JP2012052997A - Optical measurement method and optical measurement device for measuring apparent refraction factor of rough surface of solid body - Google Patents

Optical measurement method and optical measurement device for measuring apparent refraction factor of rough surface of solid body Download PDF

Info

Publication number
JP2012052997A
JP2012052997A JP2010197612A JP2010197612A JP2012052997A JP 2012052997 A JP2012052997 A JP 2012052997A JP 2010197612 A JP2010197612 A JP 2010197612A JP 2010197612 A JP2010197612 A JP 2010197612A JP 2012052997 A JP2012052997 A JP 2012052997A
Authority
JP
Japan
Prior art keywords
rough surface
solid
refractive index
light
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010197612A
Other languages
Japanese (ja)
Inventor
Kuniharu Takizawa
國治 滝沢
Yasushi Haraguchi
康史 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIGMAKOKI Co Ltd
Original Assignee
SIGMAKOKI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIGMAKOKI Co Ltd filed Critical SIGMAKOKI Co Ltd
Priority to JP2010197612A priority Critical patent/JP2012052997A/en
Publication of JP2012052997A publication Critical patent/JP2012052997A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical measurement method and optical measurement device capable of measuring an apparent refraction factor of a rough surface of a solid body.SOLUTION: The optical measurement device includes a light radiation unit (a light source 10 and a polarizer 20) for making p-polarized light in which electric field component of linear polarization vibrates in an incidence plane incident on the rough surface 32 of a sample 30, a light detection unit 40 for detecting light intensity of reflection light reflected on the rough surface 32 of the sample 30 according to the principle of reflection, a rotation driving unit for changing an incidence angle φ of the linear polarization light by rotating the sample 30, and a calculation processing unit 72 for calculating the apparent refraction index nof the rough surface 32 of the sample 30 based on an incidence angle φwhere the intensity of the reflection light is minimum and a refractive factor nof a gas being contact with the rough surface 32 of the sample 30.

Description

本発明は、固体の粗面の見掛けの屈折率を測定する光学測定方法及び光学測定装置に関する。   The present invention relates to an optical measurement method and an optical measurement apparatus for measuring an apparent refractive index of a solid rough surface.

従来から、代表的な屈折率測定法として、最小偏角法、臨界角法、エリプソメトリー(偏光解析法)、液浸法などが知られている。最小偏角法(非特許文献1参照)は、プリズムに加工されたサンプルの頂角と、最小偏角を測定して屈折率を求めるもので、最も精密に屈折率を測定することができる。臨界角法(非特許文献2参照)は、液体の屈折率測定に適している。サンプル液の屈折率は、参照プリズムに対する相対値として求められる。エリプソメトリー(非特許文献3参照)は、既知の屈折率をもつ基板上のサンプル薄膜にp偏光とs偏光を入射し、反射による偏光状態の変化から、薄膜の厚さ、屈折率および消衰係数などを求める手法である。液浸法(非特許文献4参照)は、粉末状のサンプルと屈折率が段階的に変化した多数の透明液体を用いて、これらの液体に粉末サンプルを混ぜ、サンプルの輪郭が最も見にくい液体を選択することで、屈折率を求める方法である。この方法では、サンプルを鏡面加工せずに屈折率を測定できる。   Conventionally, as a typical refractive index measurement method, a minimum deviation method, a critical angle method, an ellipsometry (an ellipsometry), an immersion method, and the like are known. The minimum deviation method (see Non-Patent Document 1) is a method for obtaining the refractive index by measuring the apex angle and the minimum deviation angle of a sample processed into a prism, and can measure the refractive index most precisely. The critical angle method (see Non-Patent Document 2) is suitable for measuring the refractive index of a liquid. The refractive index of the sample liquid is obtained as a relative value with respect to the reference prism. Ellipsometry (see Non-Patent Document 3) is a method in which p-polarized light and s-polarized light are incident on a sample thin film on a substrate having a known refractive index, and the thickness, refractive index, and extinction of the thin film are determined from changes in the polarization state due to reflection. This is a method for obtaining a coefficient. The immersion method (see Non-Patent Document 4) uses a powdered sample and a large number of transparent liquids whose refractive index changes stepwise, and mixes the powder sample with these liquids to produce a liquid that is most difficult to see the outline of the sample. This is a method for obtaining the refractive index by selecting. In this method, the refractive index can be measured without mirror-treating the sample.

Everitt Charles, "Refraction." The Encyclopedia Britannica, 11th Ed. vol. 23, The Encyclopedia Britannica Company, New York (1911) 26-27.Everitt Charles, "Refraction." The Encyclopedia Britannica, 11th Ed. Vol. 23, The Encyclopedia Britannica Company, New York (1911) 26-27. Tilton, Leroy W., and John K. Taylor, "Refractive Index Measurement," in Physical Methods in Chemical Analysis Vol. 1, 2nd ed. ; Walter G. Berl, editor (1961) 411-62. (E ABBE, "Carl's Repertorium der Physik", Vol. 15, 643 (1879). C. PULFRICH, "Zeitschrift fuer Instrumentenkunde", Vol. 18, 107 (1898))Tilton, Leroy W., and John K. Taylor, "Refractive Index Measurement," in Physical Methods in Chemical Analysis Vol. 1, 2nd ed .; Walter G. Berl, editor (1961) 411-62. (E ABBE, " Carl's Repertorium der Physik ", Vol. 15, 643 (1879). C. PULFRICH," Zeitschrift fuer Instrumentenkunde ", Vol. 18, 107 (1898)) 藤原裕之,分光エリプソメトリー,丸善株式会社2003,7-124.Hiroyuki Fujiwara, Spectroscopic Ellipsometry, Maruzen Co., Ltd. 2003, 7-124. 都城秋穂,久城育夫,「岩石学I」,共立出版 2000,pp.90-93.Miyakonojo Akiho, Hisagi Ikuo, “Iwagaku I”, Kyoritsu Shuppan 2000, pp.90-93.

固体粗面の見掛けの屈折率は、固体本来の屈折率とそれを取り巻く気体の屈折率から定められ、固体粗面に入射する光が粗面において反射する際に実際に感じる屈折率のことである。見掛けの屈折率は、物質の質感や光沢など人間の感性と結びつくため、画質評価、分光画像処理、コンピュータグラフィックス、化粧品の定量的評価など多方面で利用される。   The apparent refractive index of a solid rough surface is determined by the refractive index of the solid and the gas surrounding it, and is the refractive index actually felt when light incident on the rough surface is reflected by the rough surface. is there. The apparent refractive index is used in various fields such as image quality evaluation, spectral image processing, computer graphics, and quantitative evaluation of cosmetics because it is connected to human sensitivity such as material texture and gloss.

最小偏角法は、サンプルをプリズムに加工するため、非破壊計測が前提である粗面の見掛けの屈折率測定には適さない。また、臨界角法は、透明液体の屈折率測定に適した屈折率測定法であり、最小偏角法と同様に粗面固体の見掛けの屈折率を測定することはできない。また、エリプソメトリーは、光学研磨や蒸着などにより表面をフラットにした固体あるいは透明液体の計測に適しており、非破壊計測が前提である粗面固体の見掛けの屈折率測定には適さない。さらに、液浸法では、試料を細かく粉砕した粉末を屈折率の明らかな液体に浸して、粉末の輪郭線の観察から試料の屈折率を知る方法であり、この方法も、非破壊計測が前提である粗面固体の見掛けの屈折率測定には適当でない。   Since the sample is processed into a prism, the minimum deviation method is not suitable for measuring the apparent refractive index of a rough surface, which is premised on nondestructive measurement. The critical angle method is a refractive index measurement method suitable for measuring the refractive index of a transparent liquid, and the apparent refractive index of a rough solid cannot be measured as in the minimum deflection angle method. Ellipsometry is suitable for measuring a solid or transparent liquid whose surface has been flattened by optical polishing or vapor deposition, and is not suitable for measuring the apparent refractive index of a rough solid, on which nondestructive measurement is a prerequisite. Furthermore, in the immersion method, a finely pulverized powder is immersed in a liquid with a clear refractive index, and the refractive index of the sample is known by observing the contour of the powder. This method is also premised on nondestructive measurement. This is not suitable for measuring the apparent refractive index of a rough solid.

本発明は、以上のような課題に鑑みてなされたものであり、その目的とするところは、固体の粗面になんらの加工を施すことなく、固体の粗面の見掛けの屈折率を測定することが可能な光学測定方法及び光学測定装置を提供することにある。   The present invention has been made in view of the problems as described above, and the object of the present invention is to measure the apparent refractive index of the solid rough surface without applying any processing to the solid rough surface. It is an object of the present invention to provide an optical measurement method and an optical measurement apparatus.

(1)本発明は、固体の粗面の見掛けの屈折率を測定する光学測定方法において、
直線偏光の電界成分が入射面内で振動するp偏光を固体の粗面に入射角度φ1で入射させ、
前記固体の粗面から反射の法則に従って反射角度φ1で反射した反射光の強度が最小になる入射角度φminを求め、
前記入射角度φminと、前記固体の粗面と接触している気体の屈折率nとに基づいて、前記固体の粗面の見掛けの屈折率ncsを求めることを特徴とする。
(1) The present invention relates to an optical measurement method for measuring an apparent refractive index of a solid rough surface.
P-polarized light whose electric field component of linearly polarized light vibrates in the incident plane is incident on the solid rough surface at an incident angle φ 1 ;
Finding the incident angle φ min at which the intensity of the reflected light reflected at the reflection angle φ 1 from the solid rough surface according to the law of reflection is minimized,
The apparent refractive index n cs of the solid rough surface is obtained based on the incident angle φ min and the refractive index n s of the gas in contact with the solid rough surface.

ここで、固体粗面に入射した光が粗面において反射もしくは屈折する際に実際に感じる屈折率を見掛けの屈折率と呼ぶ。見掛けの屈折率は、固体本来の屈折率とは異なり、固体の屈折率とそれを取り巻く雰囲気の屈折率や粗面の凹凸状態から定められる。また、屈折率が異なる2つの媒質の界面からの戻り光のうち、反射の法則に従う光を反射光と呼び、それ以外の戻り光を散乱光と呼ぶことにする。また、屈折率が異なる2つの媒質の界面を透過する光のなかで、スネルの法則に従う光を透過光と呼び、それ以外の光を散乱光と呼ぶことにする。さらに、入射光の電界と反射光の電界の比を、電界反射率と定義し、入射光パワーと反射光パワーの比を、パワー反射率と定義する。   Here, the refractive index actually felt when light incident on the solid rough surface is reflected or refracted on the rough surface is referred to as an apparent refractive index. The apparent refractive index is determined from the refractive index of the solid, the refractive index of the atmosphere surrounding it, and the uneven state of the rough surface, unlike the original refractive index of the solid. Of the return light from the interface between two media having different refractive indexes, the light that follows the law of reflection is called reflected light, and the other return light is called scattered light. In addition, among the light transmitted through the interface between two media having different refractive indexes, light complying with Snell's law is called transmitted light, and the other light is called scattered light. Furthermore, the ratio of the electric field of incident light and the electric field of reflected light is defined as electric field reflectance, and the ratio of incident light power and reflected light power is defined as power reflectance.

本発明によれば、固体の粗面の見掛けの屈折率を非破壊で測定することができる。   According to the present invention, the apparent refractive index of a solid rough surface can be measured nondestructively.

(2)また本発明において、
に基づいて前記粗面の見掛けの屈折率ncsを求めるようにしてもよい。
(2) In the present invention,
The apparent refractive index n cs of the rough surface may be obtained based on

(3)また本発明において、
前記粗面の見掛けの屈折率ncsと前記固体の屈折率nとに基づいて、前記固体の粗面を固体と気体の混合層とみなしたときの前記混合層における固体と気体の体積比γを求めるようにしてもよい。
(3) In the present invention,
Based on the refractive index n m of the refractive index n cs and the solid apparent the rough surface, the volume ratio of the solid and gas in the mixed layer when the rough surface of the solid was considered a mixed layer of a solid and a gas γ may be obtained.

本発明によれば、固体の屈折率が既知である場合に、前記体積比γを測定することができる。   According to the present invention, the volume ratio γ can be measured when the refractive index of the solid is known.

(4)また本発明において、
前記混合層における固体の体積Vと気体の体積Vの体積比をγ=V/Vとすると、
前記粗面の見掛けの屈折率ncsと前記固体の屈折率nを、
で表し、
(4) In the present invention,
When the volume ratio of the solid volume V m to the gas volume V s in the mixed layer is γ = V s / V m ,
The refractive index n m of the refractive index n cs and the solid apparent the rough surface,
Represented by

に基づいて前記体積比γを求めるようにしてもよい。 The volume ratio γ may be obtained based on the above.

(5)本発明は、固体の粗面の見掛けの屈折率を測定する光学測定装置において、
直線偏光の電界成分が入射面内で振動するp偏光を前記固体の粗面に入射角度φ1で入射させる光照射部と、
前記固体の粗面から反射の法則に従って反射角度φ1で反射した反射光の強度を検出する光検出部と、
前記固体を回転させることで前記p偏光の入射角度φ1を変化させる回転駆動部と、
前記反射光の強度が最小になる入射角度φminと、前記固体の粗面と接触している気体の屈折率nとに基づいて、前記固体の粗面の見掛けの屈折率ncsを算出する演算処理を行う演算処理部とを含むことを特徴とする。
(5) The present invention provides an optical measurement apparatus for measuring the apparent refractive index of a solid rough surface.
A light irradiator that causes p-polarized light whose electric field component of linearly polarized light vibrates in an incident plane to be incident on the solid rough surface at an incident angle φ 1 ;
A light detection unit for detecting the intensity of the reflected light reflected at a reflection angle φ 1 according to the law of reflection from the solid rough surface;
A rotation drive unit that changes the incident angle φ 1 of the p-polarized light by rotating the solid;
The apparent refractive index n cs of the solid rough surface is calculated based on the incident angle φ min at which the intensity of the reflected light is minimized and the refractive index n s of the gas in contact with the solid rough surface. And an arithmetic processing unit that performs arithmetic processing.

本発明によれば、固体の粗面の見掛けの屈折率を非破壊で測定することができる。   According to the present invention, the apparent refractive index of a solid rough surface can be measured nondestructively.

固体表面における光の反射及び散乱の様子を模式的に示す図。The figure which shows typically the mode of reflection and scattering of the light in the solid surface. 固体の粗面を、固体と気体の混合層とみなしたモデルを示す図。The figure which shows the model which considered the solid rough surface as the mixed layer of a solid and gas. 粗面からの反射光の強度が最小になる入射角度φminと、混合層の散乱係数αの関係を示す図。The figure which shows the relationship between the incident angle (phi) min where the intensity | strength of the reflected light from a rough surface becomes the minimum, and the scattering coefficient (alpha) of a mixed layer. 本実施形態の光学測定装置の構成の一例を示す図。The figure which shows an example of a structure of the optical measuring device of this embodiment. 試料台を回転させる第1の回転機構と、光検出器台を回転させる第2の回転機構の構成の一例を示す側面図。The side view which shows an example of a structure of the 1st rotation mechanism which rotates a sample stand, and the 2nd rotation mechanism which rotates a photodetector stand. 光学測定装置の変形例を示す図。The figure which shows the modification of an optical measuring device. 光学測定装置の変形例を示す図。The figure which shows the modification of an optical measuring device. 光学測定装置の変形例を示す図。The figure which shows the modification of an optical measuring device. 図9(A)は、軽度粗面で反射した反射光を撮像した画像であり、図9(B)は、重度粗面で反射した反射光を撮像した画像である。9A is an image obtained by imaging the reflected light reflected by the light rough surface, and FIG. 9B is an image obtained by imaging the reflected light reflected by the heavy rough surface. 入射光と試料面の角度を決定する初期設定について説明するための図。The figure for demonstrating the initial setting which determines the angle of incident light and a sample surface. 入射光と試料面の角度を決定する初期設定について説明するための図。The figure for demonstrating the initial setting which determines the angle of incident light and a sample surface. 図12(A)は、LiTaO3結晶の軽度粗面のパワー反射率Rと入射角度φとの関係を示す図であり、図12(B)は、LiTaO3結晶の重度粗面のパワー反射率Rと入射角度φとの関係を示す図である。Figure 12 (A) is a diagram showing the relationship between the power reflectivity R p of mild rough surface of the LiTaO 3 crystal and the incident angle phi 1, FIG. 12 (B) is the power of severe rough surface of the LiTaO 3 crystal It is a figure which shows the relationship between reflectance Rp and incident angle (phi) 1 .

以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。   Hereinafter, this embodiment will be described. In addition, this embodiment demonstrated below does not unduly limit the content of this invention described in the claim. In addition, all the configurations described in the present embodiment are not necessarily essential configuration requirements of the present invention.

1.測定原理
本実施形態の光学測定方法及び光学測定装置が採用する測定原理を説明する。
1. Measurement Principle The measurement principle employed by the optical measurement method and the optical measurement apparatus according to this embodiment will be described.

1−1.固体粗面の見掛けの屈折率の測定
図1(A)に、粗面を有する固体表面における光の反射と散乱の様子を模式的に示す。図1に示すように、すりガラスやアズカット結晶などの表面は、微細凹凸を有する粗面となっており、固体とそれを取り囲む雰囲気である気体(例えば、空気)が複雑に入り組んだ構造となっている。この粗面の構造の微細部分が入射光の波長と同程度がそれよりも小さい場合、図1(B)に示すように、固体の粗面を、固体と気体の混合層と看做すことができる。この混合層は、例えば、粗面の最も高い部分に接する面を上面とし、粗面の最も低い部分に接する面であって上面と平行な面を下面とするとき、上面と下面の間に存在する固体(粗面を構成する固体)と気体(粗面に接触している気体)とを構成要素とする層である。
1-1. Measurement of Apparent Refractive Index of Solid Rough Surface FIG. 1A schematically shows how light is reflected and scattered on a solid surface having a rough surface. As shown in FIG. 1, the surface of frosted glass or as-cut crystal is a rough surface having fine irregularities, and has a structure in which a solid and a gas (for example, air) surrounding it are intricately complicated. Yes. When the fine portion of the rough surface structure is smaller than the wavelength of incident light, the solid rough surface is regarded as a mixed layer of solid and gas, as shown in FIG. Can do. This mixed layer exists, for example, between the upper surface and the lower surface when the surface that is in contact with the highest portion of the rough surface is the upper surface and the surface that is in contact with the lowest portion of the rough surface and is parallel to the upper surface is the lower surface. It is a layer which makes the solid (solid which comprises a rough surface) and gas (gas which is in contact with the rough surface) to constitute.

本実施形態では、固体の粗面を、固体と気体の混合層とみなしたモデルを用いて、固体の粗面の見掛けの屈折率や、混合層における固体と雰囲気の体積比を測定する。   In this embodiment, the apparent refractive index of the solid rough surface and the volume ratio of the solid to the atmosphere in the mixed layer are measured using a model in which the solid rough surface is regarded as a mixed layer of solid and gas.

図2に示すように、混合層(固体の粗面)に入射するp偏光の入射角度をφとし、混合層の屈折角度をφとし、固体の屈折角度をφとし、混合層の散乱係数と厚さをそれぞれα、dとすると、p偏光の入射光に対する混合層のパワー反射率Rφは、次式のように表される。 As shown in FIG. 2, the angle of incidence of p-polarized light incident on the mixed layer (rough surface of the solid) and phi 1, the refraction angle of the mixed layer and phi 2, the refraction angle of the solid and phi 3, the mixed layer Assuming that the scattering coefficient and the thickness are α and d, respectively, the power reflectivity R p φ 1 of the mixed layer with respect to p-polarized incident light is expressed by the following equation.

式(1)において、rは、気体から混合層に光が入射するときのフレネル反射による振幅反射率(光の電界の反射率)であり、rは、混合層と固体の境界で光が反射するときのフレネル反射による振幅反射率であり、それぞれ次式のように表される。 In equation (1), r 1 is the amplitude reflectivity (reflectance of the electric field of light) due to Fresnel reflection when light enters the mixed layer from the gas, and r 2 is the light at the boundary between the mixed layer and the solid. Is the amplitude reflectivity due to Fresnel reflection, and is expressed by the following equations, respectively.

ここで、nは、気体の屈折率であり、ncsは、混合層の見掛けの屈折率であり、nは、固体の屈折率である。 Here, n s is the refractive index of the gas, n cs is the apparent refractive index of the mixed layer, and n m is the refractive index of the solid.

また式(1)において、Lは、光が混合層を1往復するときの物理的光路長であり、Ψは、隣接する反射光間の位相差であり、それぞれ次式のように表される。ただし、λは入射光の波長である。   In Expression (1), L is a physical optical path length when light makes one round trip through the mixed layer, and Ψ is a phase difference between adjacent reflected lights, each represented by the following expression: . Where λ is the wavelength of the incident light.

ここで、散乱係数αと混合層内の光路長Lの積αLが非常に小さい場合、混合層表面の反射光(図2に示す光線100)だけでなく、混合層内部から反射の法則に従って反射する反射光の存在も無視できないため、反射光のパワー反射率Rφ1は、式(1)にしたがって、φ1の変化とともに周期的な変化を示す。一方、前記αLが非常に大きい場合、混合層に入射した光は、様々な方向に散乱し、混合層内部からの反射光は極めて小さくなる。このとき、混合層表面の反射光(図2に示す光線100)が、混合層からの反射光のパワー反射率Rφ1を支配することになり、反射光のパワー反射率Rは、 Here, when the product αL of the scattering coefficient α and the optical path length L in the mixed layer is very small, not only the reflected light on the surface of the mixed layer (light ray 100 shown in FIG. 2) but also the reflection from the inside of the mixed layer according to the law of reflection. Since the presence of reflected light that cannot be ignored is also negligible, the power reflectivity R p φ 1 of the reflected light shows a periodic change with the change of φ 1 according to the equation (1). On the other hand, when the αL is very large, the light incident on the mixed layer is scattered in various directions, and the reflected light from the inside of the mixed layer becomes extremely small. At this time, the reflected light of the mixed layer surface (ray 100 shown in FIG. 2) is, thus dominating the power reflectivity R p phi 1 of the reflected light from the mixed layer, the power reflectivity R p of the reflected light,

となる。 It becomes.

ここで、図1に示すように散乱光は全方位に放射されるのに対して、反射光は、入射角度と同じ反射角度を保つため、後述する図6〜図10に示す光学系を用いれば、殆どの散乱光を遮断して、反射光を選択的に取り出すことができる。図6〜図10に示す光検出器40に入射する光の主成分が反射光になれば、ブリュースター(Brewster)の法則を利用して混合層(すなわち粗面)の見掛けの屈折率ncsを求めることができる。 Here, the scattered light is radiated in all directions as shown in FIG. 1, whereas the reflected light uses the optical system shown in FIGS. 6 to 10 described later in order to maintain the same reflection angle as the incident angle. For example, most of the scattered light can be blocked and the reflected light can be selectively extracted. If the main component of the light incident on the photodetector 40 shown in FIGS. 6 to 10 is reflected light, the apparent refractive index n cs of the mixed layer (that is, the rough surface) is obtained using Brewster's law. Can be requested.

混合層と気体の界面のブリュースター角をφとすると、混合層の屈折率ncsは、次式のように表すことができる。 When the Brewster angle at the interface between the mixed layer and the gas and phi B, the refractive index n cs of the mixed layer can be expressed by the following equation.

このとき、ブリュースターの法則よりr=0であるから、式(1)から、ブリュースター角φにおけるパワー反射率Rφは、次式のように表される。 At this time, since r 1 = 0 by Brewster's law, the power reflectivity R p φ B at the Brewster angle φ B is expressed by the following equation from the equation (1).

式(8)が成立する条件を探るため、式(1)に式(2)〜(5)を代入し、変数φ1に関する偏導関数∂Rφ)/φを求め、これがゼロとなるときの入射角度を求める。ここでは、固体の屈折率n=2.5とし、気体の屈折率n=1とし、混合層の屈折率ncs=1.6〜2.4とし、混合層の厚さd=1000nmとし、p偏光の入射光の波長λ=632.8nmとする条件で計算を行った。 In order to find a condition for satisfying the equation (8), the equations (2) to (5) are substituted into the equation (1) to obtain a partial derivative ∂R p φ 1 ) / φ 1 related to the variable φ 1 , which is zero. Find the angle of incidence when Here, the solid refractive index n m = 2.5, the gas refractive index n s = 1, the mixed layer refractive index n cs = 1.6 to 2.4, and the mixed layer thickness d = 1000 nm. And the calculation was performed under the condition that the wavelength λ of the incident light of p-polarized light was 632.8 nm.

図3は、パワー反射率Rφ1が最小値になる入射角度φminと、混合層の散乱係数αの関係を示す解析結果を示す図である。図3は、αd>2のときに、入射角度φminが一定値になることを示している。混合層の屈折率ncsを、1.6〜2.4の範囲で変化させて、入射角度φminを求めた結果を表1に示す。 FIG. 3 is a diagram showing an analysis result showing a relationship between the incident angle φ min at which the power reflectivity R p φ 1 is the minimum value and the scattering coefficient α of the mixed layer. FIG. 3 shows that the incident angle φ min becomes a constant value when αd> 2. Table 1 shows the results of calculating the incident angle φ min by changing the refractive index n cs of the mixed layer in the range of 1.6 to 2.4.

表1に示した、入射角度φminは、それぞれ、式(7)で表されるブリュースター角φと一致している。図3や表1の解析結果は一例であり、n、ncs、n、d及びλを変化させても、混合層がαd>2の条件を満たす限り、φmin=φが成立する。従って、本解析から、αd>2を満たす混合層の屈折率ncsは、次式により求められることが明らかである。 The incident angle φ min shown in Table 1 is in agreement with the Brewster angle φ B expressed by the equation (7). The analysis results in FIG. 3 and Table 1 are examples, and even if n s , n cs , n m , d, and λ are changed, φ min = φ B is established as long as the mixed layer satisfies the condition of αd> 2. To do. Therefore, it is clear from this analysis that the refractive index n cs of the mixed layer satisfying αd> 2 is obtained by the following equation.

従って、p偏光を気体に接触している固体の粗面に入射させ、粗面で反射した反射光の強度(あるいは、パワー反射率Rφ1)が最小になる入射角度φminを測定し、測定した入射角度φminと、気体の屈折率nを式(9)に代入することで、固体の粗面を固体と気体の混合層とみなしたときの混合層の屈折率ncs(すなわち、固体の粗面の見掛けの屈折率)を求めることができる。 Therefore, p-polarized light is incident on a solid rough surface in contact with gas, and the incident angle φ min at which the intensity of reflected light reflected by the rough surface (or power reflectivity R p φ 1 ) is minimized is measured. By substituting the measured incident angle φ min and the refractive index n s of the gas into the equation (9), the refractive index n cs of the mixed layer when the rough surface of the solid is regarded as a mixed layer of the solid and the gas ( That is, the apparent refractive index of the solid rough surface can be obtained.

このように、本実施形態によれば、固体の粗面を固体と気体の混合層とみなして、粗面の見掛けの屈折率を非破壊で測定することができる。   Thus, according to the present embodiment, the apparent refractive index of the rough surface can be measured nondestructively by regarding the solid rough surface as a mixed layer of gas and solid.

1−2.混合層における固体と気体の体積比の測定
次に、αd>2を満たす混合層における固体と気体の体積比γの測定原理を説明する。
1-2. Measurement of volume ratio of solid to gas in mixed layer Next, the principle of measuring the volume ratio γ of solid to gas in the mixed layer satisfying αd> 2 will be described.

固体の密度をρとし、気体の密度をρとし、混合層の密度をρcsとすると、固体、気体及び混合層のそれぞれの密度と屈折率の間には、ローレンツ-ローレンツ(Lorentz-Lorenz)の公式から、次式に示す関係が成立する。 If the density of the solid is ρ m , the density of the gas is ρ s, and the density of the mixed layer is ρ cs , the Lorentz-Lorentz (Lorentz-) From the Lorenz formula, the following relationship is established:

ここで、βは、混合層中での気体の重量(%)である。   Here, β is the weight (%) of the gas in the mixed layer.

また、混合層内の固体の体積をVとし、混合層内の気体の体積をVとし、混合層の体積をVcsとすると、次式が成立することも明白である。 It is also clear that the following equation holds, where V m is the solid volume in the mixed layer, V s is the volume of gas in the mixed layer, and V cs is the volume of the mixed layer.

式(11)〜(13)から、次式を得る。   From the equations (11) to (13), the following equation is obtained.

ここで、既に定義したように、γは、混合層における固体の体積Vと気体の体積Vの比である。 Here, as already defined, γ is a ratio of the volume V m of the solid and the volume V s of the gas in the mixed layer.

式(13)を書き直すと、   Rewriting equation (13),

となり、式(12)を書き直すと、 And rewriting equation (12),

となる。式(17)を式(16)に代入すると、次式を得る。 It becomes. Substituting equation (17) into equation (16) yields:

式(14)を式(18)に代入すると、次式を得る。   Substituting equation (14) into equation (18) yields:

ここで、固体の屈折率n、気体の屈折率n及び混合層の屈折率ncsのそれぞれの関数f、f、fcsを、 Here, the functions f m , f s , f cs of the refractive index n m of the solid, the refractive index n s of the gas, and the refractive index n cs of the mixed layer are expressed as follows :

と定義し、式(20)と式(14)を、式(10)に代入すると、次式を得る。 And substituting Expression (20) and Expression (14) into Expression (10), the following expression is obtained.

式(21)に式(19)を代入すると、次式を得る。   Substituting equation (19) into equation (21) yields:

従って、固体の屈折率n(すなわち、nの関数f)と気体の屈折率n(すなわち、nの関数f)が明らかな場合には、測定値である混合層の屈折率ncs(すなわち、ncsの関数fcs)を式(22)に代入することで、混合層における固体と気体の体積比γを求めることができる。 Thus, solid refractive index n m (i.e., the function of the n m f m) and a gas having a refractive index n s (i.e., n s function f s) of the case is obvious, refraction measurements in a mixed layer By substituting the rate n cs (that is, the function f cs of n cs ) into the equation (22), the volume ratio γ of the solid and the gas in the mixed layer can be obtained.

すなわち、式(9)により求めた混合層の屈折率ncs(すなわち、固体の粗面の見掛けの屈折率)を、式(20)に代入することでfcsを求め、求めたfcsとfとfを式(22)に代入することで、固体の粗面を固体と気体の混合層とみなしたときの混合層における固体と気体の体積比γを求めることができる。 That is, by substituting the refractive index n cs (that is, the apparent refractive index of the solid rough surface) of the mixed layer obtained by the equation (9) into the equation (20), f cs is obtained, and the obtained f cs and By substituting f m and f s into equation (22), the volume ratio γ of the solid and gas in the mixed layer when the solid rough surface is regarded as a mixed layer of solid and gas can be obtained.

ここで、気体雰囲気の屈折率nは凡そ1(例えば、空気ならば、0℃、1気圧の条件でns=1.000292)であるから、式(20)より屈折率nの関数fは凡そ0となる。そこで、fcsとfを、次式に代入することで、混合層における固体と気体の体積比γを求めるようにしてもよい。 Here, the refractive index n s of the gas atmosphere is approximately 1 (for example, if air, n s = 1.000292 under the conditions of 0 ° C. and 1 atm), the function f s of the refractive index n s is obtained from the equation (20). Will be approximately zero. Therefore, the solid / gas volume ratio γ in the mixed layer may be obtained by substituting f cs and f m into the following equation.

このように本実施形態によれば、固体の屈折率が明らかである場合に、粗面の見掛けの屈折率から、混合層を構成する固体の体積と気体の体積の比γを測定することができる。混合層の体積比γを測定することで、粗面の凹凸の定量的な評価を行うことができる。   As described above, according to the present embodiment, when the refractive index of the solid is clear, the ratio γ of the volume of the solid constituting the mixed layer and the volume of the gas can be measured from the apparent refractive index of the rough surface. it can. By measuring the volume ratio γ of the mixed layer, it is possible to quantitatively evaluate the unevenness of the rough surface.

2.構成
図4は、本実施形態の光学測定装置の構成の一例を示す図である。
2. Configuration FIG. 4 is a diagram illustrating an example of the configuration of the optical measurement apparatus of the present embodiment.

本実施形態の光学測定装置1は、測定対象である試料30(粗面を有する固体)の粗面32の見掛けの屈折率ncs、及び混合層における固体と気体の体積比γを測定する装置である。光学測定装置1は、レーザダイオードからなる光源10と、ビームスプリッタ12と、円形の開口を有するアパーチャ14と、p偏光を透過させる偏光子20及び検光子22と、光電センサ(フォトディテクタ)からなる第1及び第2の光検出器40、42と、連続光をチョッピングするチョッパー50と、チョッパー制御部52と、ロックインアンプ54と、試料30が載置される試料台60と、第1の光検出器40が載置される光検出器台62と、試料台60を回転軸RAを中心に回転させる第1の回転機構(図示せず)と、光検出器台62を回転軸RAを中心に回転させる第2の回転機構(図示せず)と、演算装置70とを含む。回転軸RAはZ軸と平行で、試料30の粗面32の面内あるいはその近傍に存在し、粗面32の法線33と直交する。 The optical measuring device 1 of the present embodiment is a device that measures the apparent refractive index n cs of the rough surface 32 of the sample 30 (solid having a rough surface) to be measured, and the volume ratio γ of the solid and gas in the mixed layer. It is. The optical measuring device 1 includes a light source 10 composed of a laser diode, a beam splitter 12, an aperture 14 having a circular aperture, a polarizer 20 and an analyzer 22 that transmit p-polarized light, and a photoelectric sensor (photo detector). First and second photodetectors 40 and 42, a chopper 50 for chopping continuous light, a chopper controller 52, a lock-in amplifier 54, a sample stage 60 on which the sample 30 is placed, and a first light A photodetector stage 62 on which the detector 40 is placed, a first rotation mechanism (not shown) for rotating the sample stage 60 around the rotation axis RA, and a photodetector stage 62 around the rotation axis RA. A second rotation mechanism (not shown) that rotates the first rotation mechanism, and an arithmetic unit 70. The rotation axis RA is parallel to the Z axis, exists in or near the rough surface 32 of the sample 30, and is orthogonal to the normal 33 of the rough surface 32.

光源10から出射した光は、偏光子20を透過して、水平面(図4のX軸とY軸を含む面)内で振動するp偏光になる。すなわち、p偏光の電界は、試料30の粗面32の法線33を含む水平面で振動する。このp偏光は、チョッパー50によりパルス変調され、試料30の粗面32の面内に入射する。入射光と反射光の交点は、回転軸RAに一致する、あるいは、少なくとも回転軸RAの近傍であることが望ましい。   The light emitted from the light source 10 passes through the polarizer 20 and becomes p-polarized light that vibrates in a horizontal plane (a plane including the X axis and the Y axis in FIG. 4). That is, the p-polarized electric field vibrates on a horizontal plane including the normal line 33 of the rough surface 32 of the sample 30. The p-polarized light is pulse-modulated by the chopper 50 and is incident on the rough surface 32 of the sample 30. The intersection of the incident light and the reflected light is preferably coincident with the rotation axis RA or at least near the rotation axis RA.

粗面32で反射したp偏光の反射光は、図4に示すように入射角φと等しい反射角φの方向に進む。一方、散乱光は、入射光と反射光の交点から全方向に放射される。反射光と散乱光の強度を測定するために、光検出器台62に、入射光のビーム径とほぼ同一径の開口を有するアパーチャ14、検光子22および第1の光検出器40が設置されている。   The p-polarized light reflected by the rough surface 32 travels in the direction of the reflection angle φ equal to the incident angle φ as shown in FIG. On the other hand, scattered light is radiated in all directions from the intersection of incident light and reflected light. In order to measure the intensity of the reflected light and scattered light, an aperture 14, an analyzer 22 and a first light detector 40 having an opening having substantially the same diameter as the beam diameter of the incident light are installed on the light detector table 62. ing.

第1の光検出器40(光検出部)は、光検出器台62の回転にともない粗面32で反射した反射光および散乱光を受光し、受光した光の強度を電流もしくは電圧に変換(光電変換)して、光強度情報(検出信号)としてロックインアンプ54に出力する。   The first photodetector 40 (light detector) receives the reflected light and scattered light reflected by the rough surface 32 as the photodetector base 62 rotates, and converts the intensity of the received light into a current or voltage ( Photoelectrically converted) and output to the lock-in amplifier 54 as light intensity information (detection signal).

また、チョッパー制御部52は、チョッパー50に制御信号(駆動信号)を出力して、チョッパー50の駆動を制御するとともに、当該制御信号を参照信号としてロックインアンプ54に出力する。ロックインアンプ54は、第1の光検出器40から出力された検出信号のうち、チョッパー制御部52から出力された参照信号と等しい周波数成分を検出し、演算装置70に出力する。チョッパー50、チョッパー制御部52、ロックインアンプ54を用いることで、測定精度を向上させることができる。   The chopper controller 52 outputs a control signal (drive signal) to the chopper 50 to control the drive of the chopper 50 and outputs the control signal to the lock-in amplifier 54 as a reference signal. The lock-in amplifier 54 detects a frequency component equal to the reference signal output from the chopper control unit 52 among the detection signals output from the first photodetector 40, and outputs the detected frequency component to the arithmetic device 70. By using the chopper 50, the chopper controller 52, and the lock-in amplifier 54, the measurement accuracy can be improved.

ビームスプリッタ12は、光源10から出射された光の一部を反射する。第2の光検出器42は、ビームスプリッタ12で反射した光を受光し光電変換し、検出信号を演算装置70に出力する。ビームスプリッタ12と、第2の光検出器42を用いて、光源10からの出射光強度の変動を検出することで、出射光強度の変動に伴う第1の光検出器40によって検出される光強度の変動を補償することができ、測定精度を向上させることができる。   The beam splitter 12 reflects a part of the light emitted from the light source 10. The second photodetector 42 receives the light reflected by the beam splitter 12, performs photoelectric conversion, and outputs a detection signal to the arithmetic device 70. The light detected by the first photodetector 40 due to the fluctuation of the emitted light intensity by detecting the fluctuation of the emitted light intensity from the light source 10 using the beam splitter 12 and the second photodetector 42. Variations in intensity can be compensated for and measurement accuracy can be improved.

なお、ここでは半導体レーザを光源とする一例を示したが、半導体レーザの代わりにガスレーザ、色素レーザ、固体レーザを用いることもできる。また、ハロゲンランプやキセノンランプなどのいわゆるインコヒーレント光源を用いることも可能である。ただし、インコヒーレント光は一般に非常に広い発光スペクトルを有しているため、光源10とビームスプリッタ12の間にスペクトルを狭める光バンドパスフィルタを挿入する必要がある。   Although an example using a semiconductor laser as a light source is shown here, a gas laser, a dye laser, or a solid-state laser can be used instead of the semiconductor laser. A so-called incoherent light source such as a halogen lamp or a xenon lamp can also be used. However, since incoherent light generally has a very wide emission spectrum, it is necessary to insert an optical bandpass filter that narrows the spectrum between the light source 10 and the beam splitter 12.

図5(A)は、試料台60を回転させる第1の回転機構61と、光検出器台62を回転させる第2の回転機構63の構成の一例を示す側面図である。   FIG. 5A is a side view showing an example of the configuration of the first rotation mechanism 61 that rotates the sample stage 60 and the second rotation mechanism 63 that rotates the photodetector stage 62.

図5(A)に示すように、試料台60は、試料台60を回転させる第1の回転機構61、試料台60のあおり角を調整するあおり機構64(ゴニオ)、及び試料台60をXYZ軸方向に空間移動させるXYZ移動機構65の上に設けられている。XYZ移動機構65は、第1の支持ポール67によって支持されている。   As shown in FIG. 5A, the sample stage 60 includes a first rotation mechanism 61 that rotates the sample stage 60, an tilt mechanism 64 (gonio) that adjusts the tilt angle of the sample stage 60, and the sample stage 60 as XYZ. It is provided on an XYZ moving mechanism 65 that moves in the axial direction. The XYZ moving mechanism 65 is supported by a first support pole 67.

光検出器台62は、光検出器台62を回転させる第2の回転機構63に取り付けられている。光検出器台62には、アパーチャ14を支持する支持ポール(図示せず)と、検光子22を支持する第2の支持ポール68と、第1の光検出器40を垂直移動させる垂直移動機構66が設けられ、垂直移動機構66には、第1の光検出器40を支持する第3の支持ポール69が設けられている。第1及び第2の回転機構61、63は、手動回転ステージや自動回転ステージ等により構成することができる。   The photodetector base 62 is attached to a second rotation mechanism 63 that rotates the photodetector base 62. The photodetector base 62 includes a support pole (not shown) that supports the aperture 14, a second support pole 68 that supports the analyzer 22, and a vertical movement mechanism that vertically moves the first photodetector 40. 66 is provided, and the vertical movement mechanism 66 is provided with a third support pole 69 that supports the first photodetector 40. The first and second rotation mechanisms 61 and 63 can be configured by a manual rotation stage, an automatic rotation stage, or the like.

第1の回転機構61と第2の回転機構63の回転軸RAは一致しており、また、回転軸RAは円形の試料台60の中心と一致している。試料台60は、第1の回転機構61によって回転軸RAを中心に回転し、光検出器台62、アパーチャ14、検光子22及び第1の光検出器40は、第2の回転機構63によって回転軸RAを中心に回転する。   The rotation axes RA of the first rotation mechanism 61 and the second rotation mechanism 63 coincide with each other, and the rotation axis RA coincides with the center of the circular sample stage 60. The sample stage 60 is rotated around the rotation axis RA by the first rotation mechanism 61, and the photodetector stage 62, the aperture 14, the analyzer 22, and the first photodetector 40 are rotated by the second rotation mechanism 63. It rotates around the rotation axis RA.

上述したように本実施形態では、試料30の粗面で反射した反射光の強度が最小になる入射角度φmin(或いは、入射角度φ)を求める。そのため、第1の回転機構61により試料台60を回転することで、p偏光の入射角度φ(図4参照)を変化させ、p偏光の入射角度φの変化に応じて、第2の回転機構63により光検出器台62を回転することで、試料30の粗面32で反射した反射光がアパーチャ14及び検光子22を介して第1の光検出器40に入射するように構成している。 As described above, in this embodiment, the incident angle φ min (or the incident angle φ i ) that minimizes the intensity of the reflected light reflected by the rough surface of the sample 30 is obtained. Therefore, by rotating the sample stage 60 by the first rotating mechanism 61, the incident angle φ of p-polarized light (see FIG. 4) is changed, and the second rotating mechanism is changed according to the change of the incident angle φ of p-polarized light. By rotating the photodetector table 62 by 63, the reflected light reflected by the rough surface 32 of the sample 30 enters the first photodetector 40 via the aperture 14 and the analyzer 22. .

図5(B)は、試料台60の上面図と側面図である。図5(B)に示すように、円形の試料台60には、回転軸RAを示す点とそれを通る直線が示されている。この直線と粗面32の表面が同一平面になるように、試料30は載置される(設置に必要な装置については図示を省略する)。   FIG. 5B is a top view and a side view of the sample stage 60. As shown in FIG. 5B, the circular sample stage 60 shows a point indicating the rotation axis RA and a straight line passing therethrough. The sample 30 is placed so that the surface of the straight line and the rough surface 32 are flush with each other (illustration of devices necessary for installation is omitted).

再び図4を参照すると、演算装置70は、演算処理部72と、記憶部74とを含む。演算処理部72は、ロックインアンプ60から出力された光強度情報に基づいて、試料30の粗面32で反射した反射光の強度が最小になるp偏光の入射角度φminを求め、入射角度φminと気体雰囲気の屈折率nとに基づいて、試料30の粗面の見掛けの屈折率ncsを算出する演算処理を行う。また、演算処理部72は、試料30の粗面32の見掛けの屈折率ncsと試料30の屈折率nとに基づいて、試料30の粗面32を固体と気体の混合層とみなしたときの前記混合層における固体と気体の体積比γを算出する演算処理を行う。 Referring to FIG. 4 again, the arithmetic device 70 includes an arithmetic processing unit 72 and a storage unit 74. Based on the light intensity information output from the lock-in amplifier 60, the arithmetic processing unit 72 obtains the incident angle φ min of p-polarized light that minimizes the intensity of the reflected light reflected by the rough surface 32 of the sample 30. Based on φ min and the refractive index n s of the gas atmosphere, a calculation process for calculating the apparent refractive index n cs of the rough surface of the sample 30 is performed. Further, the arithmetic processing unit 72, based on the refractive index n m of the refractive index n cs and sample 30 the apparent rough surface 32 of the sample 30, the rough surface 32 of the sample 30 was considered a mixed layer of a solid and a gas The calculation process which calculates the volume ratio (gamma) of the solid and gas in the said mixed layer at the time is performed.

なお、光学測定装置1が、チョッパー50、チョッパー制御部52及びロックインアンプ54を備えない場合には、演算処理部72は、第1の光検出器40から出力された光強度情報に基づき前記演算処理を行う。   When the optical measurement device 1 does not include the chopper 50, the chopper control unit 52, and the lock-in amplifier 54, the arithmetic processing unit 72 is based on the light intensity information output from the first photodetector 40. Perform arithmetic processing.

記憶部74は、種々のデータを一時記憶する機能を有し、例えばロックインアンプ60から出力された光強度情報を、p偏光の入射角度φと対応付けて記憶する。   The storage unit 74 has a function of temporarily storing various data, and stores, for example, light intensity information output from the lock-in amplifier 60 in association with the incident angle φ of p-polarized light.

図6〜図8は、光学測定装置1の変形例を示す図である。   6-8 is a figure which shows the modification of the optical measuring device 1. As shown in FIG.

図6に示す光学測定装置1では、試料台60とアパーチャ14との間に凸レンズ16を設けている。ここで、凸レンズ16とアパーチャ14間の距離は、凸レンズ16の焦点距離fと一致する。従って、平行光である試料30からの反射光は、アパーチャ14の開口を通過して、第1の光検出器40に入射する。一方、試料30と凸レンズ16間の距離aは、凸レンズ16の焦点距離f以下となっており、試料30からの散乱光は、アパーチャ14により遮断される。また、図6に示す構成によれば、図4に示す構成と比べて、光検出器台62の光路に沿った方向の長さを短くすることができる。   In the optical measuring device 1 shown in FIG. 6, the convex lens 16 is provided between the sample stage 60 and the aperture 14. Here, the distance between the convex lens 16 and the aperture 14 coincides with the focal length f of the convex lens 16. Therefore, the reflected light from the sample 30 that is parallel light passes through the opening of the aperture 14 and enters the first photodetector 40. On the other hand, the distance a between the sample 30 and the convex lens 16 is equal to or shorter than the focal length f of the convex lens 16, and scattered light from the sample 30 is blocked by the aperture 14. Further, according to the configuration shown in FIG. 6, the length in the direction along the optical path of the photodetector base 62 can be shortened as compared with the configuration shown in FIG. 4.

図7に示す光学測定装置1では、光源10と試料台60との間にビームエクスパンダ18を設けて、光源10から出射されたp偏光のビーム径を大きくしている。試料30に入射するp偏光のビーム径を大きくすることで、平行光である試料30からの反射光は、凸レンズ16によってより小さなスポットに集光されるため、図6に示す構成と比較してアパーチャ14の開口をより小さくすることができ、試料30からの散乱光の影響をより小さくすることができる。   In the optical measurement apparatus 1 shown in FIG. 7, a beam expander 18 is provided between the light source 10 and the sample stage 60 to increase the beam diameter of the p-polarized light emitted from the light source 10. By increasing the beam diameter of the p-polarized light incident on the sample 30, the reflected light from the sample 30 that is parallel light is condensed into a smaller spot by the convex lens 16, and therefore compared with the configuration shown in FIG. The aperture of the aperture 14 can be made smaller, and the influence of scattered light from the sample 30 can be made smaller.

図8に示す光学測定装置1では、チョッパー50に代えて光変調器51(例えば、光弾性変調器)が設けられ、チョッパー制御部52に変えて信号発生器53及び増幅器55が用いられている。光変調器51を用いることで、光源10から出射された光の強度を、矩形波状ばかりでなく正弦波状にも変化させることができ、また、変調周波数を低周波から高周波まで自在に選択することができる。   In the optical measuring apparatus 1 shown in FIG. 8, an optical modulator 51 (for example, a photoelastic modulator) is provided instead of the chopper 50, and a signal generator 53 and an amplifier 55 are used instead of the chopper controller 52. . By using the optical modulator 51, the intensity of light emitted from the light source 10 can be changed not only to a rectangular wave shape but also to a sine wave shape, and the modulation frequency can be freely selected from a low frequency to a high frequency. Can do.

3.測定方法
測定に先立って、入射光と試料面(試料30の粗面32)の角度を決定する初期設定を行う。
3. Measurement Method Prior to measurement, initial setting is performed to determine the angle between the incident light and the sample surface (rough surface 32 of the sample 30).

試料30が軽度な粗面を有する場合には、図9(A)に示すように、散乱光に混じって反射光の存在(図9(A)に示す画像の中央付近の明るい部分)が認められる。この場合には、図10(A)に示すごく一般的な方法で入射光の光軸と試料面の法線を一致させることができる。すなわち、レーザ光の直径とほぼ一致した開口をもつアパーチャを光源10と試料30の間に設け、試料30からの反射光がこの開口を通過するように試料台60の角度を調整すればよい。この状態を0度として、図10(B)に示すように、試料台60を回転軸RAを中心に角度φだけ回転させれば、φが入射角度になる。このとき、試料30からの反射光がアパーチャ14及び検光子22を介して第1の光検出器40に入射するように光検出器台62を回転軸RAを中心に回転させるようにすると、入射角度φの場合における試料30からの反射光の強度を測定することができる。   When the sample 30 has a light rough surface, as shown in FIG. 9A, the presence of reflected light (a bright portion near the center of the image shown in FIG. 9A) mixed with scattered light is recognized. It is done. In this case, the optical axis of the incident light and the normal of the sample surface can be matched by a very general method shown in FIG. That is, an aperture having an opening that substantially matches the diameter of the laser beam is provided between the light source 10 and the sample 30, and the angle of the sample stage 60 may be adjusted so that the reflected light from the sample 30 passes through this opening. If this state is set to 0 degree and the sample stage 60 is rotated about the rotation axis RA by the angle φ as shown in FIG. 10B, φ becomes the incident angle. At this time, if the photodetector base 62 is rotated about the rotation axis RA so that the reflected light from the sample 30 enters the first photodetector 40 via the aperture 14 and the analyzer 22, the incident light is incident. The intensity of the reflected light from the sample 30 in the case of the angle φ can be measured.

また、試料30が重度な粗面を有する場合には、図9(B)に示すように、肉眼では散乱光と反射光を区別することはできない。この場合には、図11に示すように、アパーチャと試料30の間と、ビームスプリッタと第2の光検出器42の間に、それぞれ凸レンズ101、102を設け、試料30からの反射光を凸レンズ101を介してビームスプリッタにより反射させ、ビームスプリッタからの反射光を別の凸レンズ102を介して第2の光検出器42に入射させる。第2の光検出器42によって検出された光強度が最大になるように、試料台60の角度を調整することで、入射光の光軸と試料面の法線を一致させることができる。   Further, when the sample 30 has a severe rough surface, as shown in FIG. 9B, the scattered light and the reflected light cannot be distinguished with the naked eye. In this case, as shown in FIG. 11, convex lenses 101 and 102 are provided between the aperture and the sample 30, and between the beam splitter and the second photodetector 42, respectively, and the reflected light from the sample 30 is converted into a convex lens. The light is reflected by the beam splitter via 101 and the reflected light from the beam splitter is incident on the second photodetector 42 via another convex lens 102. By adjusting the angle of the sample stage 60 so that the light intensity detected by the second photodetector 42 is maximized, the optical axis of the incident light and the normal line of the sample surface can be matched.

以上の初期設定が終了したら、初期設定用のアパーチャや凸レンズを光路から外して測定を行う。すなわち、試料台60を回転させることでp偏光の入射角度φを変化させ、且つ光検出器台62を回転させて、第1の光検出器40により、試料30の粗面32で反射した反射光の強度Iを測定する。このとき、光源10から出射された光の強度Iも第2の光検出器42により測定し、次式の規格化されたパワー反射率Rを算出する。 When the above initial setting is completed, the initial setting aperture and convex lens are removed from the optical path, and measurement is performed. In other words, the incident angle φ of the p-polarized light is changed by rotating the sample stage 60, and the light detector stage 62 is rotated to reflect the light reflected by the rough surface 32 of the sample 30 by the first photodetector 40. measuring the intensity I R of light. At this time, the intensity I i of the light emitted from the light source 10 is also measured by the second photodetector 42, and a normalized power reflectance R p of the following equation is calculated.

反射光強度を入射光強度で割ることにより、入射光強度の変動をキャンセルすることができ、パワー反射率Rの測定精度を向上させることができる。そして、パワー反射率Rが最小になるp偏光の入射角度φminを求め、入射角度φminに基づき試料30の粗面32の見掛けの屈折率ncs(混合層の屈折率)を算出する。 The reflected light intensity divided by the incident light intensity, it is possible to cancel the variation of the incident light intensity, it is possible to improve the measurement accuracy of the power reflectivity R p. Then, the incident angle φ min of the p-polarized light that minimizes the power reflectivity R p is obtained, and the apparent refractive index n cs (refractive index of the mixed layer) of the rough surface 32 of the sample 30 is calculated based on the incident angle φ min. .

4.測定結果
図12(A)、図12(B)、表2に、本実施形態の光学測定装置及び光学測定方法での測定結果を示す。ここでは、図4に示す光学測定装置1において、試料としてアズカットのLiTaO3結晶(LT結晶)を用い、光源として632.8nm波長のHe−Neレーザを用いて測定を行った。
4). Measurement Results FIG. 12A, FIG. 12B, and Table 2 show the measurement results of the optical measurement apparatus and the optical measurement method of this embodiment. Here, in the optical measuring apparatus 1 shown in FIG. 4, measurement was performed using an as-cut LiTaO 3 crystal (LT crystal) as a sample and a 632.8 nm wavelength He—Ne laser as a light source.

図12(A)は、軽度の粗面を有するLT結晶のパワー反射率Rと入射角度φとの関係を示し、図12(B)は、重度の粗面を有するLT結晶のパワー反射率Rと入射角度φとの関係を示す。これらの測定結果から得られる入射角度φminに基づいて、軽度の粗面を有するLT結晶と、重度の粗面を有するLT結晶のそれぞれについて、粗面の見掛けの屈折率ncs(粗面を固体(結晶)と気体(空気)の混合層とみなしたときの混合層の屈折率)と、混合層における固体と空気の体積比γを求めた。測定結果を表2に示す。 FIG. 12 (A) shows the relationship between the power reflectance R p and incidence angle phi 1 of LT crystals with mild rough surface, FIG. 12 (B) is the power reflection of the LT crystal having a severe rough surface The relationship between the rate R p and the incident angle φ 1 is shown. Based on the incident angle φ min obtained from these measurement results, the apparent refractive index n cs (rough surface of the rough surface) is obtained for each of the LT crystal having a light rough surface and the LT crystal having a heavy rough surface. The refractive index of the mixed layer when regarded as a mixed layer of solid (crystal) and gas (air)), and the volume ratio γ of solid and air in the mixed layer were determined. The measurement results are shown in Table 2.

本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。   The technical scope of the present invention is not limited to the above-described embodiment, and appropriate modifications can be made without departing from the spirit of the present invention.

高価な物質、化石、美術品など加工の許されない試料の見掛けの屈折率測定や、化粧品(ファンデーションやパウダー)の定量的光学評価などに利用することができる。また、粗面の見掛けの屈折率を正確に知ることが出来るため、分光画像処理で多用されるフォンモデルの解析に利用することができる。このモデルは、コンピュータグラフィックス(CG)技術に繋がっているため、CG画像やアニメーションなどの高画質化に寄与できる。   It can be used for measuring the apparent refractive index of samples that are not allowed to be processed, such as expensive substances, fossils, and art works, and for quantitative optical evaluation of cosmetics (foundations and powders). Further, since the apparent refractive index of the rough surface can be accurately known, it can be used for analysis of a phone model frequently used in spectral image processing. Since this model is connected to computer graphics (CG) technology, it can contribute to high image quality such as CG images and animations.

10 光源、12 ビームスプリッタ、14 アパーチャ、16 凸レンズ、18 ビームエクスパンダ、20 偏光子、22 検光子、30 試料、32 粗面、33 粗面の法線、40 第1の光検出器、42 第2の光検出器、50 チョッパー、51 光変調器、52 チョッパー制御部、53 信号発生器、54 ロックインアンプ、55 増幅器、60 試料台、61 第1の回転機構、62 光検出器台、63 第2の回転機構、70 演算装置、72 演算処理部、74 記憶部、100 混合層からの最初の反射光線、101 凸レンズ、102 凸レンズ DESCRIPTION OF SYMBOLS 10 Light source, 12 Beam splitter, 14 Aperture, 16 Convex lens, 18 Beam expander, 20 Polarizer, 22 Analyzer, 30 Sample, 32 Rough surface, 33 Rough surface normal, 40 1st photodetector, 42 1st 2 photodetectors, 50 choppers, 51 optical modulators, 52 chopper controllers, 53 signal generators, 54 lock-in amplifiers, 55 amplifiers, 60 sample stands, 61 first rotation mechanism, 62 photodetector stands, 63 Second rotation mechanism, 70 arithmetic device, 72 arithmetic processing unit, 74 storage unit, 100 first reflected light from mixed layer, 101 convex lens, 102 convex lens

Claims (5)

固体の粗面の見掛けの屈折率を測定する光学測定方法において、
直線偏光の電界成分が入射面内で振動するp偏光を固体の粗面に入射角度φ1で入射させ、
前記固体の粗面から反射の法則に従って反射角度φ1で反射した反射光の強度が最小になる入射角度φminを求め、
前記入射角度φminと、前記固体の粗面と接触している気体の屈折率nとに基づいて、前記固体の粗面の見掛けの屈折率ncsを求める光学測定方法。
In an optical measurement method for measuring the apparent refractive index of a solid rough surface,
P-polarized light whose electric field component of linearly polarized light vibrates in the incident plane is incident on the solid rough surface at an incident angle φ 1 ;
Finding the incident angle φ min at which the intensity of the reflected light reflected at the reflection angle φ 1 from the solid rough surface according to the law of reflection is minimized,
An optical measurement method for obtaining an apparent refractive index n cs of the solid rough surface based on the incident angle φ min and the refractive index n s of the gas in contact with the solid rough surface.
請求項1において、
に基づいて前記粗面の見掛けの屈折率ncsを求める光学測定方法。
In claim 1,
An optical measurement method for obtaining an apparent refractive index n cs of the rough surface based on the above.
請求項1又は2において、
前記粗面の見掛けの屈折率ncsと前記固体の屈折率nとに基づいて、前記固体の粗面を固体と気体の混合層とみなしたときの前記混合層における固体と気体の体積比γを求める光学測定方法。
In claim 1 or 2,
Based on the refractive index n m of the refractive index n cs and the solid apparent the rough surface, the volume ratio of the solid and gas in the mixed layer when the rough surface of the solid was considered a mixed layer of a solid and a gas An optical measurement method for obtaining γ.
請求項3において、
前記混合層における固体の体積Vと気体の体積Vの体積比をγ=V/Vとすると、
前記粗面の見掛けの屈折率ncsと前記固体の屈折率nを、
で表し、
に基づいて前記体積比γを求める光学測定方法。
In claim 3,
When the volume ratio of the solid volume V m to the gas volume V s in the mixed layer is γ = V s / V m ,
The refractive index n m of the refractive index n cs and the solid apparent the rough surface,
Represented by
An optical measurement method for obtaining the volume ratio γ based on the above.
固体の粗面の見掛けの屈折率を測定する光学測定装置において、
直線偏光の電界成分が入射面内で振動するp偏光を前記固体の粗面に入射角度φ1で入射させる光照射部と、
前記固体の粗面から反射の法則に従って反射角度φ1で反射した反射光の強度を検出する光検出部と、
前記固体を回転させることで前記p偏光の入射角度φ1を変化させる回転駆動部と、
前記反射光の強度が最小になる入射角度φminと、前記固体の粗面と接触している気体の屈折率nとに基づいて、前記固体の粗面の見掛けの屈折率ncsを算出する演算処理を行う演算処理部とを含む光学測定装置。
In an optical measuring device that measures the apparent refractive index of a solid rough surface,
A light irradiator that causes p-polarized light whose electric field component of linearly polarized light vibrates in an incident plane to be incident on the solid rough surface at an incident angle φ 1 ;
A light detection unit for detecting the intensity of the reflected light reflected at a reflection angle φ 1 according to the law of reflection from the solid rough surface;
A rotation drive unit that changes the incident angle φ 1 of the p-polarized light by rotating the solid;
The apparent refractive index n cs of the solid rough surface is calculated based on the incident angle φ min at which the intensity of the reflected light is minimized and the refractive index n s of the gas in contact with the solid rough surface. An optical measurement device including an arithmetic processing unit that performs arithmetic processing.
JP2010197612A 2010-09-03 2010-09-03 Optical measurement method and optical measurement device for measuring apparent refraction factor of rough surface of solid body Withdrawn JP2012052997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010197612A JP2012052997A (en) 2010-09-03 2010-09-03 Optical measurement method and optical measurement device for measuring apparent refraction factor of rough surface of solid body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010197612A JP2012052997A (en) 2010-09-03 2010-09-03 Optical measurement method and optical measurement device for measuring apparent refraction factor of rough surface of solid body

Publications (1)

Publication Number Publication Date
JP2012052997A true JP2012052997A (en) 2012-03-15

Family

ID=45906456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010197612A Withdrawn JP2012052997A (en) 2010-09-03 2010-09-03 Optical measurement method and optical measurement device for measuring apparent refraction factor of rough surface of solid body

Country Status (1)

Country Link
JP (1) JP2012052997A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102954951A (en) * 2012-10-11 2013-03-06 中国工程物理研究院化工材料研究所 Explosive crystal quality characterization method
CN105158209A (en) * 2015-07-10 2015-12-16 中国科学院西安光学精密机械研究所 Large aperture uniaxial crystal refractive index uniformity measurement apparatus and method thereof
JP6956930B1 (en) * 2021-03-23 2021-11-02 三菱電機株式会社 Biological component measuring device and biological component measuring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102954951A (en) * 2012-10-11 2013-03-06 中国工程物理研究院化工材料研究所 Explosive crystal quality characterization method
CN102954951B (en) * 2012-10-11 2013-11-06 中国工程物理研究院化工材料研究所 Explosive crystal quality characterization method
CN105158209A (en) * 2015-07-10 2015-12-16 中国科学院西安光学精密机械研究所 Large aperture uniaxial crystal refractive index uniformity measurement apparatus and method thereof
CN105158209B (en) * 2015-07-10 2017-10-31 中国科学院西安光学精密机械研究所 Heavy caliber uniaxial crystal index of refraction homogeneity measurement apparatus and method
JP6956930B1 (en) * 2021-03-23 2021-11-02 三菱電機株式会社 Biological component measuring device and biological component measuring method
WO2022201301A1 (en) * 2021-03-23 2022-09-29 三菱電機株式会社 Biological component measurement device and biological component measurement method

Similar Documents

Publication Publication Date Title
KR100917912B1 (en) Single-Polarizer Focused-Beam Ellipsometer
KR101509054B1 (en) Rotating-Element Ellipsometer and method for measuring Mueller-matirx elements of the sample using the same
US8705039B2 (en) Surface plasmon resonance sensor using vertical illuminating focused-beam ellipsometer
US6473179B1 (en) Birefringence measurement system
US20070165210A1 (en) High-density channels detecting device
US6268914B1 (en) Calibration Process For Birefringence Measurement System
CN109115690A (en) Real-time polarization sensitive terahertz time-domain ellipsometer and optical constant measuring method
SE1150498A1 (en) Multichannel surface plasmon resonance sensor utilizing beam profile ellipse geometry
KR20190118603A (en) Systems and Methods for Use in Ellipsometry with High Spatial Resolution
JPH06504845A (en) Simultaneous multiple angle/multiple wavelength elliptical polarizer and method
JPH11173946A (en) Optical characteristic measuring apparatus
TW202107215A (en) Optical metrology device using numerical aperture reduction
US6697157B2 (en) Birefringence measurement
JP2012052998A (en) Optical measurement method and optical measurement device for measuring refraction factor of solid body having rough surface
JP2012052997A (en) Optical measurement method and optical measurement device for measuring apparent refraction factor of rough surface of solid body
US20150109614A1 (en) Enhanced surface plasmon resonance method
KR101036455B1 (en) Ellipsometer using Half Mirror
JP2014035254A (en) Back focal plane microscopic ellipsometer
Räty et al. Inverse Abbe-method for observing small refractive index changes in liquids
JP3716305B2 (en) Internal reflection type two-dimensional imaging ellipsometer
RU166499U1 (en) DEVICE FOR MEASURING THE DISTRIBUTION OF THE INTEGRAL LIGHT SCATTERING FACTOR BY THE MIRROR SURFACE
CN110455745B (en) Method for measuring liquid refractive index dispersion and application thereof
US10641713B1 (en) Phase retardance optical scanner
US10648928B1 (en) Scattered radiation optical scanner
RU2733391C1 (en) Method of measuring refractive indices of optical materials in solid state or in form of melt

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131105