JP3885998B2 - Method for measuring refractive index of light scatterer - Google Patents

Method for measuring refractive index of light scatterer Download PDF

Info

Publication number
JP3885998B2
JP3885998B2 JP2001390292A JP2001390292A JP3885998B2 JP 3885998 B2 JP3885998 B2 JP 3885998B2 JP 2001390292 A JP2001390292 A JP 2001390292A JP 2001390292 A JP2001390292 A JP 2001390292A JP 3885998 B2 JP3885998 B2 JP 3885998B2
Authority
JP
Japan
Prior art keywords
light
refractive index
incident
reflectance
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001390292A
Other languages
Japanese (ja)
Other versions
JP2003194710A (en
Inventor
徳信 吉川
眞喜雄 秋本
元次 高橋
勇二 舛田
克基 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP2001390292A priority Critical patent/JP3885998B2/en
Publication of JP2003194710A publication Critical patent/JP2003194710A/en
Application granted granted Critical
Publication of JP3885998B2 publication Critical patent/JP3885998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
【0002】
本発明は、屈折率の測定方法に関し、より詳細には光散乱体の屈折率の測定方法に関する。
【従来の技術】
【0003】
試料の屈折率を測定する方法として、多入射角法、偏光解析法、臨界角法等が知られている。
【0004】
多入射角法は、任意の複数の入射角に対する反射率を測定し、フレネル反射式の連立方程式を解くことにより試料の屈折率を求める方法である。
【0005】
偏光解析法は直線偏光(平面偏光)した光を入射して、反射光の位相変化を検出した結果に基づいて屈折率を求める方法である。この方法によれば、多入射角法と同様に、in situでの測定および分光条件での測定が可能である。偏光解析法は、エリプソメトリを用いて行われる。
【0006】
臨界角法は、入射光の臨界角を測定し、それぞれの媒質の屈折率を求める方法である。この方法によれば、in situで測定可能である。臨界角法は、アッベ屈折計を用いて行われる。
【0007】
しかしながら、上記した従来の屈折率の測定方法は、いずれも、表面が平滑な試料を測定対象とするものであり、表面が粗で反射光が散乱する試料(光散乱体)については適用することができない。
【0008】
一方、表面が粗で反射光が散乱する試料の屈折率を測定可能な方法として液浸法がある。この方法は、屈折率既知の液体に試料を浸漬し、透明となったときの屈折率から試料の屈折率を求める方法である。しかしながら、この方法には、上記したin situでの測定や分光条件での測定ができないという問題がある。
【発明が解決しようとする課題】
【0009】
本発明は、上記の課題に鑑みてなされたものであり、光散乱体の屈折率を好適に測定することができる方法および装置を提供することを主な目的とする。
【課題を解決するための手段】
【0010】
請求項1に記載の発明は、光散乱体の屈折率の測定方法において、光散乱体の表面に複数の入射角度からp偏光平面波の光を入射させ、それぞれの入射角度の光に応じた反射光の反射率または反射光量を求め、該反射率または該反射光量の最小値に対応する入射角を求め、該最小値に対応する入射角及びブルースター角と屈折率との関係式より該光散乱体の屈折率を得ることを特徴とする。
請求項2に記載の発明は、光散乱体の屈折率の測定方法において、光散乱体の表面に複数の入射角度からp偏光平面波の光を入射させ、それぞれの入射角度の光に応じた透過光の透過率または透過光量を求め、該透過率または該透過光量の最大値に対応する入射角を求め、該最大値に対応する入射角及びブルースター角と屈折率との関係式より該光散乱体の屈折率を得ることを特徴とする。
請求項3に記載の発明は、請求項1または2に記載の光散乱体の屈折率の測定方法において、前記反射光または透過光は、分光された所定波長の光であることを特徴とする。
請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の光散乱体の屈折率の測定方法において、前記入射角度を5°以下のピッチで変更することを特徴とする。
請求項5に記載の発明は、請求項1記載の光散乱体の屈折率の測定方法において、前記反射率または前記反射光量のデータを統計処理して反射率曲線または反射光量曲線を得、該反射率曲線または該反射光量曲線より該反射率または該反射光量の最小値に対応する入射角の値を求めることを特徴とする。
請求項6に記載の発明は、請求項2記載の光散乱体の屈折率の測定方法において、前記透過率または前記透過光量のデータを統計処理して透過率曲線または透過光量曲線を得、該透過率曲線または該透過光量曲線より該透過率または該透過光量の最大値に対応する入射角の値を求めることを特徴とする
【発明の実施の形態】
【0011】
本発明に係る光散乱体の屈折率の測定方法は、粗な試料表面に複数の入射角度からp偏光平面波の光を入射させ、それぞれの入射角度の光に応じた反射光の反射率または反射光量を求め、該反射率または該反射光量の最小値に対応する入射角をブルースター角と擬制し、ブルースター角と屈折率との関係式より屈折率を得ることを特徴とする。
【0012】
また、本発明に係る光散乱体の屈折率の測定方法は、粗な試料表面に複数の入射角度からp偏光平面波の光を入射させ、それぞれの入射角度の光に応じた透過光の透過率または透過光量を求め、該透過率または該透過光量の最大値に対応する入射角をブルースター角と擬制し、ブルースター角と屈折率との関係式より屈折率を得ることを特徴とする。
【0013】
本発明は、p偏光平面波の反射率が0、言い換えれば透過率が1のときの入射角として定義されるブルースター角θと屈折率nとの関係を示すtanθ=nの式を用い、反射率もしくは反射光量の最小値または透過率もしくは透過光量の最大値に対応する入射角をブルースター角と擬制して屈折率を得るものである。
【0014】
これにより、光散乱体の屈折率をin situや分光条件においても好適に測定することができる。
【0015】
この場合、前記反射光または透過光は、分光された所定波長の光であると、好適である。分光は入射光の側または反射光もしくは透過光の側のいずれの側で行ってもよい。分光を反射光もしくは透過光の側で行うときには、入射光として例えば白色光を用いる。
【0016】
また、この場合、前記入射角度を5°以下、望ましくは1°以下、より望ましくは0.1°以下のピッチで変更して測定すると、より高精度で屈折率を求めることができる。
【0017】
また、この場合、前記反射率または前記反射光量のデータを統計処理して反射率曲線または反射光量曲線を得、該反射率曲線または該反射光量曲線より該反射率または該反射光量の最小値に対応する入射角の値を求め、あるいは、前記透過率または前記透過光量のデータを統計処理して透過率曲線または透過光量曲線を得、該透過率曲線または該透過光量曲線より該透過率または該透過光量の最大値に対応する入射角の値を求めると、より高精度に屈折率を求めることができる。
【0018】
また、本発明に係る測定装置は、上記の光散乱体の屈折率の測定方法に用いる測定装置であって、入射光を発生する光源部と、反射光または透過光を受光する受光部と、該受光部からの受光データを出力する出力部と、入射光を測定対象物に導光して照射する光照射プローブと、反射光または透過光を該受光部に導光する光受光プローブと、該光照射プローブおよび該光受光プローブの該測定対象物に向けた角度を変更する角度変更部とを有することを特徴とする。ここで、受光データとは、上記した反射率、反射光量、透過率または透過光量のデータである。
【0019】
本発明に係る光散乱体の屈折率の測定方法および装置の好適な実施の形態(以下、本実施の形態例という。)について、図を参照して、以下に説明する。
【0020】
本実施の形態例に係る光散乱体の屈折率の測定方法は、粗な試料表面に複数の入射角度からp偏光平面波の光を入射させ、それぞれの入射角度の光に応じた反射光の反射率または反射光量を求め、反射率または反射光量の最小値に対応する入射角をブルースター角と擬制し、ブルースター角θと屈折率nとの関係式tanθ=nより屈折率を得るものである。この場合、反射光に変えて透過光を用い、透過光の透過率または透過光量を求め、透過率または透過光量の最大値に対応する入射角をブルースター角と擬制してもよい。
【0021】
以下、反射光の反射率を例にとって説明する。なお、以下の説明において、基本的に、反射光を透過光に読み替え、また、反射率を透過率に読み替えることができる。
【0022】
tanθ=nの式は、前記のとおり、p偏光平面波の反射率が0のときの入射角として定義されるブルースター角と屈折率との関係を示すものである。そして、本発明は、反射率の最小値に対応する入射角をブルースター角と擬制して屈折率を得るものである。
【0023】
上記のとおり、ブルースター角θとは、境界面で全く反射しない条件で光を入射させたときの入射角をいう。なお、ブルースター角θは、偏光角とも呼ばれる。
【0024】
このブルースター角θからブルースターの法則により上記の式tanθ=nに基づいて試料の屈折率nが与えられることは周知である。以下、ブルースターの法則について説明する。
【0025】
光の任意の平面波は、互いに垂直な2つの直線偏光平面波の合成によってつくられている。この2つの直線偏光平面波は、電界が入射面に垂直なs(senkrecht)偏光平面波および電界が入射面に平行なp(parallel)偏光平面波である。
【0026】
透明体等の一部の物質を除き、一般的には、図1に示すように、等振幅面と等位相面とが同一面である平面波の光を物質に対して入射させたとき、物質内で等振幅面と等位相面とにズレを生じる。このズレた等振幅面と等位相面との挟角をψとすると、下記式(1)で示す複素屈折率を定義することができる。
【0027】
【数1】

