JPH01268068A - Junction type field-effect transistor and video camera using same - Google Patents

Junction type field-effect transistor and video camera using same

Info

Publication number
JPH01268068A
JPH01268068A JP63095526A JP9552688A JPH01268068A JP H01268068 A JPH01268068 A JP H01268068A JP 63095526 A JP63095526 A JP 63095526A JP 9552688 A JP9552688 A JP 9552688A JP H01268068 A JPH01268068 A JP H01268068A
Authority
JP
Japan
Prior art keywords
region
source
effect transistor
gate
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63095526A
Other languages
Japanese (ja)
Inventor
Junichiro Kagami
鏡 潤一郎
Takeaki Okabe
岡部 健明
Kazumichi Sakamoto
坂本 和道
Kenichi Sato
賢一 佐藤
Yuzuru Fujita
譲 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63095526A priority Critical patent/JPH01268068A/en
Publication of JPH01268068A publication Critical patent/JPH01268068A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a junction type field-effect transistor characterized by low noises, high resistance against electrostatic breakdown, high performance and high reliability, by forming impurity regions whose concentration is higher than that in a conductive channel region in a partial or whole region in the vicinity directly beneath a source region or a drain region. CONSTITUTION:In a junction type field effect transistor, a source region 9, a drain region 10 and a surface gate region 4 are provided at the surface of a semiconductor layer 2, and semiconductor substrates 1 and 6 are used as substrate gates. In this transistor, impurity regions 7 whose concentration is higher than that of a conductive channel region 5 are formed in the partial or entire region in the vicinity directly beneath the source region 9 or the drain region 10. For example, the N-type epitaxial layer 2 is formed on the P<+> type Si substrate 1 through the P<-> layer 6. The P<+> region 4 is formed at a part of the surface of the epitaxial layer 2 surrounded by a P<+> isolation layer 3 and made to be a surface gate. The high concentration N<+> regions 9 and 10 for a source and a drain contact are formed with said surface gate in between. The N<+> high concentration regions 4 are formed at a part of the P<->layer 6 which is to become a substrate gate region directly; beneath the N<+> regions 9 and 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビデオカメラの撮像素子のように出力容量の
小さな信号源からの信号を増幅するのに好適な低雑音で
しかも静電破壊強度に優れた接合形電界効果トランジス
タおよびそれを用いたビデオカメラに関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides low noise and electrostatic breakdown strength suitable for amplifying signals from a signal source with a small output capacity, such as an image sensor of a video camera. The present invention relates to a junction field effect transistor with excellent properties and a video camera using the same.

〔従来の技術〕[Conventional technology]

従来の装置は、特公昭62−28594号に記載のよう
にソース、ドレインコンタクトのための高濃度のソース
領域およびドレイン領域2基板ゲート領域の間は導電チ
ャネル領域と同一濃度層になっていた。
In conventional devices, as described in Japanese Patent Publication No. 62-28594, a layer of the same concentration as the conductive channel region is formed between the highly doped source region and drain region 2 and the substrate gate region for source and drain contacts.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は基板ゲートとソースあるいはドレイン間
耐圧を表面ゲートとソースあるいはドレイン間耐圧より
低くする点について配慮されておらず、相互コンダクタ
ンス(gm)を大きくするために表面ゲート長を細くし
たり、入力容量を小さくするために表面ゲート領域と高
濃度ソース領域あるいは高濃度ドレイン領域との距離を
小さくした場合には、静電気等の放電によって表面ゲー
ト領域が破壊されやすいという問題があった。
The above-mentioned conventional technology does not consider making the breakdown voltage between the substrate gate and source or drain lower than the breakdown voltage between the surface gate and source or drain. When the distance between the surface gate region and the highly doped source region or the heavily doped drain region is reduced in order to reduce the input capacitance, there is a problem in that the surface gate region is easily destroyed by discharge such as static electricity.

本発明の目的は、低雑音でしかも静電破壊にも強い高性
能で高信頼度の接合形電界効果トランジスタを提供する
ことにある。
An object of the present invention is to provide a high-performance, highly reliable junction field effect transistor that has low noise and is resistant to electrostatic damage.

更に他の目的は、高性能で高信頼度の接合形電界効果ト
ランジスタを用いて、高性能ビデオカメラ装置を提供す
ることにある。
Still another object is to provide a high performance video camera device using high performance and highly reliable junction field effect transistors.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、オーミックコンタクトのために導電チャネ
ル領域より高濃度にしているソース領域あるいはドレイ
ン領域直下付近の一部または全部の領域に、導電チャネ
ル領域あるいは基板ゲートより高濃度の領域を形成する
ことにより達成される。
The above purpose is achieved by forming a region with a higher concentration than the conductive channel region or substrate gate in a part or all of the region directly under the source or drain region, which has a higher concentration than the conductive channel region for ohmic contact. achieved.

〔作用〕[Effect]

高濃度のソース領域あるいはドレイン領域の直下付近の
一部領域または全部の領域に形成された高濃度領域は、
基板ゲート領域とオーミックコンタクトのための高濃度
のソース領域あるいはドレイン領域間の距離を表面ゲー
ト領域とソース領域あるいはドレイン領域間の距離を小
さくしたように作用する。その結果、基板ゲートとソー
ス−あるいはドレイン間耐圧が表面ゲートとソースある
いはドレイン間耐圧より低くなるので、静電気の放電等
によるゲートのブレークダウンは表面より深くしかも面
積の大きな基板ゲート側に起り、表面領域に発生する結
晶欠陥や微細な表面ゲート領域への電流集中による熱破
壊を防止することができる。〔実施例〕 以下、本発明の一実施例を第1図により説明する。第1
図(a)は表面の一部および基板をゲートとして使うN
チャネル接合形電界効果トランジスタ(以下J−FET
と称する)の平面パターンの概略図であり、(b)図は
A−A’線の断面構造図である。このJ−FETはp+
型Si基板1上にP′″層6を介してエピタキシャルN
層2を形成し、アイソレーションP+Wj3で囲まれた
N型エピタキシャルMI2の表面の一部にP中領域4を
形成して表面ゲートとし、この表面ゲートを挟むように
ソースおよびドレインコンタクトのための高濃度のN十
領域9,10を形成し、さらにN十領域9,10の直下
付近の基板ゲート領域となるP″′′層6部にN中高濃
度領域7を形成した構造を有している。
A high concentration region formed in a part or all of the region immediately below the high concentration source region or drain region is
The distance between the substrate gate region and the highly doped source or drain region for ohmic contact is reduced to the distance between the surface gate region and the source or drain region. As a result, the breakdown voltage between the substrate gate and the source or drain becomes lower than the breakdown voltage between the surface gate and the source or drain, so gate breakdown due to electrostatic discharge occurs deeper than the surface and on the substrate gate side, which has a larger area. It is possible to prevent thermal damage caused by crystal defects occurring in the region and current concentration in the fine surface gate region. [Example] Hereinafter, an example of the present invention will be described with reference to FIG. 1st
Figure (a) shows N using a part of the surface and the substrate as a gate.
Channel junction field effect transistor (hereinafter referred to as J-FET)
FIG. 3B is a schematic diagram of a planar pattern of FIG. This J-FET is p+
Epitaxial N layer is formed on the type Si substrate 1 through the P′″ layer 6.
A layer 2 is formed, and a P middle region 4 is formed on a part of the surface of the N-type epitaxial MI2 surrounded by the isolation P+Wj3 to serve as a surface gate. It has a structure in which high concentration N regions 9 and 10 are formed, and a medium high concentration region 7 of N is formed in a portion of the P'''' layer 6 which becomes the substrate gate region immediately below the N ten regions 9 and 10. .

第2図(a)〜(d)を用いて第1図の製造方法を説明
する。
The manufacturing method shown in FIG. 1 will be explained using FIGS. 2(a) to 2(d).

(a)高濃度にB(ホウ素)をドープ(不純物濃度N 
: 1019ato+ms /cj) LlたP十型S
i基板1の上に低濃度のB(ホウ素)ドープ(N:10
”atoIls /rj) P−型Si層6を数μm程
度の厚さにエピタキシャル成長させる。この後1表面の
酸化膜8の一部をホトエツチングで除去し、これをマス
クとしてSb(アンチモン)をP″″″層6部に拡散し
、N中高濃度領域7(N:10!9aton+s /−
) ヲ形成スル。
(a) Doped with B (boron) at a high concentration (impurity concentration N
: 1019ato+ms/cj) Llta P 10 type S
A low concentration of B (boron) doped (N: 10
"atoIls/rj) A P-type Si layer 6 is epitaxially grown to a thickness of about several μm. After this, a part of the oxide film 8 on the first surface is removed by photo-etching, and using this as a mask, Sb (antimony) is deposited on P". ``'' diffuses into layer 6, N medium high concentration region 7 (N: 10!9aton+s/-
) wo formation.

(b)酸化II!I8を除去し、N型Si層2 (N 
: 101017ato /aJ)を約1μmの厚さに
エピタキシャル成長により形成させる。このあと1M化
膜を形成し、ホトエツチング後、これをマスクとしてB
イオンを深く打込み、アイソレーションP土層3を形成
する。
(b) Oxidation II! I8 is removed and N-type Si layer 2 (N
: 101017ato/aJ) is formed to a thickness of about 1 μm by epitaxial growth. After that, a 1M film was formed, and after photoetching, B was used as a mask.
Ions are deeply implanted to form an isolation P soil layer 3.

(C)アイソレーションP土層3に囲まれたN型Si層
2の表面にマスク拡散(又はイオン打込み)によりP十
領域(N : 10 ””atoms / cd)4を
形成してこれを表面ゲートとする。この表面ゲートは第
1図(a)に示すようにアイソレ−ジョンP+層3に接
続し、p+si型基板1と、電気的に接続する0次に別
マスク拡散によりN÷高濃度領域7上のN層2の表面に
ソースおよびドレインコンタクトのためのN中領域9゜
10を形成する。
(C) A P region (N: 10"" atoms/cd) 4 is formed by mask diffusion (or ion implantation) on the surface of the N-type Si layer 2 surrounded by the isolation P soil layer 3, and this is formed on the surface. Gate. This surface gate is connected to the isolation P+ layer 3 as shown in FIG. N medium regions 9.degree. 10 for source and drain contacts are formed on the surface of the N layer 2.

図示されないがこの後、表面にパシベーション膜を形成
し、コンタクトホトエッチを行ない。
Although not shown, a passivation film is then formed on the surface and contact photoetching is performed.

AQ蒸着後パターニングしてソースおよびドレイン電極
を形成する。
After AQ deposition, patterning is performed to form source and drain electrodes.

このときのソースのN中領域9表面からの濃度分布を第
2図(d)に示す。
The concentration distribution of the source from the surface of the N medium region 9 at this time is shown in FIG. 2(d).

ソースN十領域9直下に形成したN+高濃度領域7はチ
ャネル部5のN層2より高濃度になっている。
The N+ high concentration region 7 formed directly under the source N1 region 9 has a higher concentration than the N layer 2 of the channel portion 5.

このようなJ−FET構造においては、P−型Si層6
とN中高濃度領域7による接合のアバランシェブレーク
ダウン(なだれ降伏)電圧は1表面ゲートのP中領域4
とN[2による接合のアバランシニブレークダウン電圧
より低くなり、ゲート、ソース間に高電圧が印加された
場合には、基板ゲート側でブレークダウンする。このた
め微細な表面ゲート(ゲート長は約1μm程度)への電
流集中が防止でき、また界面に発生する結晶欠陥の影響
を受けないことから安定なブレークダウン特性を示し、
表面ゲートでブレークダウンさせる場合に比べ破壊強度
を強くできる。
In such a J-FET structure, the P-type Si layer 6
The avalanche breakdown voltage of the junction due to the N medium high concentration region 7 and the P medium concentration region 4 of the surface gate is
and N[2, and when a high voltage is applied between the gate and the source, breakdown occurs on the substrate gate side. This prevents current concentration on the fine surface gate (gate length is about 1 μm), and exhibits stable breakdown characteristics because it is not affected by crystal defects that occur at the interface.
The breaking strength can be increased compared to the case of breaking down with a surface gate.

なお、第1図(b)に示したP−層6は必ずしも明確に
形成する必要は無<、P+Si基板1からのN層2への
わき上りによる低Na度層としてもよい。ただし、この
場合N層2の厚さはP+Si基板からのわき上り量を考
慮して決める。またN中高濃度領域はソースN+領域お
よびドレインN十領域形成用拡散窓を利用し、イオン注
入(不純物ニリン、ドーズ量: 3 X 10 ”Ql
−”、注入エネルギー:800KeV)により形成して
もよい。
Note that the P- layer 6 shown in FIG. 1(b) does not necessarily need to be clearly formed; it may be a low-Na layer formed by rising from the P+Si substrate 1 to the N layer 2. However, in this case, the thickness of the N layer 2 is determined in consideration of the amount of rise from the P+Si substrate. In addition, the N medium high concentration region is ion-implanted (impurity Nilin, dose: 3×10”Ql) using a diffusion window for forming the source N+ region and the drain N+ region.
-", implantation energy: 800 KeV).

第3図は本発明の他の実施例を示す、このl子はソース
のN中領域9あるいはドレインN中領域10が基板ゲー
ト領域のP−層6に到達した構造を有しており、第1図
に示した構造と同等の効果をもたらすことができる。
FIG. 3 shows another embodiment of the present invention. This L element has a structure in which the source N medium region 9 or the drain N medium region 10 reaches the P- layer 6 of the substrate gate region. The same effect as the structure shown in FIG. 1 can be brought about.

本構造の深いソースN中領域9およびドレインN中領域
10は例えば次のように形成される。
The deep source N medium region 9 and drain N medium region 10 of this structure are formed, for example, as follows.

酸化膜(約1μm)とホトレジスト膜(約2μm)をマ
スクとして、高濃度のソースN中領域9あるいはドレイ
ンN十領域10形成用窓よりP(リン)ヲ)’−X量3
 X 1018am−”、 注入Z*ル#−550Ke
Vでイオン注入し1表面から約0.7μmの深さにN中
高濃度領域を形成する。この後、ソースおよびドレイン
コンタクトのためのN中領域9゜10を拡散により形成
し、この拡散時の熱処理工程によりイオン注入により形
成したN中高濃度領域7とソース、ドレインのN中領域
9,10とを接触させる。
Using an oxide film (approximately 1 μm) and a photoresist film (approximately 2 μm) as masks, P (phosphorous) wo)'-X amount 3 is deposited through a window for forming a high concentration source N middle region 9 or drain N region 10.
X 1018am-”, injection Z*le #-550Ke
Ion implantation is performed with V to form a high concentration region in N at a depth of approximately 0.7 μm from one surface. After this, N medium regions 9 and 10 for source and drain contacts are formed by diffusion, and in the heat treatment process during this diffusion, N medium high concentration regions 7 and source and drain N medium regions 9 and 10 formed by ion implantation are formed. bring into contact with.

第4図は本発明の他の実施例を示し、第1図に示したN
中高濃度領域7の代りにP中高濃度領域12を設けた構
造としている0本構造のP中高濃度領域12は例えば酸
化膜(約1μm)とホトレジスト膜(約2μm)をマス
クとして、高濃度のソースN中領域9およびドレインN
十領域10形成用窓より、B (ホウ素)をドーズ量3
X10”■−2.注入エネルギー300KeVの条件で
イオン注入することによって形成される。これにより表
面から約1μmの深さにP÷高濃度領域を形成すること
ができる0本構造によれば、導電チャネル領域の幅(表
面ゲート領域4を基板ゲート領域2の間)を変えること
なく、基板ゲート領域2とソースN中領域9までの距離
を表面ゲート領域4とソースN中領域9までの距離より
小さくできるため、ゲートに高電圧が印加された場合に
は基板ゲート領域2側でブレークダウンするため破壊さ
れにくくなる。
FIG. 4 shows another embodiment of the present invention, in which the N shown in FIG.
In place of the medium and high concentration region 7, a P medium and high concentration region 12 is provided.The zero-line P medium and high concentration region 12 is formed by using, for example, an oxide film (approximately 1 μm) and a photoresist film (approximately 2 μm) as a mask to form a high concentration source. N medium region 9 and drain N
B (boron) is added at a dose of 3 from the window for forming region 10.
X10"■-2. It is formed by ion implantation under the conditions of implantation energy of 300 KeV. According to the 0-wire structure, a P ÷ high concentration region can be formed at a depth of approximately 1 μm from the surface. Without changing the width of the channel region (between the front gate region 4 and the substrate gate region 2), the distance between the substrate gate region 2 and the source N middle region 9 can be made smaller than the distance between the front gate region 4 and the source N middle region 9. Since it can be made small, when a high voltage is applied to the gate, it breaks down on the substrate gate region 2 side, making it difficult to be destroyed.

第5図は本発明のさらに他の実施例を示し、第4図の実
施例で示したP中高濃度領域の一方の端が基板ゲート領
域2に接し、他の一方の端がソースN中領域9あるいは
ドレインN中領域に接した構造を有している。本発明に
よれば、基板ゲートとソース間耐圧は第4図に示した構
造より低くできる利点がある。
FIG. 5 shows still another embodiment of the present invention, in which one end of the P middle high concentration region shown in the embodiment of FIG. 4 is in contact with the substrate gate region 2, and the other end is in contact with the source N middle region. 9 or has a structure in contact with the middle region of the drain N. According to the present invention, there is an advantage that the breakdown voltage between the substrate gate and the source can be lower than that of the structure shown in FIG.

なお、上記実施例ではNチャネルJ−FETについて説
明したが、これはPチャネルJ−FETでも良く、また
本発明は半導体集積回路装置のJ FETにも適用でき
、さらには1表面ゲート形状はストライプ形状に限らず
メツシュ形状やその逆の構造のオーバレイ形状でもよく
、いずれの場合も同様の効果が得られる。
In the above embodiment, an N-channel J-FET was explained, but it may be a P-channel J-FET, and the present invention can also be applied to a J-FET of a semiconductor integrated circuit device. The shape is not limited to a mesh shape or an overlay shape having the opposite structure, and the same effect can be obtained in either case.

また上述の如くして得られた本発明の接合形電界効果ト
ランジスタは、ビデオカメラの撮像素子のように出力容
量の小さな信号源からの信号を増幅するのに好適であり
、これを用いて高性能で高信頼度のビデオカメラ装置を
構成することができた。
Further, the junction field effect transistor of the present invention obtained as described above is suitable for amplifying a signal from a signal source with a small output capacity, such as an image sensor of a video camera, and can be used to We were able to construct a video camera device with high performance and high reliability.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高gm化、低入力容量化のために表面
ゲート長を1μm以下に微細化し、かつ表面ゲート領域
とソースコンタクト領域間距離を縮めてもゲートの静電
性破壊強度を高くできるので高性能で高信頼度のJ−F
ETを容易に実現でき、製造歩留りの向上、実装時の取
扱いの容易さ。
According to the present invention, the surface gate length is miniaturized to 1 μm or less in order to achieve high gm and low input capacitance, and even if the distance between the surface gate region and the source contact region is shortened, the electrostatic breakdown strength of the gate is increased. High performance and high reliability J-F
Easily realizes ET, improves manufacturing yield, and eases handling during mounting.

機器本体の信頼度の向上等の効果がある。This has the effect of improving the reliability of the device itself.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例のシリコンNチャネル
接合形電界効果トランジスタの概略平面図、同図(b)
は上記平面図のA−A’線断面構造図、第2図(a)〜
(d)は本発明の一実施例を説明するための工程断面図
、第3〜5図は本発明の他の実施例のシリコンNチャネ
ル接合形電界効果トランジスタの断面構造図である。 1・・・P+Si基板、2・・・N層、3・・・アイソ
レーション領域、4・・・P中領域、5・・・チャネル
領域、6・・・P−層、7・・・N中高濃度領域、8・
・・酸化膜、9・・・ソースN十領域、10・・・ドレ
インN中領域、11・・・(b) 4−・P?夕@E’;、         ?、、ソー
ズNj4tべCb) /l・しヅスト膜 /2− Fr島1度全社ぺ 第 2  口 (d−) 弗 3 口 2    /  6 第 4 旧 第 5 昭
FIG. 1(a) is a schematic plan view of a silicon N-channel junction field effect transistor according to an embodiment of the present invention, and FIG. 1(b) is a schematic plan view of a silicon N-channel junction field effect transistor according to an embodiment of the present invention.
is a cross-sectional structural view taken along the line A-A' of the above plan view, and Fig. 2 (a) ~
(d) is a process cross-sectional view for explaining one embodiment of the present invention, and FIGS. 3 to 5 are cross-sectional structural diagrams of silicon N-channel junction field effect transistors according to other embodiments of the present invention. DESCRIPTION OF SYMBOLS 1... P+Si substrate, 2... N layer, 3... Isolation region, 4... P middle region, 5... Channel region, 6... P- layer, 7... N Medium-high concentration region, 8.
...Oxide film, 9...Source N10 region, 10...Drain N middle region, 11...(b) 4-.P? