JPH01270523A - Production of quartz-based glass form with refractive index distribution - Google Patents

Production of quartz-based glass form with refractive index distribution

Info

Publication number
JPH01270523A
JPH01270523A JP9640188A JP9640188A JPH01270523A JP H01270523 A JPH01270523 A JP H01270523A JP 9640188 A JP9640188 A JP 9640188A JP 9640188 A JP9640188 A JP 9640188A JP H01270523 A JPH01270523 A JP H01270523A
Authority
JP
Japan
Prior art keywords
quartz
refractive index
gel
based glass
glass body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9640188A
Other languages
Japanese (ja)
Inventor
Shiro Konishi
史朗 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP9640188A priority Critical patent/JPH01270523A/en
Publication of JPH01270523A publication Critical patent/JPH01270523A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • C03C1/008Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route for the production of films or coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions

Abstract

PURPOSE:To obtain the title glass form with excellent optical and NA characteristics, highly resistant to environmental deterioration, by imparting a quartz-based glass form produced by gelation and sintering of a silica sol solution with a concentration distribution of a fluorine component. CONSTITUTION:Firstly, an alkoxysilane (e.g., tetraethoxysilane), ethanol and water are mutually mixed to prepare a silica sol solution. Second, this solution is gelled to form a gel, which is then immersed in a sol solution of the alkoxysilane containing a fluorine component [FSi(OC2H5)4] to form a concentration distribution of said component from the surface of the gel to its interior. Thence, the resultant gel is dried and sintered into a transparent glass form, thus obtaining the objective quartz-based glass form with refractive index distribution, which can be suitably used for e.g., rod lenses.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えばロッドレンズ等に使用される、屈折率
分布を有する石英系ガラス体の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a quartz-based glass body having a refractive index distribution, which is used, for example, in rod lenses.

[従来の技術] 屈折率分布を有するガラス体の製造法で実施されている
代表的なものには、例えばCVD法、イオン交換法、分
子スタッフィング法がある。
[Prior Art] Typical methods for manufacturing a glass body having a refractive index distribution include, for example, a CVD method, an ion exchange method, and a molecular stuffing method.

CVD法は、ガス状のガラス原料を高温加熱された石英
管中に通し、このガス状ガラス原料を高温で酸化分解又
は加水分解し、このようにして生成されたガラス微粒子
を管壁に堆積させた後、焼結を行なって透明ガラス体を
得る。この方法では、堆積されるガラス層に加える原料
組成分のうち、屈折率を大きくする材料濃度を層毎に順
次変化させることにより、焼結して得られる透明ガラス
体(例えばコア材)に屈折率分布を与えることができる
In the CVD method, a gaseous glass raw material is passed through a quartz tube heated to a high temperature, the gaseous glass raw material is oxidized or hydrolyzed at high temperature, and the glass particles thus generated are deposited on the tube wall. After that, sintering is performed to obtain a transparent glass body. In this method, among the raw material compositions added to the deposited glass layer, the concentration of the material that increases the refractive index is sequentially changed for each layer, so that the transparent glass body (for example, the core material) obtained by sintering has a refractive index. rate distribution can be given.

イオン交換法は、TΩイオンやC3イオンを含む多成分
ガラスを、予め溶融されたKNO3やNaNO3中に浸
漬し、電子分極率の大きなT、illイオンやC3イオ
ンと電子分極率の小さなにイオンやNaイオンとを拡散
によりイオン交換させて、屈折率分布を有するガラス体
を得るものである。
In the ion exchange method, a multi-component glass containing TΩ ions and C3 ions is immersed in pre-molten KNO3 or NaNO3, and T, ill ions and C3 ions, which have large electronic polarizabilities, and ions and ions, which have small electronic polarizabilities, are immersed. A glass body having a refractive index distribution is obtained by ion exchange with Na ions by diffusion.

分子スタッフィング法は、多孔質ガラスの空孔を高屈折
率を与えるドーパントで満たした後に、この多孔質ガラ
スを適当な溶媒に浸漬し、この溶媒中でドーパントをガ
ラス表面から拡散により溶出させて、多孔質ガラス中に
ドーパントの濃度分布を形成し、その後で高温での熱処
理を行なって屈折率分布の有するガラス体を形成するも
のである。
In the molecular stuffing method, the pores of porous glass are filled with a dopant that gives a high refractive index, and then the porous glass is immersed in a suitable solvent, and the dopant is eluted from the glass surface in this solvent by diffusion. A dopant concentration distribution is formed in porous glass, and then heat treatment is performed at a high temperature to form a glass body having a refractive index distribution.

[発明が解決しようとする課8] 前述したような屈折率分布を有するカラス体に求められ
るのは、第1には、光学特性が良好なこと、すなわち、
光の波長レベルからみて均質であること、ひいては、そ
の結果として、例えばレンズ材として使用する場合には
解像力か大きいこと、また、集光機能の点からすれば、
光の最大屈折率と最小屈折率との差の大きさの程度を示
すNAが大きいことである。
[Issue 8 to be solved by the invention] The glass body having the above-mentioned refractive index distribution is first required to have good optical properties, that is, to have good optical properties.
It must be homogeneous in terms of the wavelength level of light, and as a result, it must have a high resolution when used as a lens material, and from the point of view of light-gathering function,
The NA, which indicates the magnitude of the difference between the maximum refractive index and the minimum refractive index of light, is large.

更に実際に使用する面からみれば、耐環境性が大きいこ
と、例えば、使用可能な温湿度範囲が広いことが望まし
い。
Furthermore, from the point of view of actual use, it is desirable that the material has high environmental resistance, for example, a wide usable temperature and humidity range.

しかし、従来の石英系ガラス体においては、これらの要
求を全て満たすことが難しい。
However, it is difficult for conventional silica-based glass bodies to satisfy all of these requirements.

例えば、上記従来技術のうちで、CVD法は、得られる
ガラス体の光学特性は不十分であり、ロッドレンズ等の
レンズ祠として使用する場合には、解像力が不十分で画
像処理には不向きである。
For example, among the above-mentioned conventional techniques, the CVD method produces a glass body with insufficient optical properties, and when used as a lens shaft for rod lenses, the resolving power is insufficient and it is unsuitable for image processing. be.

また、イオン交換法においては、材料となるガラス体が
アルカリイオンを含む多成分ガラスであるため、融点が
低く、且つ水分にも弱いため、高温又は高湿度の環境下
では耐久性の点で劣る。
In addition, in the ion exchange method, the glass body used as the material is a multi-component glass containing alkali ions, so it has a low melting point and is sensitive to moisture, so it has poor durability in high temperature or high humidity environments. .

また、分子スタッフィング法で製造されるガラス体も出
発材料は多成分ガラスであるので、上記イオン交換法で
製造されるガラス体同様に耐環境性が劣る。
Further, since the starting material of the glass body manufactured by the molecular stuffing method is a multicomponent glass, the environmental resistance is poor like the glass body manufactured by the above-mentioned ion exchange method.

本発明は以上の点に鑑みなされたものであり、その目的
とするところは、光学特性が良好で、高NA特性をもち
、且つ耐環境性に優れた、屈折率分布を有する石英系ガ
ラス体の製造法を提供することにある。
The present invention was made in view of the above points, and its purpose is to provide a quartz-based glass body with a refractive index distribution that has good optical properties, high NA properties, and excellent environmental resistance. The purpose is to provide a manufacturing method.

[問題点を解決するための課題] 上記目的は、アルコキシシランを含むシリカシー  3
  = ル溶液をゲル化してガラス体の前身となるゲル体を形成
する工程と、前記ゲル体を弗素成分を含むアルコキシシ
ランのゾル溶液に浸漬して、該ゲル体の表面から内部に
かけて弗素成分の濃度分布を形成する工程と、弗素成分
濃度分布を有する前記ゲル体を乾燥、焼結する工程とを
経て、透明な石英系ガラス体を製造することで達成され
る。
[Tasks to solve the problems] The above purpose is to solve the problem by using silica resin containing alkoxysilane.
= A step of gelling a fluorine solution to form a gel body that will become a precursor of a glass body, and immersing the gel body in a sol solution of alkoxysilane containing a fluorine component to form a fluorine component from the surface to the inside of the gel body. This is achieved by manufacturing a transparent quartz-based glass body through a step of forming a concentration distribution and a step of drying and sintering the gel body having a fluorine component concentration distribution.

[作用] 本発明のガラス体製造法では、アルコキシシランを含む
シリカゾル溶液をゲル化し、且つ乾燥。
[Function] In the glass body manufacturing method of the present invention, a silica sol solution containing an alkoxysilane is gelled and dried.

焼結してガラス体か形成され、また、このゾルゲル法の
ガラス製造過程でガラス体の前身たるゲル体の表面から
内部にかけて弗素成分が拡散浸透する。この弗素成分は
、ゲル体の表面に多く存在し、ゲル体内部中央にゆくほ
と少ない。従って、ゲル体の内部の弗素成分の濃度分布
もこれに対応する。
A glass body is formed by sintering, and during the glass manufacturing process using the sol-gel method, a fluorine component diffuses and permeates from the surface of the gel body, which is the precursor of the glass body, to the inside. This fluorine component exists in large quantities on the surface of the gel body, and decreases toward the center of the gel body. Therefore, the concentration distribution of the fluorine component inside the gel body also corresponds to this.

この弗素成分は光の屈折率を小さくする性質を有する。This fluorine component has the property of reducing the refractive index of light.

従って、本発明の製造法によれば、ガラス体の表面はと
屈折率が小さく内部中央に至るほど屈折率の大きい連続
的に変化する屈折率分布を得−4= ることかできる。
Therefore, according to the manufacturing method of the present invention, it is possible to obtain a continuously changing refractive index distribution in which the surface of the glass body has a small refractive index and the refractive index increases toward the center of the interior.

しかして、このようなゾルゲル法で得られる石英系ガラ
ス体は、光学的に均質で良好な光学特性を得られ、しか
もアルコキシシラン系ガラスに耐熱性、耐湿性に優れた
弗素成分を拡散浸透させるため、この種石英系ガラス体
の耐環境性を向」ニさせることができる。
Therefore, the silica-based glass body obtained by such a sol-gel method is optically homogeneous and has good optical properties.Furthermore, a fluorine component with excellent heat resistance and moisture resistance is diffused into the alkoxysilane glass. Therefore, the environmental resistance of this type of quartz-based glass body can be improved.

[実施例] 以下、本発明の石英系ガラス体の具体的な製造例を説明
する。
[Example] Hereinafter, a specific manufacturing example of the quartz-based glass body of the present invention will be described.

(1)先ず、ガラス原料は、アルコキシシランを含むシ
リカゾル溶液よりなる。アルコキシシランとしては、例
えばC2H50Hの工l・キシを用い、これにシリコン
系の金属アルコキシド、例えば5t(OCzHs)aを
加える。
(1) First, the glass raw material consists of a silica sol solution containing alkoxysilane. As the alkoxysilane, for example, C2H50H is used, and a silicon-based metal alkoxide, for example, 5t(OCzHs)a is added thereto.

具体的には、Si(○C2H3)4.H2O。Specifically, Si(○C2H3)4. H2O.

C2H50Hをモル比で1=4:4になるように混合し
てシリカゾル溶液を生成する。
A silica sol solution is produced by mixing C2H50H in a molar ratio of 1=4:4.

(2)次いで、」1記トリガゾル溶液を内径14mmの
ガラス管に注ぎ、密封して室温に3日放置してゲル体を
得る。このゲル体は、5i(OC2H5)aの不十分な
加水分解及び縮合反応の結果生じたガラス網目の不完全
構造体で、水やC2H50Hを含んでいるものである。
(2) Next, pour the trigasol solution from step 1 into a glass tube with an inner diameter of 14 mm, seal it, and leave it at room temperature for 3 days to obtain a gel body. This gel body is an incomplete structure of a glass network produced as a result of insufficient hydrolysis and condensation reaction of 5i(OC2H5)a, and contains water and C2H50H.

(3)そして、このゲル体をガラス管より取り出し、次
のような弗素成分を含むアルコキシシランのゾル溶液に
浸漬する。この弗素成分を含むゾル溶液は、例えばSi (OC2H5)4.FSi (OC2H5)4゜H20
,C2H50Hをモル比で1:0.2:4:8:になる
ように混合して生成したもので、この溶液に(2)の工
程で形成されたゲル体を20時間浸漬し、弗素成分をゲ
ル体表面より内部の法に拡散により浸透させる。
(3) Then, this gel body is taken out of the glass tube and immersed in a sol solution of alkoxysilane containing the following fluorine component. The sol solution containing this fluorine component is, for example, Si(OC2H5)4. FSi (OC2H5) 4°H20
, C2H50H in a molar ratio of 1:0.2:4:8.The gel body formed in step (2) was immersed in this solution for 20 hours to remove the fluorine component. is permeated from the surface of the gel body to the inside of the gel body by diffusion.

(4)その後、このゲル体を乾燥、焼結し、直径6 m
m、長さ50InI11の棒状透明ガラス体を得た。
(4) Then, this gel body was dried and sintered to a diameter of 6 m.
A rod-shaped transparent glass body with a length of 50 InI11 was obtained.

第1図は本実施例で製造された石英系ガラス体の半径方
向のSi(シリコン)とF(弗素)の濃度分布を表わす
測定結果である。同図に示すようにSiとF成分の濃度
分布を測定したところ、F成分はガラス体の表面に多く
中央にゆくほど連続的に少なくなる。これに対してSi
成分は周辺部より中央が僅かに多い程でほとんど変わら
ない。
FIG. 1 shows measurement results showing the concentration distribution of Si (silicon) and F (fluorine) in the radial direction of the quartz-based glass body manufactured in this example. As shown in the figure, when the concentration distribution of Si and F components was measured, the F component was more abundant on the surface of the glass body and decreased continuously toward the center. On the other hand, Si
The components are almost the same, with slightly more in the center than in the periphery.

また、本実施例の石英系ガラス体の半径方法の屈折率分
布を測定したところ第2図に示すような屈折率分布が測
定された、。この屈折率分布に示すように本実施例では
石英系ガラス体の内部中央に至る程屈折率が大きく、表
面に至るほど屈折率が小さくなる。これは、弗素成分の
濃度が大きくなるほど屈折率が小さくなるためである。
Furthermore, when the refractive index distribution of the quartz-based glass body of this example was measured using the radial method, the refractive index distribution as shown in FIG. 2 was measured. As shown in this refractive index distribution, in this example, the refractive index increases toward the center of the quartz-based glass body, and decreases toward the surface. This is because the higher the concentration of the fluorine component, the lower the refractive index.

しかして本実施例によれば、ゾルゲル法で石英系ガラス
体を形成するために、光学的に均質で良好な光学的特性
が得られ、例えばロッドレンズに使用して好適な石英系
ガラス体を提供できる。しかも、アルコキシシラン系ガ
ラスに耐熱性、耐湿性に優れた弗素成分を拡散させるた
め、この種石英系ガラス体の耐環境性を向上させる効果
を有する。
According to this example, since the silica-based glass body is formed by the sol-gel method, optically homogeneous and good optical properties can be obtained, making it suitable for use in rod lenses, for example. Can be provided. Moreover, since the fluorine component having excellent heat resistance and moisture resistance is diffused into the alkoxysilane glass, it has the effect of improving the environmental resistance of this type of quartz glass body.

なお上記実施例では、アルコキシシランとじてエトキシ
を例示したが、その他にメトキシ、プロポキシ、ブトキ
シ等を用いることができる。また、弗素を含むアルコキ
シシランのゾル溶液としては、実施例の如きFS i 
 (OC2H5)3のような弗化アルコキシシランの他
に、アルコキシシランの加水分解溶液にHF、NHa 
F、H2S i Fs等のいずれか加えた溶液を用いて
もよく、或いは5iFaガスを水に吹き込んで加水分解
させた溶液を用いてもよい。
In the above embodiments, ethoxy is used as an example of the alkoxysilane, but methoxy, propoxy, butoxy, etc. can also be used. In addition, as a sol solution of alkoxysilane containing fluorine, FS i
In addition to fluorinated alkoxysilanes such as (OC2H5)3, HF and NHa are added to the hydrolyzed solution of alkoxysilane.
A solution containing either F, H2S i Fs, etc. may be used, or a solution obtained by blowing 5iFa gas into water to hydrolyze it may be used.

また、本実施例の如くき屈折率分布を有する含弗素石英
ガラス体の表面を保護するため、表面に1〜10μm程
度の厚さを有する石英層を形成することも可能である。
Further, in order to protect the surface of the fluorine-containing quartz glass body having the refractive index distribution as in this embodiment, it is also possible to form a quartz layer having a thickness of about 1 to 10 μm on the surface.

この石英層を形成する場合には、弗素の濃度分布が付与
された実施例の(3)の工程後のゲル体をシリカゾル溶
液に短時間浸漬した後、乾燥して、クラッド層付のゲル
体を形成し、これを焼結する方法と、弗素の濃度分布を
有する石英ガラス体をシリカゾル溶液に短時間浸漬して
表面にシリカゾル溶液をコーティングした後乾燥、焼結
する方法がある。
When forming this quartz layer, the gel body with the fluorine concentration distribution after step (3) of the example is immersed in a silica sol solution for a short time, and then dried to form a gel body with a cladding layer. There is a method in which a quartz glass body having a fluorine concentration distribution is immersed in a silica sol solution for a short time, the surface is coated with the silica sol solution, and then dried and sintered.

[発明の効果] 以上のように本発明によれば、シリカゾル溶液をゲル化
、焼結して製造される石英系ガラス体に弗素成分の濃度
分布を付与することにより、光学的に高品質で且つ耐環
境性に優れた、屈折率分布を有する石英系ガラス体を提
供することができる。
[Effects of the Invention] As described above, according to the present invention, by imparting a concentration distribution of a fluorine component to a quartz glass body produced by gelling and sintering a silica sol solution, a high optical quality can be achieved. Moreover, it is possible to provide a quartz-based glass body having a refractive index distribution and excellent environmental resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例たる石英系ガラス体の半径方
向のSLとFの濃度分布を示す図、第2図は上記実施例
の石英系ガラス体の半径方向の屈折率分布を示す図であ
る。 代理人  弁理士  薄 1)利 幸
FIG. 1 shows the radial concentration distribution of SL and F in a silica-based glass body according to an embodiment of the present invention, and FIG. 2 shows the radial refractive index distribution of the silica-based glass body according to the above embodiment. It is a diagram. Agent Patent Attorney Susuki 1) Toshiyuki

Claims (1)

【特許請求の範囲】[Claims] 1、アルコキシシランを含むシリカゾル溶液をゲル化し
てガラス体の前身となるゲル体を形成する工程と、前記
ゲル体を弗素成分を含むアルコキシシランのゾル溶液に
浸漬して、該ゲル体の表面から内部にかけて弗素成分の
濃度分布を形成する工程と、弗素成分濃度分布を有する
前記ゲル体を乾燥、焼結する工程とを経て、透明な石英
系ガラス体を製造することを特徴とする屈折率分布を有
する石英系ガラス体の製造方法。
1. A step of gelling a silica sol solution containing an alkoxysilane to form a gel body that will become a precursor of a glass body, and immersing the gel body in a sol solution of alkoxysilane containing a fluorine component, and removing water from the surface of the gel body. A refractive index distribution characterized in that a transparent quartz-based glass body is manufactured through a step of forming a fluorine component concentration distribution inside the body and a step of drying and sintering the gel body having the fluorine component concentration distribution. A method for manufacturing a quartz-based glass body having the following.
JP9640188A 1988-04-19 1988-04-19 Production of quartz-based glass form with refractive index distribution Pending JPH01270523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9640188A JPH01270523A (en) 1988-04-19 1988-04-19 Production of quartz-based glass form with refractive index distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9640188A JPH01270523A (en) 1988-04-19 1988-04-19 Production of quartz-based glass form with refractive index distribution

Publications (1)

Publication Number Publication Date
JPH01270523A true JPH01270523A (en) 1989-10-27

Family

ID=14163940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9640188A Pending JPH01270523A (en) 1988-04-19 1988-04-19 Production of quartz-based glass form with refractive index distribution

Country Status (1)

Country Link
JP (1) JPH01270523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132708A (en) * 2003-10-31 2005-05-26 Kwangju Inst Of Science & Technol Method for manufacturing optical fiber or optical element in which reduced metal ion and/or rare earth ion are doped, and method for manufacturing optical fiber or optical element in which reduced metal fine particle and/or rare earth element are doped

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132708A (en) * 2003-10-31 2005-05-26 Kwangju Inst Of Science & Technol Method for manufacturing optical fiber or optical element in which reduced metal ion and/or rare earth ion are doped, and method for manufacturing optical fiber or optical element in which reduced metal fine particle and/or rare earth element are doped

Similar Documents

Publication Publication Date Title
KR900002263B1 (en) Method for preparing optical-fiber preform
US5090980A (en) Method of producing glass bodies with simultaneous doping and sintering
JP3941910B2 (en) Method for producing hydrogen-resistant optical waveguide fiber and soot preform as precursor thereof
JP2003026438A (en) Method and apparatus for manufacturing optical fiber using improved oxygen stoichiometric ratio and deuterium exposure
JPS58145634A (en) Manufacture of doped glassy silica
JP2001510137A5 (en)
CA2409187C (en) Method of fabricating an optical fiber preform using mcvd and nonlinear optical fiber fabricated using the method
JPS6340744A (en) Optical fiber
JPH01270523A (en) Production of quartz-based glass form with refractive index distribution
US5198270A (en) Method of forming a fiber preform with dopants dissolved in a liquid
KR20030003018A (en) Method and apparatus for fabricating optical fiber using adjustment of oxygen stoichiometry
JPS6027615A (en) Production of optical glass
JPH01270524A (en) Production of quartz-based glass form with refractive index distribution
JP2512294B2 (en) Optical fiber and manufacturing method thereof
JP2832213B2 (en) Manufacturing method of optical glass
JP3300224B2 (en) Method for producing quartz-based doped glass
JPH0324415B2 (en)
JP3310159B2 (en) Method for producing transparent glass body for Co-doped optical attenuator
JPH0244031A (en) Production of nonlinear optical glass
JP3067860B2 (en) How to make a silica-based optical waveguide
JP2002047031A (en) Preform coated with alumina and/or silica and optical fiber
JPH0516376B2 (en)
JPH02204335A (en) Production of quartz glass body having refractive-index distribution
JP2766995B2 (en) Manufacturing method of optical fiber preform
JPS6136130A (en) Manufacture of preform for polarization-keeping optical fiber