Figure 0003885998
また、この複素屈折率は、測定対象物質の複素誘電率の平方根で定義することもできる。
【0028】
式(1)において、測定対象物質が透明体または誘電体のときは、k=0であり、複素屈折率は屈折率と一致し、これに対して測定対象物質が吸収体または導電体のときはk≠0であり、複素屈折率は屈折率とは一致しない。例えば、透明なガラスの場合が前者であり、金属の場合が後者である。ちなみにアルミニウムについてはkは7〜8程度である。
【0029】
そして、特殊な条件として、tanθ=nとなる入射角θで入射したs偏光平面波およびp偏光平面波で合成された光の反射光は、s偏光平面波のみの光となる。このときの入射角θが上記したブルースター角θである。したがって、一般的にまた本実施の形態例においても、入射光としてs偏光平面波を取り除きp偏光平面波のみを用い、そのp偏光平面波の反射光の反射率を測定することになる。なお、反射光の反射角は、ブルースター角θを求めるときは、入射光の入射角と同一の角度である正反射角を用いるが、本発明においては、この正反射角に限定するものではない。また、ブルースター角θでp偏光平面波が入射したときの透過光(屈折光)と反射光との挟角は90°である。
【0030】
ブルースター角θは、物質の光学的性質を表すものとして、学術研究において用いられるが、材料物性の評価手段として実用的に用いられている例は少ない。
【0031】
ブルースター角θについて、さらに説明する。
【0032】
例えば、透明ガラスについて、p偏光平面波のみの白色光を入射角を変えながら入射させると、図2に示す反射率曲線が得られる。この反射率曲線において、反射率が0のときの入射角であるブルースター角θは、下向きに凸のシャープなピークとして容易に視認される角55.8°である。
【0033】
しかしながら、上記の透明ガラスの表面を粗に加工して、粗な表面に光を入射させると、光散乱のために、得られる反射率曲線がブロードとなり、ブルースター角θを得ることはできない。また、透明ガラスのような吸収率0の材料と異なり、例えば透明ガラスに色材を添加したもののように一定の吸収率を有する材料についても、反射率が0となる入射角が存在せず、光散乱材料と同様に、得られる反射率曲線がブロードとなり、ブルースター角θを得ることはできない。
【0034】
このため、従来ブルースター角θを用いて実際に評価されている材料は表面が平滑な材料に限られており、しかも大半の材料は吸収率が0ではないため、屈折率を測定する手段として実用的に用いた例は聞かない。
【0035】
本発明は、光散乱材料(光散乱体)について屈折率を得る方法として、基本的な測定原理として上記のブルースター角θを算出する方法、言い換えれば偏光角法を用い、この方法の上記の不具合点を解消して光散乱材料について正確に屈折率を求める方法を見出したものである。
【0036】
本実施の形態例に係る光散乱体の屈折率の測定方法について、さらに説明する。
【0037】
まず、本実施の形態例に係る光散乱体の屈折率の測定方法において使用する測定装置について説明する。
【0038】
本実施の形態例に係る測定装置は偏光分光光度計を使用する。この偏光分光光度計は、一般的に用いられるゴニオメータと基本的には同じ構成の装置である。
【0039】
本実施の形態例に係る測定装置の概略構成は、例えば図3に示すように、入射光を発生する光源部としてのモノクロメータ10と、反射光または透過光を受光する受光部および受光部からの受光データを出力する出力部を備えた光パワーメータ12と、入射光を測定対象物Aに導光するための光照射プローブ14と、反射光または透過光を該受光部に導光する受光プローブ(光受光プローブ)16とを有し、モノクロメータ10と光照射プローブ14との間および光パワーメータ12と受光プローブ16との間は、それぞれ光ファイバ18、20で光学的に接続される。なお、光源部としてモノクロメータに変えて白色光源を用いてもよく、その場合は、受光部にさらに分光器を設ける。
【0040】
本実施の形態例の偏光分光光度計は、光照射プローブ10の測定対象物(以下、光散乱体という。)Aに対する向きを自在に変更し、任意の入射角θiに逐次変更可能な、図示しない角度変更機構(角度変更部)を備えている。このとき、角度変更機構は、反射角θrで反射光を受光するように受光プローブ16の光散乱体Aに対する向きを変化させるように構成されている。角度変更機構は、例えば市販のゴニオメータを改良したものである。また、偏光分光光度計は、p偏光平面波のみを入射光とするための偏光板22が光照射プローブに設けられている。これら2点が、通常の偏光分光光度計と相違する。
【0041】
モノクロメータ10は、例えば579nmの波長の光を発生させる。角度変更機構は、入射角θi(および反射角θr)を例えば25°〜65°の範囲内で例えば2.5°のピッチで変更させる。光照射プローブ14は照射径が例えば6mmであり、受光プローブ16は受光径が例えば9mmである。光パワーメータ12では、受光部としての光検出器で受光された反射光のエネルギが電力として得られ(出力部)、この電力を反射率に換算する。なお、このとき、電力をそのまま反射光の光量データとして用いてもよい。
【0042】
上記の測定装置を用い、以下の手順で光散乱体の屈折率を測定する。
【0043】
所定の分光波長の光をさらに偏光したp偏光平面波のみの入射光を25°の入射角で光散乱体の粗な表面に照射し、反射光を受光する。ついで、入射角を2.5°のピッチで65°まで変化させる。そして、それぞれの入射角θiに対する反射率を測定する。
【0044】
上記の結果は、例えば図4のようにグラフ化することができる。
【0045】
入射角θiおよび反射率のデータから、例えば最小二乗法によりフィッティングカーブ、すなわち反射率曲線を近似的に求め、さらに下向きに凸な反射率曲線の変曲点、言い換えれば反射率の最小値を求める。この変曲点における入射角が、擬制ブルースター角であり、以下、便宜的にこれをブルースター角(偏光角)θとよぶ。なお、透過光の透過率または透過光量のデータを用いるときは、上向きに凸な透過率曲線または透過光量曲線の変曲点、言い換えれば透過率または透過光量の最大値を求めることになる。
【0046】
得られたブルースター角θをtanθ=nの式に代入することにより、光散乱体の屈折率nが求められる。
【0047】
本実施の形態例に係る光散乱体の屈折率の測定方法の妥当性を以下の方法により検証した。
【0048】
屈折率が既知のシリカ粉末およびポリメタクリル酸メチル(PMMA)粉末を準備し、これらの粉末をそれぞれ個別に容器に充填して測定対象の光散乱体を調製した。
【0049】
そして、それぞれの光散乱体についてN(繰り返し回数)=3で各入射角における反射率を測定した。
【0050】
シリカ粉末(正確にはシリカ粉末の集合体)についての反射率データをプロットしたものが、前掲の図4であり、ポリメタクリル酸メチル(以下、PMMAと表記する。)粉末(正確にはPMMA粉末の集合体)についての反射率データをプロットしたものが図5である。なお、図4中、縦軸の反射率は、拡散反射率を100%としたときの値を%表示したものであり、図5は、反射率を元データである電力(nW)で表示している。
【0051】
シリカ粉末については、ブルースター角θとして、54.01、54.15、54.07が得られ、その3点の平均値が54.08であった。PMMA粉末については、ブルースター角θとして、56.22、55.39、56.46が得られ、その3点の平均値が56.02であった。そして、それぞれの光散乱体のブルースター角θの平均値からそれぞれの屈折率1.380および1.483を求めた。この結果より、本測定方法により得られるブルースター角θ、言い換えれば屈折率は、バラツキが3%以内に収まっており、精度(再現性)が良好であることがわかる。
【0052】
シリカ粉末およびPMMA粉末について測定した上記屈折率と、シリカおよびPMMAの屈折率の文献値とを図6に示した。ここで、文献値は、シリカおよびPMMAの双方とも平滑な表面を有する材料についての屈折率である。なお、本測定方法により、標準ガラス、水およびアセトンについてブルースター角θ、ブルースター角θから得られる屈折率および屈折率の文献値についても、参考として示した。ここで、標準ガラスは、粗の程度が極微小であり略平滑な表面を有するとともに光の吸収がない固体物質の代表例として選んだものであり、水およびアセトンは、平滑な表面を有するとともに光の吸収がない液体物質の代表例として選んだものである。
【0053】
図6より、光散乱体であるシリカ粉末およびPMMA粉末について、本測定方法により略文献値に近い屈折率が得られていることがわかる。
【0054】
なお、図6を詳細に検討すると、本測定方法によって得られる光散乱体の屈折率は、表面が粗なシリカ粉末およびPMMA粉末の場合、表面が平滑な標準ガラス等の他の物質に比べて、文献値よりも小さい。
【0055】
この原因の一部が上述した測定原理の差にあることは明らかであるとしても、さらにそれ以外にも、粉末の集合体を調製するときの各粉体の充填密度や粒度分布の違いが一因であると考えられる。また、上記の測定結果については本測定方法の測定条件の最適化が十分になされていないことも一因であると考えられる。
【0056】
上記のうち、前者の粉体の充填密度や粒度分布の違いは、本測定方法の妥当性を直接左右するものではないが、本測定方法の妥当性を検証するときの前提条件として粉末の集合体の性状のバラツキ等に基づく測定値の変動要因を除去することを検討する必要がある。
【0057】
一方、後者の測定条件の最適化については、直接的あるいはハード的には、まず、入射角の変更ピッチを上記の2.5°から小さくしていくことにより測定精度を向上しうることは測定原理上明らかであり、角度変更機構を精密化して、入射角の変更ピッチを望ましくは1°以下、さらに望ましくは0.1°以下にすることにより、精度(再現精度)さらには正確度の向上を実現する。なお、散乱する反射光を受光する受光プローブの受光角度を反射角を中心として微小量変位させることにより、高感度の受光状態での反射率を求めることも考えられる。また、データを統計的に好適に処理する観点からは、反射率曲線をより近似精度良く得ることができるような、例えば多項式等の近似式を用いる。
【0058】
一方、測定条件を最適化するために、光学的観点から、光照射プローブの照射径を相対的に小さくしおよび受光プローブの受光径を相対的に大きくすることが考えられる。また、光照射プローブおよび受光プローブと試料との間の距離を小さくすることも考えられる。また、入射光は分光せず、受光する反射光を分光することも考えられる。
【0059】
以上説明した本実施の形態例に係る光散乱体の屈折率の測定方法により、光散乱体の屈折率をin situや分光条件においても好適に測定することができる。
【0060】
この場合、測定対象物である光散乱体は、例示した材料等の物質に限らず、例えば、皮膚を測定対象とすることもできる。
【0061】
本発明に係る光散乱体の屈折率の測定方法によれば、粗な試料表面に複数の入射角度からp偏光平面波の光を入射させ、それぞれの入射角度の光に応じた反射光の反射率または反射光量を求め、反射率または反射光量の最小値に対応する入射角をブルースター角と擬制し、ブルースター角と屈折率との関係式より屈折率を得る。
【0062】
また、本発明に係る光散乱体の屈折率の測定方法によれば、粗な試料表面に複数の入射角度からp偏光平面波の光を入射させ、それぞれの入射角度の光に応じた透過光の透過率または透過光量を求め、透過率または透過光量の最大値に対応する入射角をブルースター角と擬制し、ブルースター角と屈折率との関係式より屈折率を得る。
【0063】
これにより、光散乱体の屈折率をin situや分光条件においても好適に測定することができる。
【発明の効果】
【0064】
本発明によれば、光散乱体の屈折率を測定することができる方法を提供することができる。
【図面の簡単な説明】
【図1】複素屈折率を説明するためのものであり、光を入射したときの等振幅面と等位相面の変化を示す概念図である。
【図2】ブルースター角を説明するためのものであり、反射率曲線のグラフ図である。
【図3】本実施の形態例に係る偏光分光光度計の概略構成を示す図である。
【図4】シリカ粉末の反射率曲線のグラフ図である。
【図5】PMMA粉末の反射率曲線のグラフ図である。
【図6】各材料のブルースター角および屈折率を示す表図である。
【符号の説明】
10 モノクロメータ
12 光パワーメータ
14 光照射プローブ
16 受光プローブ
18、20 光ファイバ
22 偏光板[0001]
BACKGROUND OF THE INVENTION
[0002]
The present invention relates to the measurement how the refractive index, and more particularly relates to the measurement how the refractive index of the light scatterer.
[Prior art]
[0003]
As a method for measuring the refractive index of a sample, a multi-incidence angle method, an ellipsometry method, a critical angle method, and the like are known.
[0004]
The multi-incidence angle method is a method for obtaining the refractive index of a sample by measuring the reflectance for an arbitrary plurality of incident angles and solving the Fresnel reflection simultaneous equations.
[0005]
The ellipsometry is a method for obtaining a refractive index based on a result of detecting a phase change of reflected light by entering linearly polarized (planarly polarized) light. According to this method, in-situ measurement and measurement under spectroscopic conditions are possible as in the case of the multiple incidence angle method. Ellipsometry is performed using ellipsometry.
[0006]
The critical angle method is a method for determining the refractive index of each medium by measuring the critical angle of incident light. According to this method, measurement can be performed in situ. The critical angle method is performed using an Abbe refractometer.
[0007]
However, any of the above-described conventional methods for measuring refractive index is intended for measuring a sample having a smooth surface, and is applicable to a sample (light scatterer) having a rough surface and scattered reflected light. I can't.
[0008]
On the other hand, there is an immersion method as a method capable of measuring the refractive index of a sample having a rough surface and scattered reflected light. In this method, the sample is immersed in a liquid having a known refractive index, and the refractive index of the sample is obtained from the refractive index when the sample becomes transparent. However, this method has a problem that the above-described in situ measurement and measurement under spectral conditions cannot be performed.
[Problems to be solved by the invention]
[0009]
This invention is made | formed in view of said subject, and makes it a main objective to provide the method and apparatus which can measure the refractive index of a light-scattering body suitably.
[Means for Solving the Problems]
[0010]
According to the first aspect of the present invention, in the method for measuring the refractive index of a light scatterer, p-polarized plane wave light is incident on the surface of the light scatterer from a plurality of incident angles, and reflection according to light at each incident angle. The light reflectance or the amount of reflected light is obtained, the incident angle corresponding to the minimum value of the reflectance or the amount of reflected light is obtained, and the light is calculated from the relationship between the incident angle corresponding to the minimum value and the Brewster angle and the refractive index. The refractive index of the scatterer is obtained.
According to a second aspect of the present invention, in the method for measuring the refractive index of a light scatterer, light of a p-polarized plane wave is incident on the surface of the light scatterer from a plurality of incident angles, and transmission according to the light at each incident angle. The light transmittance or the transmitted light amount is obtained, the incident angle corresponding to the maximum value of the transmittance or the transmitted light amount is obtained, and the light is obtained from the relational expression between the incident angle and the Brewster angle corresponding to the maximum value and the refractive index. The refractive index of the scatterer is obtained.
A third aspect of the present invention is the method for measuring a refractive index of a light scatterer according to the first or second aspect, wherein the reflected light or transmitted light is light having a predetermined wavelength that is split. .
A fourth aspect of the present invention is the method for measuring a refractive index of a light scatterer according to any one of the first to third aspects, wherein the incident angle is changed at a pitch of 5 ° or less. .
According to a fifth aspect of the present invention, in the method for measuring the refractive index of the light scatterer according to the first aspect, the reflectance or the reflected light amount data is statistically processed to obtain a reflectance curve or a reflected light amount curve, A value of an incident angle corresponding to the minimum value of the reflectance or the reflected light amount is obtained from the reflectance curve or the reflected light amount curve.
The invention according to claim 6 is the method for measuring the refractive index of the light scatterer according to claim 2, wherein the transmittance or the amount of transmitted light is statistically processed to obtain a transmittance curve or a transmitted light amount curve, A value of an incident angle corresponding to the maximum value of the transmittance or the transmitted light amount is obtained from the transmittance curve or the transmitted light amount curve .
DETAILED DESCRIPTION OF THE INVENTION
[0011]
In the method for measuring the refractive index of a light scatterer according to the present invention, p-polarized plane wave light is incident on a rough sample surface from a plurality of incident angles, and the reflectance or reflection of the reflected light according to the light at each incident angle. The amount of light is obtained, the incident angle corresponding to the reflectance or the minimum value of the amount of reflected light is simulated as the Brewster angle, and the refractive index is obtained from the relational expression between the Brewster angle and the refractive index.
[0012]
In the method for measuring the refractive index of the light scatterer according to the present invention, light of a p-polarized plane wave is incident on a rough sample surface from a plurality of incident angles, and the transmittance of transmitted light corresponding to the light at each incident angle. Alternatively, the transmitted light amount is obtained, the incident angle corresponding to the transmittance or the maximum value of the transmitted light amount is simulated as the Brewster angle, and the refractive index is obtained from the relational expression between the Brewster angle and the refractive index.
[0013]
The present invention uses an equation of tan θ B = n indicating the relationship between the Brewster angle θ B defined as the incident angle when the reflectance of the p-polarized plane wave is 0, in other words, the transmittance is 1, and the refractive index n. The incident angle corresponding to the minimum value of the reflectance or the amount of reflected light or the maximum value of the transmittance or the amount of transmitted light is assumed to be a Brewster angle to obtain a refractive index.
[0014]
Thereby, the refractive index of a light-scattering body can be measured suitably also in in-situ and spectroscopic conditions.
[0015]
In this case, it is preferable that the reflected light or the transmitted light is a light having a predetermined wavelength that is dispersed. Spectroscopy may be performed on either the incident light side or the reflected or transmitted light side. For example, white light is used as incident light when performing spectroscopy on the side of reflected light or transmitted light.
[0016]
In this case, if the incident angle is changed at a pitch of 5 ° or less, desirably 1 ° or less, and more desirably 0.1 ° or less, the refractive index can be obtained with higher accuracy.
[0017]
In this case, the reflectance or the reflected light amount data is statistically processed to obtain a reflectance curve or a reflected light amount curve, and the reflectance or the reflected light amount curve is set to the minimum value of the reflectance or the reflected light amount from the reflectance curve or the reflected light amount curve. A corresponding incident angle value is obtained, or the transmittance or the transmitted light amount data is statistically processed to obtain a transmittance curve or a transmitted light amount curve, and the transmittance or the transmitted light curve is obtained from the transmittance curve or the transmitted light amount curve. When the value of the incident angle corresponding to the maximum value of the transmitted light amount is obtained, the refractive index can be obtained with higher accuracy.
[0018]
Further, a measuring device according to the present invention is a measuring device used in the above-described method for measuring the refractive index of a light scatterer, and includes a light source unit that generates incident light, a light receiving unit that receives reflected light or transmitted light, An output unit that outputs light reception data from the light receiving unit, a light irradiation probe that guides and radiates incident light to an object to be measured, a light receiving probe that guides reflected light or transmitted light to the light receiving unit, And an angle changing unit that changes an angle of the light emitting probe and the light receiving probe toward the measurement object. Here, the light reception data is data of the reflectance, the amount of reflected light, the transmittance, or the amount of transmitted light.
[0019]
A preferred embodiment (hereinafter referred to as this embodiment) of a method and an apparatus for measuring the refractive index of a light scatterer according to the present invention will be described below with reference to the drawings.
[0020]
In the method for measuring the refractive index of a light scatterer according to this embodiment, p-polarized plane wave light is incident on a rough sample surface from a plurality of incident angles, and the reflected light is reflected according to the light at each incident angle. The incident angle corresponding to the minimum value of the reflectance or the reflected light amount is assumed to be the Brewster angle, and the refractive index is obtained from the relational expression tanθ B = n between the Brewster angle θ B and the refractive index n. Is. In this case, transmitted light may be used instead of reflected light to determine the transmittance or amount of transmitted light, and the incident angle corresponding to the maximum value of the transmittance or amount of transmitted light may be assumed to be a Brewster angle.
[0021]
Hereinafter, the reflectance of reflected light will be described as an example. In the following description, basically, reflected light can be read as transmitted light, and reflectance can be read as transmittance.
[0022]
As described above, the equation of tan θ B = n shows the relationship between the Brewster angle defined as the incident angle when the reflectance of the p-polarized plane wave is 0 and the refractive index. In the present invention, the incident angle corresponding to the minimum value of the reflectance is assumed to be the Brewster angle to obtain the refractive index.
[0023]
As described above, the Brewster angle θ B refers to an incident angle when light is incident under the condition that the light is not reflected at the boundary surface. The Brewster angle θ B is also called a polarization angle.
[0024]
It is well known that the refractive index n of the sample is given from the Brewster angle θ B based on the above formula tan θ B = n according to the Brewster's law. The following explains Brewster's law.
[0025]
An arbitrary plane wave of light is created by combining two linearly polarized plane waves perpendicular to each other. The two linearly-polarized plane waves are an s (senkrecht) polarized plane wave whose electric field is perpendicular to the incident plane and a p (parallel) polarized plane wave whose electric field is parallel to the incident plane.
[0026]
Except for some substances such as transparent bodies, in general, as shown in FIG. 1, when plane wave light having the same amplitude plane and the same phase plane are incident on the substance, the substance In the same amplitude plane and the same phase plane. If the included angle between the shifted equiamplitude surface and equiphase surface is ψ, the complex refractive index represented by the following formula (1) can be defined.
[0027]
[Expression 1]
Figure 0003885998
This complex refractive index can also be defined by the square root of the complex dielectric constant of the measurement target substance.
[0028]
In Equation (1), when the measurement target substance is transparent or dielectric, k = 0, and the complex refractive index coincides with the refractive index, while the measurement target substance is an absorber or a conductor. K ≠ 0, and the complex refractive index does not match the refractive index. For example, the former is the case of transparent glass, and the latter is the case of metal. Incidentally, k is about 7-8 about aluminum.
[0029]
As a special condition, the reflected light of the light combined with the s-polarized plane wave and the p-polarized plane wave incident at an incident angle θ where tan θ = n is only s-polarized plane wave. The incident angle θ at this time is the Brewster angle θ B described above. Therefore, also in this embodiment, generally, the s-polarized plane wave is removed as incident light, and only the p-polarized plane wave is used, and the reflectance of the reflected light of the p-polarized plane wave is measured. As the reflection angle of the reflected light, when obtaining the Brewster angle θ B , a regular reflection angle that is the same as the incident angle of the incident light is used, but in the present invention, it is limited to this regular reflection angle. is not. The angle between the transmitted light (refracted light) and the reflected light when the p-polarized plane wave is incident at the Brewster angle θ B is 90 °.
[0030]
The Brewster angle θ B is used in academic research as representing the optical properties of a substance, but there are few examples of practical use as a means for evaluating material properties.
[0031]
The Brewster angle θ B will be further described.
[0032]
For example, when white light having only a p-polarized plane wave is incident on transparent glass while changing the incident angle, the reflectance curve shown in FIG. 2 is obtained. In this reflectance curve, the Brewster angle θ B that is the incident angle when the reflectance is 0 is an angle of 55.8 ° that is easily visually recognized as a sharp peak convex downward.
[0033]
However, when the surface of the transparent glass is processed rough and light is incident on the rough surface, the resulting reflectance curve becomes broad due to light scattering, and the Brewster angle θ B cannot be obtained. . Further, unlike a material having absorptance of 0 such as transparent glass, for example, a material having a certain absorptance such as a transparent glass added with a colorant does not have an incident angle with a reflectance of 0, Similar to the light-scattering material, the obtained reflectance curve is broad, and the Brewster angle θ B cannot be obtained.
[0034]
For this reason, since the material actually evaluated using the Brewster angle θ B is limited to a material having a smooth surface, and most of the materials do not have an absorptance, means for measuring the refractive index I don't hear any practical examples.
[0035]
The present invention uses a method for calculating the Brewster angle θ B as a basic measurement principle, in other words, a polarization angle method as a method for obtaining a refractive index of a light scattering material (light scatterer). The present inventors have found a method for solving the above problems and obtaining the refractive index accurately for a light scattering material.
[0036]
A method for measuring the refractive index of the light scatterer according to the present embodiment will be further described.
[0037]
First, a measuring apparatus used in the method for measuring the refractive index of a light scatterer according to the present embodiment will be described.
[0038]
The measuring apparatus according to the present embodiment uses a polarization spectrophotometer. This polarized spectrophotometer is basically the same configuration as a generally used goniometer.
[0039]
As shown in FIG. 3, for example, the schematic configuration of the measuring apparatus according to the present embodiment includes a monochromator 10 as a light source unit that generates incident light, a light receiving unit that receives reflected light or transmitted light, and a light receiving unit. An optical power meter 12 having an output unit for outputting the received light data, a light irradiation probe 14 for guiding incident light to the measurement object A, and light reception for guiding reflected light or transmitted light to the light receiving unit. A probe (light receiving probe) 16 is provided, and the monochromator 10 and the light irradiation probe 14 and the optical power meter 12 and the light receiving probe 16 are optically connected by optical fibers 18 and 20, respectively. . Note that a white light source may be used instead of the monochromator as the light source unit. In that case, a spectroscope is further provided in the light receiving unit.
[0040]
The polarization spectrophotometer according to the present embodiment can freely change the direction of the light irradiation probe 10 with respect to the measurement object (hereinafter referred to as a light scatterer) A and can sequentially change it to any incident angle θi. An angle changing mechanism (angle changing unit) is provided. At this time, the angle changing mechanism is configured to change the direction of the light receiving probe 16 with respect to the light scatterer A so as to receive the reflected light at the reflection angle θr. The angle changing mechanism is, for example, an improvement over a commercially available goniometer. In the polarization spectrophotometer, a polarizing plate 22 for making only a p-polarized plane wave as incident light is provided in the light irradiation probe. These two points are different from ordinary polarization spectrophotometers.
[0041]
The monochromator 10 generates light having a wavelength of 579 nm, for example. The angle changing mechanism changes the incident angle θi (and the reflection angle θr) within a range of 25 ° to 65 °, for example, at a pitch of 2.5 °, for example. The light irradiation probe 14 has an irradiation diameter of, for example, 6 mm, and the light receiving probe 16 has a light reception diameter of, for example, 9 mm. In the optical power meter 12, the energy of the reflected light received by the photodetector as the light receiving unit is obtained as power (output unit), and this power is converted into the reflectance. At this time, the power may be used as it is as the light amount data of the reflected light.
[0042]
Using the above measuring apparatus, the refractive index of the light scatterer is measured by the following procedure.
[0043]
The incident light of only a p-polarized plane wave obtained by further polarizing light of a predetermined spectral wavelength is irradiated to the rough surface of the light scatterer at an incident angle of 25 °, and the reflected light is received. Next, the incident angle is changed to 65 ° at a pitch of 2.5 °. And the reflectance with respect to each incident angle (theta) i is measured.
[0044]
The above result can be graphed as shown in FIG.
[0045]
From the incident angle θi and the reflectance data, for example, a fitting curve, that is, the reflectance curve is approximately obtained by the least square method, and further, the inflection point of the downwardly convex reflectance curve, in other words, the minimum value of the reflectance is obtained. . The incident angle at this inflection point is a pseudo-Brewster angle, which is hereinafter referred to as Brewster angle (polarization angle) θ B for convenience. When data of transmitted light transmittance or transmitted light amount is used, the inflection point of the upwardly convex transmittance curve or transmitted light amount curve, in other words, the maximum value of the transmittance or transmitted light amount is obtained.
[0046]
By substituting the obtained Brewster angle θ B into the equation of tan θ B = n, the refractive index n of the light scatterer is obtained.
[0047]
The validity of the method for measuring the refractive index of the light scatterer according to the present embodiment was verified by the following method.
[0048]
A silica powder and a polymethyl methacrylate (PMMA) powder having a known refractive index were prepared, and each of these powders was individually filled in a container to prepare a light scatterer to be measured.
[0049]
And the reflectance in each incident angle was measured by N (number of repetitions) = 3 about each light-scattering body.
[0050]
FIG. 4 is a plot of reflectance data for silica powder (precisely an aggregate of silica powder), and is polymethyl methacrylate (hereinafter referred to as PMMA) powder (exactly PMMA powder). FIG. 5 is a plot of the reflectance data for the aggregate of the above. In FIG. 4, the reflectance on the vertical axis indicates the value when the diffuse reflectance is set to 100%, and FIG. 5 displays the reflectance as power (nW) as the original data. ing.
[0051]
Regarding the silica powder, 54.01, 54.15, and 54.07 were obtained as the Brewster angle θ B , and the average value of the three points was 54.08. As for the PMMA powder, 56.22, 55.39, 56.46 were obtained as the Brewster angle θ B , and the average value of the three points was 56.02. Then, the respective refractive indexes 1.380 and 1.383 were determined from the average value of the Brewster angles θ B of the respective light scatterers. From this result, it can be seen that the Brewster angle θ B obtained by this measurement method, in other words, the refractive index has a variation within 3%, and the accuracy (reproducibility) is good.
[0052]
FIG. 6 shows the refractive index measured for silica powder and PMMA powder, and literature values for the refractive indices of silica and PMMA. Here, the literature value is the refractive index for a material having a smooth surface for both silica and PMMA. Note that, by this measurement method, the standard glass, water and Brewster angle theta B for acetone, for the literature value of the refractive index and the refractive index obtained from the Brewster angle theta B, shown as a reference. Here, the standard glass is selected as a representative example of a solid material having a very rough surface and a substantially smooth surface and no light absorption, and water and acetone have a smooth surface. It was chosen as a representative example of a liquid substance that does not absorb light.
[0053]
From FIG. 6, it is understood that the refractive index close to the literature value is obtained by this measurement method for the silica powder and the PMMA powder which are light scatterers.
[0054]
When FIG. 6 is examined in detail, the refractive index of the light scatterer obtained by this measurement method is higher than that of other materials such as standard glass having a smooth surface in the case of silica powder and PMMA powder having a rough surface. , Smaller than literature values.
[0055]
Even though it is clear that some of these causes are due to the above-described difference in measurement principle, there are also other differences in the packing density and particle size distribution of each powder when preparing a powder aggregate. It is thought to be a cause. In addition, it is considered that the measurement result of the measurement method is not sufficiently optimized for the measurement result.
[0056]
Among the above, the difference in the packing density and particle size distribution of the former powder does not directly affect the validity of this measurement method, but as a prerequisite for verifying the validity of this measurement method, It is necessary to consider removing factors that cause fluctuations in measured values based on variations in body properties.
[0057]
On the other hand, with regard to the optimization of the latter measurement conditions, directly or in hardware, it is first measured that the measurement accuracy can be improved by decreasing the incident angle change pitch from the above 2.5 °. It is clear in principle, and the angle change mechanism is refined so that the incident angle change pitch is preferably 1 ° or less, more preferably 0.1 ° or less, thereby improving accuracy (reproduction accuracy) and accuracy. Is realized. It is also conceivable to obtain the reflectance in a highly sensitive light-receiving state by shifting the light-receiving angle of the light-receiving probe that receives scattered reflected light by a minute amount around the reflection angle. Further, from the viewpoint of processing the data statistically favorably, an approximate expression such as a polynomial is used so that the reflectance curve can be obtained with higher approximation accuracy.
[0058]
On the other hand, in order to optimize the measurement conditions, from the optical viewpoint, it is conceivable to relatively reduce the irradiation diameter of the light irradiation probe and relatively increase the light reception diameter of the light receiving probe. It is also conceivable to reduce the distance between the light irradiation probe and the light receiving probe and the sample. It is also conceivable to split the incident reflected light without splitting the incident light.
[0059]
By the method for measuring the refractive index of the light scatterer according to the present embodiment described above, the refractive index of the light scatterer can be suitably measured even in situ or in spectroscopic conditions.
[0060]
In this case, the light scatterer, which is the measurement object, is not limited to a substance such as the exemplified material, and for example, the skin can be the measurement object.
[0061]
According to the method for measuring the refractive index of the light scatterer according to the present invention, p-polarized plane wave light is incident on a rough sample surface from a plurality of incident angles, and the reflectance of the reflected light according to the light at each incident angle. Alternatively, the reflected light amount is obtained, the incident angle corresponding to the reflectance or the minimum value of the reflected light amount is assumed to be the Brewster angle, and the refractive index is obtained from the relational expression between the Brewster angle and the refractive index.
[0062]
Further, according to the method for measuring the refractive index of a light scatterer according to the present invention, light of p-polarized plane waves is incident on a rough sample surface from a plurality of incident angles, and transmitted light corresponding to the light at the respective incident angles is transmitted. The transmittance or transmitted light amount is obtained, the incident angle corresponding to the maximum value of the transmittance or transmitted light amount is assumed to be the Brewster angle, and the refractive index is obtained from the relational expression between the Brewster angle and the refractive index.
[0063]
Thereby, the refractive index of a light-scattering body can be measured suitably also in in-situ and spectroscopic conditions.
【The invention's effect】
[0064]
According to the present invention, it is possible to provide a way capable of measuring the refractive index of the light scatterer.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram for explaining a complex refractive index and showing changes in an equiamplitude surface and an equiphase surface when light is incident.
FIG. 2 is a graph for illustrating a reflectance curve for explaining the Brewster angle.
FIG. 3 is a diagram showing a schematic configuration of a polarization spectrophotometer according to the present embodiment.
FIG. 4 is a graph of the reflectance curve of silica powder.
FIG. 5 is a graph of the reflectance curve of PMMA powder.
FIG. 6 is a table showing the Brewster angle and refractive index of each material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Monochromator 12 Optical power meter 14 Light irradiation probe 16 Light reception probe 18, 20 Optical fiber 22 Polarizing plate

Claims (6)

光散乱体の表面に複数の入射角度からp偏光平面波の光を入射させ、それぞれの入射角度の光に応じた反射光の反射率または反射光量を求め、該反射率または該反射光量の最小値に対応する入射角を求め、該最小値に対応する入射角及びブルースター角と屈折率との関係式より該光散乱体の屈折率を得ることを特徴とする光散乱体の屈折率の測定方法。  Light of a p-polarized plane wave is incident on the surface of the light scatterer from a plurality of incident angles, the reflectance or amount of reflected light corresponding to the light at each incident angle is obtained, and the minimum value of the reflectance or the amount of reflected light is obtained. The refractive index of the light scatterer is obtained from the relational expression between the incident angle corresponding to the minimum value and the Brewster angle and the refractive index. Method. 光散乱体の表面に複数の入射角度からp偏光平面波の光を入射させ、それぞれの入射角度の光に応じた透過光の透過率または透過光量を求め、該透過率または該透過光量の最大値に対応する入射角を求め、該最大値に対応する入射角及びブルースター角と屈折率との関係式より該光散乱体の屈折率を得ることを特徴とする光散乱体の屈折率の測定方法。  Light of p-polarized plane wave is incident on the surface of the light scatterer from a plurality of incident angles, and the transmittance or amount of transmitted light corresponding to the light at each incident angle is obtained. The maximum value of the transmittance or the amount of transmitted light And the refractive index of the light scatterer is obtained from the relational expression between the incident angle corresponding to the maximum value and the Brewster angle and the refractive index. Method. 前記反射光または透過光は、分光された所定波長の光であることを特徴とする請求項1または2に記載の光散乱体の屈折率の測定方法。  The method for measuring a refractive index of a light scatterer according to claim 1, wherein the reflected light or transmitted light is a light having a predetermined wavelength which is dispersed. 前記入射角度を5°以下のピッチで変更することを特徴とする請求項1〜3のいずれか1項に記載の光散乱体の屈折率の測定方法。  The method for measuring a refractive index of a light scatterer according to claim 1, wherein the incident angle is changed at a pitch of 5 ° or less. 前記反射率または前記反射光量のデータを統計処理して反射率曲線または反射光量曲線を得、該反射率曲線または該反射光量曲線より該反射率または該反射光量の最小値に対応する入射角の値を求めることを特徴とする請求項1記載の光散乱体の屈折率の測定方法。  The reflectance or the amount of reflected light is statistically processed to obtain a reflectance curve or a reflected light amount curve, and an incident angle corresponding to the minimum value of the reflectance or the reflected light amount is calculated from the reflectance curve or the reflected light amount curve. 2. The method for measuring the refractive index of a light scatterer according to claim 1, wherein the value is obtained. 前記透過率または前記透過光量のデータを統計処理して透過率曲線または透過光量曲線を得、該透過率曲線または該透過光量曲線より該透過率または該透過光量の最大値に対応する入射角の値を求めることを特徴とする請求項2記載の光散乱体の屈折率の測定方法 The transmittance or the transmitted light amount data is statistically processed to obtain a transmittance curve or a transmitted light amount curve, and the incident angle corresponding to the maximum value of the transmittance or the transmitted light amount is determined from the transmittance curve or the transmitted light amount curve. 3. A method for measuring a refractive index of a light scatterer according to claim 2, wherein a value is obtained .
JP2001390292A 2001-12-21 2001-12-21 Method for measuring refractive index of light scatterer Expired - Fee Related JP3885998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001390292A JP3885998B2 (en) 2001-12-21 2001-12-21 Method for measuring refractive index of light scatterer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001390292A JP3885998B2 (en) 2001-12-21 2001-12-21 Method for measuring refractive index of light scatterer

Publications (2)

Publication Number Publication Date
JP2003194710A JP2003194710A (en) 2003-07-09
JP3885998B2 true JP3885998B2 (en) 2007-02-28

Family

ID=27598262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001390292A Expired - Fee Related JP3885998B2 (en) 2001-12-21 2001-12-21 Method for measuring refractive index of light scatterer

Country Status (1)

Country Link
JP (1) JP3885998B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9265457B2 (en) 2010-06-03 2016-02-23 Koninklijke Philips N.V. Apparatus and method for measuring a tissue analyte such as bilirubin using the Brewster's angle
KR20120077330A (en) * 2010-12-30 2012-07-10 삼성코닝정밀소재 주식회사 Apparatus for measuring the degree of transmission of a patterned glass substrate
JP6879899B2 (en) * 2017-12-28 2021-06-02 日立造船株式会社 Stirring state detection device, stirring control device, and stirring state detection method
CN109580182B (en) * 2018-12-18 2020-07-31 北京理工大学 Method and device for measuring refractive index of curved optical element based on Brewster's law

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515046A (en) * 1974-07-01 1976-01-16 Nippon Telegraph & Telephone HYOMENKUTSUSETSURITSUHENKAICHISOKUTEIHO
JPS60128330A (en) * 1983-12-15 1985-07-09 Matsushita Electric Ind Co Ltd Refractive index measuring device of thin film
JPH076841B2 (en) * 1985-06-01 1995-01-30 倉敷紡績株式会社 Polarization angle detection method and polarization angle detection device
JPH02134544A (en) * 1988-11-16 1990-05-23 Ricoh Co Ltd Measurement of refractive index of thin film
JPH04204142A (en) * 1990-11-30 1992-07-24 Shinichi Kuwabara Refractive-index measuring apparatus
JPH0579973A (en) * 1991-09-20 1993-03-30 Olympus Optical Co Ltd Optical constant measuring method for metal particle
US5572314A (en) * 1994-09-19 1996-11-05 Hyman, Jr.; Mark Brewster angle refractometer
JP3686160B2 (en) * 1995-04-10 2005-08-24 株式会社日立ハイテクノロジーズ Wafer surface inspection method and inspection apparatus
JPH09329542A (en) * 1996-06-10 1997-12-22 Kao Corp Luster measuring method, and apparatus therefor
JPH109955A (en) * 1996-06-26 1998-01-16 Shimadzu Corp Spectroscope
JPH11162954A (en) * 1997-12-01 1999-06-18 Sony Corp Method and equipment for measuring thin film by optical means and film formation equipment

Also Published As

Publication number Publication date
JP2003194710A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
CN103616164B (en) Reflectivity/transmittance comprehensive measurement method based on pulse laser light source
He et al. Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: Wavelength, size, and angle dependences
Thomas et al. Application of Raman spectroscopy to quantify trace water concentrations in glasses and garnets
CN109115690A (en) Real-time polarization sensitive terahertz time-domain ellipsometer and optical constant measuring method
CN106092906B (en) A kind of circular dichroism spectra and refractometry system based on linearly polarized light incidence
CN103983610B (en) Trace quantity liquid refractivity measurement apparatus based on spectral interference and measuring method
JP2012132886A (en) Method and device for measuring optical characteristics of dielectric on metal thin film
Deng et al. Pure water absorption coefficient measurement after eliminating the impact of suspended substance in spectrum from 400 nm to 900 nm
King et al. A micro-reflectance IR spectroscopy method for analyzing volatile species in basaltic, andesitic, phonolitic, and rhyolitic glasses
RU2351912C1 (en) Method of measuring sizes of particles in fluid and device for its realisation
Bartlett et al. Measurement of particle size distribution in mammalian cells in vitro by use of polarized light spectroscopy
Ahmed et al. Separation of fluorescence and elastic scattering from algae in seawater using polarization discrimination
CN201622228U (en) Dynamic polarized light scattered grain measuring device
JP3885998B2 (en) Method for measuring refractive index of light scatterer
WO2010055280A1 (en) Determining the particle size distribution of a suspension
CN202794024U (en) Sample cell used for measuring molecular spectral absorption
JP2012052998A (en) Optical measurement method and optical measurement device for measuring refraction factor of solid body having rough surface
CN108072642B (en) Optical probe for measuring Raman scattering and measuring method thereof
KR20100138136A (en) Multichannel spectroscopic ellipsometer
CN201497701U (en) Jewelry identification device
JP7436494B2 (en) Method for evaluating optical properties of liquids
CN211043097U (en) Surface enhancement type Raman fiber probe and monitor
JP2012052997A (en) Optical measurement method and optical measurement device for measuring apparent refraction factor of rough surface of solid body
Niskanen et al. Assessment of refractive index of pigments by Gaussian fitting of light backscattering data in context of the liquid immersion method
CN212844874U (en) Liquid measurement system based on optical cavity enhancement

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees