Rs in FIG. 3 change similarly.

従って、P偏光と自然光もしくはP偏光とS偏光の反射
率の比を取れば、上記雑音を相殺することができるもの
と考えられる。入射角θiに対するP偏光と自然光の反
射率の比Rp/RおよびP偏光とS偏光の反射率の比R
p/Rsを求めた結果を第4図において夫々曲線Rp/
RおよびRp/Rsで示す。
Therefore, it is considered that the above noise can be canceled out by taking the ratio of the reflectances of P-polarized light and natural light or P-polarized light and S-polarized light. The ratio Rp/R of the reflectance of P polarized light and natural light and the ratio R of the reflectance of P polarized light and S polarized light with respect to the incident angle θi
The results of determining p/Rs are shown in Fig. 4 as curves Rp/Rs, respectively.
Indicated by R and Rp/Rs.

上記第4図から、θi=θbとなると、比R1)/Rお
よびRp/Rsも零となり、この比Rp/RもしくはR
p/Rsが零となる入射角度θiを検出すれば、この入
射角度θiが即ち偏光角θbを与える。この場合、物体
Mの表面状態によりP偏光の反射率R1)が変化するの
とは\゛同じ比率で自然光の反射率RおよびS偏光の反
射率Rsが変化するので、比R1)/RもしくはRp/
Rsが零となる入射角θiを充分高いS/N比で検出で
きることは明らかである。
From FIG. 4 above, when θi=θb, the ratios R1)/R and Rp/Rs also become zero, and this ratio Rp/R or R
If an incident angle θi at which p/Rs becomes zero is detected, this incident angle θi gives the polarization angle θb. In this case, the reflectance R1) of P-polarized light changes depending on the surface condition of the object M, and the reflectance R1) of natural light and the reflectance Rs of S-polarized light change at the same ratio, so the ratio R1)/R or Rp/
It is clear that the incident angle θi at which Rs becomes zero can be detected with a sufficiently high S/N ratio.

また、第3図からも明らかなように、0くθi〈θbの
領域では、入射角θiが増加すると反射率Rpが零に向
かって減少しているのに対し、反射率RおよびRsは増
加しているので、比Rp/RおよびRp/Rsは、第4
図からも分かるように、入射角θiが増加するにつれて
比Rp/RおよびRp/Rsは急激に減少する。一方、
θb〈θiの領域では、入射角θiの増加に伴って反射
率Rpが急激に増加しているが、反射率R,Rsも反射
率Rpとほぼ同様の傾向で急激に増加するので、比Rp
/RおよびR1)/Rsも反射率R[)と同様に急激に
増加している。従って、入射角θiが偏光角θbの近傍
に近付くと比Rp/RおよびRp/Rsも急激に零に近
付くことが分かる。これにより、偏光角θbの検出がシ
ャープに行える。
Furthermore, as is clear from Figure 3, in the region of 0 < θi < θb, as the incident angle θi increases, the reflectance Rp decreases toward zero, whereas the reflectances R and Rs increase. Therefore, the ratios Rp/R and Rp/Rs are the fourth
As can be seen from the figure, as the incident angle θi increases, the ratios Rp/R and Rp/Rs rapidly decrease. on the other hand,
In the region of θb<θi, the reflectance Rp increases rapidly as the incident angle θi increases, but the reflectances R and Rs also increase rapidly with almost the same tendency as the reflectance Rp, so the ratio Rp
/R and R1)/Rs also increase rapidly, similar to the reflectance R[). Therefore, it can be seen that when the incident angle θi approaches the polarization angle θb, the ratios Rp/R and Rp/Rs also rapidly approach zero. Thereby, the polarization angle θb can be detected sharply.

(発明の目的) 本発明は上記考察に基づいてなされたものであって、被
測定対象物の屈折率を検出することなく、また、被測定
対象物の表面性状や汚れ等の測定誤差要因に実質的に影
響されることなく、非接触で高精度に被測定対象物の偏
光角を検出することのできる偏光角検出方法および偏光
角検出装置を提供することを目的としている。
(Purpose of the Invention) The present invention has been made based on the above considerations, and does not require detection of the refractive index of the object to be measured. It is an object of the present invention to provide a polarization angle detection method and a polarization angle detection device that can detect the polarization angle of an object to be measured with high accuracy in a non-contact manner without being substantially influenced.

(発明の構成) 本願の第1の発明は、偏光角を測定しようとする被測定
対象物にP偏光光線と無偏光もしくはP偏光光線とS偏
光光線とを交互に切り換えて同じ入射角で入射するよう
にし、その入射角度を変化させっ\2つの光線の反射光
強度を検出して、両強度の比率を算出し、この反射光強
度の比率が最小となる入射角度を偏光角として検出する
ことを特徴としている。
(Structure of the Invention) The first invention of the present application is to alternately switch between a P-polarized light beam and an unpolarized light beam or a P-polarized light beam and an S-polarized light beam and make them incident at the same incident angle on the object to be measured whose polarization angle is to be measured. Detect the reflected light intensity of the two light rays, calculate the ratio of both intensities, and detect the incident angle at which the ratio of the reflected light intensities is the minimum as the polarization angle. It is characterized by

また、本願の第2の発明は、光源と、この光源から出た
光をP偏光もしくはS偏光させる偏光子と、偏光角を測
定しようとする被測定対象物にP偏光光線と無偏光もし
くはP偏光光線とS偏光光線とを交互に切り換えて入射
する切換手段と、光の入射角度を連続的に変化させる入
射角度調整手段と、被測定対象物に入射したP偏光およ
び無偏光もしくはS偏光の反射光の強度を検出する反射
光検出手段と、P偏光光線と無偏光もしくはS偏光光線
とを切り換えるタイミングを検出するタイミング生成手
段と、このタイミング生成手段から出力されるタイミン
グ信号に応じてP偏光光線の反射強度および無偏光もし
くはS偏光光線の反射強度を記憶し、両者の比率を演算
する比率演算手段と、この比率演算手段から上記入射角
度に対応して出力される比率の最小値を検出する最小値
検山手段とを備えたことを特徴としている。
The second invention of the present application also provides a light source, a polarizer that polarizes the light emitted from the light source into P-polarized light or S-polarized light, and a P-polarized light beam and an unpolarized light or P-polarized light beam on an object to be measured whose polarization angle is to be measured. A switching means for alternately switching between a polarized light beam and an S-polarized light beam, an incident angle adjustment means for continuously changing the incident angle of light, and a switching means for changing the incident angle of the light beam by alternating between the polarized light beam and the S-polarized light beam, and an incident angle adjustment means for continuously changing the incident angle of the light beam, and reflected light detection means for detecting the intensity of reflected light; timing generation means for detecting the timing of switching between P-polarized light and non-polarized light or S-polarized light; and P-polarized light according to a timing signal output from the timing generation means. A ratio calculation means for storing the reflection intensity of the light beam and the reflection intensity of the unpolarized or S-polarized light beam and calculating the ratio of the two, and detecting the minimum value of the ratio output from the ratio calculation means corresponding to the above-mentioned incident angle. The invention is characterized in that it is equipped with a means for detecting the minimum value.

(実施例) 以下、本発明を実施例により具体的に説明する。(Example) Hereinafter, the present invention will be specifically explained with reference to Examples.

第1図に示すように、本偏光角検出装置は、測定部Aと
演算部Bとを備え、検出された偏光角は表示記録部Cに
よって表示され、記録される。
As shown in FIG. 1, this polarization angle detection device includes a measurement section A and a calculation section B, and a display and recording section C displays and records the detected polarization angle.

測定部Aは、図示しないサンプルホルダに保持された被
測定対象物1にP偏光と無偏光もしくはP偏光とS偏光
を交互に切り換えて入射し、上記サンプルホルダの角度
を矢印A、およびA、で示すように変化させて被測定対
象物lに入射するP偏光と無偏光もしくはP偏光とS偏
光の入射角度を変化させつ\、上記被測定対象物lから
の反射光強度を検出するためのものである。
The measuring section A alternately switches between P-polarized light and unpolarized light or P-polarized light and S-polarized light to enter the object to be measured 1 held in a sample holder (not shown), and the angle of the sample holder is indicated by arrows A and A, In order to detect the intensity of reflected light from the object to be measured l while changing the incident angle of P-polarized light and non-polarized light or P-polarized light and S-polarized light incident on the object to be measured l as shown in belongs to.

上記被測定対象物1に入射する光はP偏光と無偏光との
組合せもしくはP偏光とS偏光との組合せのいずれでも
よいが、以下では、上記被測定対象物lに入射する光は
P偏光と無偏光との組合せであるとする。
The light incident on the object to be measured 1 may be a combination of P-polarized light and non-polarized light or a combination of P-polarized light and S-polarized light, but in the following, the light incident on the object to be measured 1 is P-polarized light. and non-polarized light.

上記測定部Aは光源2を備え、この光源2から出射され
た光はレンズ3に入射して平行光線に変換され、ハルツ
ミラーらしくはセクターミラー等のビームスプリッタ4
に投射される。ビームスプリッタ4に投射された光は2
つの光路に分割され、一方はレンズ5に、他方は反射鏡
6からレンズ7に夫々入射する。レンズ5に入射した光
は、このレンズ5によりスポット状に集光された状態で
回転円板(チョッパ)8に投射される。また、レンズ7
に入射した光は、同様に、このレンズ7によりスポット
状に集光された状態で上記回転円板8に投射される。
The measuring section A is equipped with a light source 2, and the light emitted from the light source 2 enters a lens 3 and is converted into a parallel beam.
is projected on. The light projected onto beam splitter 4 is 2
The light is divided into two optical paths, one of which enters the lens 5, and the other enters the lens 7 from the reflecting mirror 6. The light incident on the lens 5 is focused into a spot by the lens 5 and projected onto a rotating disk (chopper) 8. Also, lens 7
Similarly, the light incident on the lens 7 is focused into a spot by the lens 7 and projected onto the rotating disk 8.

上記回転円板8は遮光性材料よりなり、レンズ5により
スポット状に集光された光もしくはレンズ7によりスポ
ット状に集光された光が投射される位置にはスリット8
aが形成されている。上記回転円板8は電動モータ9に
より回転駆動されるようになっている。従って、レンズ
5により集光された光が上記スリット8aを透過してい
るタイミングでは、レンズ7により集光された光は上記
回転円板8により遮断され、逆に、レンズ7により集光
された光が上記スリット8aを透過しているタイミング
では、レンズ5により集光された光は上記回転円板8に
より遮断される。すなわち、レンズ5により集光された
光とレンズ7により集光された光は回転円板8により交
互に切り換えられ、この回転円板8の背後に配置された
レンズ10および11に入射される。なお、上記切換の
タイミングは、回転円板8の外周縁に設けられた切り込
み(図示せず。)と、回転円板8の外周縁に配置された
フォトインタプラタ等のタイミング検出器12と、この
タイミング検出器12から出力する信号によりタイミン
グ信号を生成するタイミング生成回路13とにより検出
される。
The rotating disk 8 is made of a light-shielding material, and has a slit 8 at a position where the light focused into a spot by the lens 5 or the light focused into a spot by the lens 7 is projected.
a is formed. The rotating disk 8 is rotationally driven by an electric motor 9. Therefore, at the timing when the light focused by the lens 5 is transmitted through the slit 8a, the light focused by the lens 7 is blocked by the rotating disk 8, and conversely, the light focused by the lens 7 is blocked by the rotating disk 8. At the timing when the light is passing through the slit 8a, the light collected by the lens 5 is blocked by the rotating disk 8. That is, the light condensed by lens 5 and the light condensed by lens 7 are alternately switched by rotating disk 8 and are incident on lenses 10 and 11 arranged behind this rotating disk 8. Note that the timing of the switching is determined by a notch (not shown) provided on the outer periphery of the rotating disk 8, a timing detector 12 such as a photointerrupter placed on the outer periphery of the rotating disk 8, The timing signal is detected by the timing generation circuit 13 which generates a timing signal based on the signal output from the timing detector 12.

回転円板8のスリット8aを通過してレンズ1゜に入射
した光は平行光線に変換されて偏光子14に入射され、
この偏光子14からP偏光がビームスプリッタ15に出
射する。一方、回転円板8のスリット8aを通過してレ
ンズ11に入射した光は平行光線に変換されて反射鏡1
6からビームスプリッタ15に入射する。この反射鏡1
6からビーへフプ11+、々1ζ1−λ賠+1↓1)如
眉怠プ奴2上記P偏光と無偏光とは、回転円板8の回転
により交互に切り換えられ、ビームスプリッタ15から
レンズ17に入射してスポット状に集光される。レンズ
17を出たP偏光と無偏光とは、校り18およびレンズ
19を通して被測定対象物lに入射し、その一部は被測
定対象物iにて反射される。以下、被測定対象物lに入
射するP偏光および無偏光を夫々IipおよびIi と
記す。
The light that passes through the slit 8a of the rotating disk 8 and enters the lens 1° is converted into parallel rays and enters the polarizer 14.
P-polarized light is emitted from this polarizer 14 to a beam splitter 15. On the other hand, the light that passes through the slit 8a of the rotating disk 8 and enters the lens 11 is converted into parallel rays and is reflected by the reflecting mirror 1.
6 and enters the beam splitter 15. This reflector 1
6 to Beehup 11+, t1ζ1-λ+1↓1) Howbei-lazypuu2 The above P-polarized light and non-polarized light are alternately switched by the rotation of the rotating disk 8, and are transmitted from the beam splitter 15 to the lens 17. The light enters the beam and is focused into a spot. The P-polarized light and the non-polarized light that have exited the lens 17 are incident on the object to be measured l through the calibration 18 and the lens 19, and part of them is reflected by the object to be measured i. Hereinafter, the P-polarized light and the non-polarized light incident on the object to be measured l will be referred to as Iip and Ii, respectively.

上記被測定対象物lから反射したP偏光と無偏光とは、
レンズ20および帯域フィルタ21を通して光電変換素
子22に入射される。上記帯域フィルタ21は、反射光
のうち無偏光の光干渉が実用上無視できる程度の適当な
透過波長帯域のものであれば良い。光電変換素子22は
、回転円板8により交互に切り替えられて入射するP偏
光および無偏光の受光強度に比例したP偏光信号r″r
pおよび無偏光信号1’rを夫々出力する。上記光電変
換素子22としては、フォトダイオード、フォトトラン
ジスタ等を使用することができる。また、赤外線により
偏光角θbを検出する場合、焦雷型赤外線センサを有利
に用いることができるが、こ。
The P-polarized light and non-polarized light reflected from the above-mentioned object to be measured are:
The light enters the photoelectric conversion element 22 through the lens 20 and the bandpass filter 21. The bandpass filter 21 may be of a suitable transmission wavelength band in which non-polarized optical interference among the reflected light can be practically ignored. The photoelectric conversion element 22 receives a P-polarized light signal r″r that is alternately switched by the rotating disk 8 and is proportional to the received light intensity of the incident P-polarized light and non-polarized light.
p and an unpolarized signal 1'r, respectively. As the photoelectric conversion element 22, a photodiode, a phototransistor, etc. can be used. Furthermore, when detecting the polarization angle θb using infrared rays, a pyromagnetic infrared sensor can be advantageously used.

れに限られるものではない。It is not limited to this.

上記P偏光信号I″rpおよび無偏光信号I’rは、次
に説明する演算部Bの比率演算回路23に人力する。
The P-polarized light signal I''rp and the non-polarized light signal I'r are manually input to a ratio calculation circuit 23 of the calculation section B, which will be described next.

なお、上記P偏光信号I’rpおよび無偏光信号I’r
は、光電変換素子22として使用する素子の種類、使用
回路等により暗電流成分vaを含んでいることがある。
Note that the P-polarized signal I'rp and the non-polarized signal I'r
may include a dark current component va depending on the type of element used as the photoelectric conversion element 22, the circuit used, etc.

この場合は、上記検出信号は暗電流キャンセル回路(図
示せず。)を通して比率演算回路23に入力し、上記暗
電流成分vaをキャンセルした後、比率演算回路23に
入力される。
In this case, the detection signal is input to the ratio calculation circuit 23 through a dark current cancellation circuit (not shown), and is input to the ratio calculation circuit 23 after canceling the dark current component va.

次に、演算部Bの構成を説明する。Next, the configuration of the calculation section B will be explained.

演算部Bは比率演算回路23および最小値検出回路24
により構成される。
The calculation section B includes a ratio calculation circuit 23 and a minimum value detection circuit 24.
Consisted of.

比率演算回路23は、光電変換素子22から入力したP
偏光信号I’rpおよび無偏光信号1’rを増幅後、こ
れらP偏光信号I ’ rpおよび無偏光信号I’rを
、タイミング生成回路13から入力するタイミング信号
のタイミングで夫々個別にサンプルホールドし、個別に
サンプルホールドされたP偏光信号ビrpと無偏光信号
I’rとの比I ’ rp/1’rを演算する。
The ratio calculation circuit 23 receives P input from the photoelectric conversion element 22.
After amplifying the polarized light signal I'rp and the non-polarized signal 1'r, the P-polarized signal I'rp and the non-polarized signal I'r are individually sampled and held at the timing of the timing signal input from the timing generation circuit 13. , calculates the ratio I'rp/1'r between the individually sampled and held P-polarized signal Birp and the non-polarized signal I'r.

一方、最小値検出回路24は、被測定対象物lを矢印A
、、A2で示すように回動させてP偏光および無偏光の
入射角θiを変化させたとき、比率演算回路23から人
力する上記比1’rp/I’rの最小値を検出する。
On the other hand, the minimum value detection circuit 24 moves the object to be measured l to an arrow A.
, , When the incident angle θi of P-polarized light and non-polarized light is changed by rotating as shown by A2, the minimum value of the ratio 1'rp/I'r manually input from the ratio calculation circuit 23 is detected.

表示部Cは第1表示装置25および第2表示装置26か
らなる。
The display section C includes a first display device 25 and a second display device 26.

上記第1表示装置25は、被測定対象物Iを一つの方向
に回動させる1回目の走査により最小値検出回路24が
検出した比I’rp/I’rの最小値およびその入射角
θiを表示する。また、第2表示装置26は、被測定対
象物lを1回目の走査からもとの位置に戻す返しの走査
において演算された上記比1’rp/I’rおよび対応
する入射角θiをすべて表示する。
The first display device 25 displays the minimum value of the ratio I'rp/I'r detected by the minimum value detection circuit 24 during the first scan of rotating the object to be measured I in one direction and its incident angle θi. Display. In addition, the second display device 26 displays all of the ratio 1'rp/I'r and the corresponding incident angle θi calculated in the return scan of the object to be measured l from the first scan to the original position. indicate.

上記のようにして検出されたP偏光信号I’rpと無偏
光信号1’rとの比I’rp/I’rの演算結果が最小
値であれば、R1)/Rも最小値となる。
If the calculation result of the ratio I'rp/I'r between the P-polarized signal I'rp and the unpolarized signal 1'r detected as described above is the minimum value, R1)/R will also be the minimum value. .

即ち、被測定対象物1により反射されるP偏光および無
偏光のうち、光電変換素子22に到達する割合を夫々α
およびβとすれば、 I’rp = αRp I ip     −” (2
)I’r  −βRI i      −(3)であり
、P偏光と無偏光とは同一条件で被測定対象物lに入射
する場合はα−βとみなすことができる。
That is, the proportion of P-polarized light and non-polarized light reflected by the object to be measured 1 that reach the photoelectric conversion element 22 is α.
and β, I'rp = αRp I ip −” (2
)I'r -βRI i -(3), and when the P-polarized light and the non-polarized light are incident on the object to be measured l under the same conditions, they can be regarded as α-β.

従って、(2)式および(3)式から、Rp/Rocr
’rp/I’r   −・・・・・(4)となる。この
(4)式より、光電変換素子22から出力するP偏光信
号I’rpおよび無偏光信号I’rとの比率1’rp/
I’rの演算結果が最小であればR[)/Rも最小値と
なる。これにより、比率演算回路23から出力する比1
’rp/I’rの演算結果が最小となる入射角θiから
偏光角θbを検出することができる。
Therefore, from equations (2) and (3), Rp/Rocr
'rp/I'r - (4). From this equation (4), the ratio of the P-polarized signal I'rp and the unpolarized signal I'r output from the photoelectric conversion element 22 is 1'rp/
If the calculation result of I'r is the minimum, R[)/R will also be the minimum value. As a result, the ratio 1 output from the ratio calculation circuit 23
The polarization angle θb can be detected from the incident angle θi at which the calculation result of 'rp/I'r is the minimum.

第1図の偏光角検出装置によりガラス(BK7)の偏光
角θbを測定したところ、±0.1度以下の精度で偏光
角θbを検出することができた。この測定には、測定波
長領域は750〜lloonmで光電変換素子としては
シリコンフォトダイオードを使用した。
When the polarization angle θb of the glass (BK7) was measured using the polarization angle detection device shown in FIG. 1, it was possible to detect the polarization angle θb with an accuracy of ±0.1 degree or less. In this measurement, the measurement wavelength range was 750 to 100 nm, and a silicon photodiode was used as the photoelectric conversion element.

上記実施例では、P偏光と無偏光とを使用したが、P偏
光とS偏光とを使用することもできる。
In the above embodiment, P-polarized light and non-polarized light were used, but P-polarized light and S-polarized light may also be used.

P偏光とS偏光とを使用する場合は、第1図のレンズ1
1の後にS偏光用の偏光子(図示せず。)を配置すれば
よい。また、第1図の偏光子14を回転させることによ
り、P偏光とS偏光とを作ることができる。このように
すれば、回転円板8やビームスプリッタ4.15等を省
略することができ、偏光角検出装置の光学系が簡単化さ
れる。
When using P-polarized light and S-polarized light, use lens 1 in Figure 1.
A polarizer for S-polarized light (not shown) may be placed after the polarizer 1. Moreover, by rotating the polarizer 14 shown in FIG. 1, P-polarized light and S-polarized light can be generated. In this way, the rotating disk 8, the beam splitter 4.15, etc. can be omitted, and the optical system of the polarization angle detection device is simplified.

第1図の偏光角検出装置は、樹脂フィルム等の膜厚1層
厚を赤外域における特性吸収を利用して検出する赤外線
厚み計や分光分析に適用することもできる。
The polarization angle detection device shown in FIG. 1 can also be applied to an infrared thickness meter or spectroscopic analysis that detects the thickness of one layer of a resin film or the like using characteristic absorption in the infrared region.

また、比率演算回路23および最小値検出回路24をマ
イクロコンピュータに置き換え、加えて、パルスモータ
等により被測定対象物lのサンプルホルダの角度らしく
は被測定対象物lに入射する光の角度を制御することに
よって偏光角の自動設定もできる。被測定対象物lを透
過した赤外線の透過量は分光器お上び光電検出器を備え
た受光部31で検出され、この透過量に基づいて、演算
部32により被測定対象物lの厚みが検出される。
In addition, the ratio calculation circuit 23 and the minimum value detection circuit 24 are replaced with a microcomputer, and in addition, the angle of the light incident on the object to be measured l, such as the angle of the sample holder of the object to be measured l, is controlled by a pulse motor or the like. By doing this, you can also automatically set the polarization angle. The amount of infrared rays transmitted through the object to be measured l is detected by a light receiving section 31 equipped with a spectroscope and a photoelectric detector, and based on this amount of transmission, the thickness of the object to be measured l is calculated by the calculation section 32. Detected.

旧記受光部31および演算部32については、本出願人
の出願に係る特願昭59−80976号(発明の名称「
赤外線厚み計」)等に詳説されている。
Regarding the old light receiving section 31 and calculation section 32, the patent application No. 59-80976 filed by the present applicant (name of the invention "
This method is explained in detail in "Infrared Thickness Gauge").

(発明の効果) 本発明によれば、同じ比率で変化する雑音成分が相殺さ
れて偏光角の検出には影響されなくなるので、被検出対
象物に汚れやにごり等が存在しても、偏光角検出時のS
/N比を高くすることができ、偏光角検出精度を高める
ことができる。
(Effects of the Invention) According to the present invention, noise components that change at the same rate are canceled out and are not affected by polarization angle detection. S at the time of detection
/N ratio can be increased, and polarization angle detection accuracy can be improved.

また、本発明によれば、被測定対象物に光を投射するだ
けで、フレキシブルな被測定対象物等の偏光角も非接触
で検出することができ、検出したこの偏光角から逆に、
被測定対象物の屈折率を検出することもできる。
Furthermore, according to the present invention, the polarization angle of a flexible measurement object can be detected without contact by simply projecting light onto the measurement object, and from this detected polarization angle, conversely,
It is also possible to detect the refractive index of the object to be measured.

さらに、本発明によれば、被測定対象物に入射する光の
入射角を変化させる入射角度調整手段または被測定対象
物の設定角度調整手段と組合せることにより、容易に偏
光角の自動設定を実現できる。また本出願人が特願昭5
8〜183636に開示した追従制御手段と組合せるこ
とにより、偏光角または、屈折率を非接触でリアルタイ
ムに検出できる。
Further, according to the present invention, automatic setting of the polarization angle can be easily performed by combining with an incident angle adjustment means for changing the incident angle of light incident on the object to be measured or a setting angle adjustment means for the object to be measured. realizable. In addition, the applicant filed a patent application in 1973.
By combining with the follow-up control means disclosed in Nos. 8 to 183,636, the polarization angle or refractive index can be detected in real time without contact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る偏光角検出装置の一実施例の原理
的構成を示す説明図、第2図は物体に入射する入射光の
反射光および透過光の説明図、第3図は入射角と反射率
との関係を示す説明図、第4図は入射角に対するP偏光
と無偏光およびP偏光とS偏光との比率の変化の説明図
である。 1・・・被測定対象物、  8・・・回転円板、8a・
・・スリット、    9・・・電動モータ、!2・・
・タイミング検出器、 13・・・タイミング生成回路、 14・・・偏光子、    22・・・光電変換素子、
23・・・比率演算回路、 24・・・最小値検出回路
Fig. 1 is an explanatory diagram showing the principle configuration of an embodiment of the polarization angle detection device according to the present invention, Fig. 2 is an explanatory diagram of reflected light and transmitted light of incident light incident on an object, and Fig. 3 is an explanatory diagram showing the reflected light and transmitted light of incident light incident on an object. FIG. 4 is an explanatory diagram showing the relationship between angle and reflectance, and FIG. 4 is an explanatory diagram of changes in the ratio of P-polarized light to non-polarized light and P-polarized light to S-polarized light with respect to the incident angle. 1... Object to be measured, 8... Rotating disk, 8a.
...Slit, 9...Electric motor,! 2...
・Timing detector, 13... Timing generation circuit, 14... Polarizer, 22... Photoelectric conversion element,
23... Ratio calculation circuit, 24... Minimum value detection circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)偏光角を測定しようとする被測定対象物にP偏光
光線と無偏光もしくはP偏光光線とS偏光光線とを交互
に切り換えて同じ入射角で入射するようにし、その入射
角度を変化させつゝ2つの光線の反射光強度を検出して
、両強度の比率を算出し、この反射光強度の比率が最小
となる入射角度を偏光角として検出することを特徴とす
る偏光角検出方法。
(1) Alternately switch between P-polarized light and unpolarized light or P-polarized light and S-polarized light so that they are incident on the object to be measured whose polarization angle is to be measured at the same angle of incidence, and then change the angle of incidence. A polarization angle detection method comprising: detecting the reflected light intensities of two light rays, calculating the ratio of both intensities, and detecting the incident angle at which the ratio of the reflected light intensities is the minimum as the polarization angle.
(2)光源と、この光源から出た光をP偏光もしくはS
偏光させる偏光子と、偏光角を測定しようとする被測定
対象物にP偏光光線と無偏光もしくはP偏光光線とS偏
光光線とを交互に切り換えて入射する切換手段と、光の
入射角度を連続的に変化させる入射角度調整手段と、被
測定対象物に入射したP偏光および無偏光もしくはS偏
光の反射光の強度を検出する反射光検出手段と、P偏光
光線と無偏光もしくはS偏光光線とを切り換えるタイミ
ングを検出するタイミング生成手段と、このタイミング
生成手段から出力されるタイミング信号に応じてP偏光
光線の反射強度および無偏光もしくはS偏光光線の反射
強度を記憶し、両者の比率を演算する比率演算手段と、
この比率演算手段から上記入射角度に対応して出力され
る比率の最小値を検出する最小値検出手段とを備えたこ
とを特徴とする偏光角検出装置。
(2) A light source and the light emitted from this light source as P polarized or S
A polarizer that polarizes the light, a switching means that alternately switches between P-polarized light and non-polarized light or P-polarized light and S-polarized light to be incident on the object to be measured whose polarization angle is to be measured, and a switching means that changes the incident angle of the light continuously. an incident angle adjusting means for changing the angle of incidence; a reflected light detecting means for detecting the intensity of reflected light of P-polarized light, non-polarized light or S-polarized light incident on the object to be measured; and a timing generation means for detecting the timing of switching, and storing the reflection intensity of the P-polarized light beam and the reflection intensity of the unpolarized light or the S-polarized light according to the timing signal output from the timing generation means, and calculates the ratio of the two. Ratio calculation means;
A polarization angle detection device comprising minimum value detection means for detecting the minimum value of the ratio outputted from the ratio calculation means in accordance with the incident angle.
JP11929885A 1985-06-01 1985-06-01 Polarization angle detection method and polarization angle detection device Expired - Lifetime JPH076841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11929885A JPH076841B2 (en) 1985-06-01 1985-06-01 Polarization angle detection method and polarization angle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11929885A JPH076841B2 (en) 1985-06-01 1985-06-01 Polarization angle detection method and polarization angle detection device

Publications (2)

Publication Number Publication Date
JPS61277026A true JPS61277026A (en) 1986-12-08
JPH076841B2 JPH076841B2 (en) 1995-01-30

Family

ID=14757951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11929885A Expired - Lifetime JPH076841B2 (en) 1985-06-01 1985-06-01 Polarization angle detection method and polarization angle detection device

Country Status (1)

Country Link
JP (1) JPH076841B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204123A (en) * 1987-02-19 1988-08-23 Hiroshi Kezuka Method for measuring optical constants and thicknesses of thick film and thin film based on quasi-polarization angle
JPH0357700U (en) * 1989-10-11 1991-06-04
JPH04231848A (en) * 1990-07-27 1992-08-20 Showa Denko Kk Method, apparatus and cell for detecting optical rotation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3885998B2 (en) * 2001-12-21 2007-02-28 株式会社資生堂 Method for measuring refractive index of light scatterer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204123A (en) * 1987-02-19 1988-08-23 Hiroshi Kezuka Method for measuring optical constants and thicknesses of thick film and thin film based on quasi-polarization angle
JPH0357700U (en) * 1989-10-11 1991-06-04
JPH04231848A (en) * 1990-07-27 1992-08-20 Showa Denko Kk Method, apparatus and cell for detecting optical rotation

Also Published As

Publication number Publication date
JPH076841B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
KR100742982B1 (en) Focused-beam ellipsometer
US4999014A (en) Method and apparatus for measuring thickness of thin films
EP3413022A1 (en) Integrated polarization interferometer and snapshot spectrophotometer applying same
JPH054606B2 (en)
US4320967A (en) Apparatus for measuring a radiation affecting parameter of a film or coating
JP2000065536A (en) Method and instrument for measuring film thickness and optical constant
JPH06317408A (en) Determination of characteristic value of transparent layer using polarization analysis method
JPS61277026A (en) Method and apparatus for detecting polarization angle
JP3520379B2 (en) Optical constant measuring method and device
JPH0611442A (en) Infrared optical device
JPH11101739A (en) Ellipsometry apparatus
JPH0458139A (en) Infrared optical device
JP2004279286A (en) Method and device for evaluating optically anisotropic thin film
JPH04301507A (en) Infrared type measuring apparatus
JPS62293104A (en) Film thickness measuring instrument
JPH0663749B2 (en) Infrared thickness gauge
JP2522480B2 (en) Refractive index measurement method
JP2933666B2 (en) Infrared thickness measuring device for multilayer structure
JPH05296920A (en) Infrared spectrophotometer
JPH0729445Y2 (en) Transparent object thickness measuring device
JPS6073406A (en) Infrared-ray thickness meter
JPH0378645A (en) Measuring method of refractive index by spectro-photometry
SU1032375A1 (en) Optical surface reflection coefficient measuring method
JPH06273330A (en) Turbidimeter
JP2685118B2 (en) Ellipsometer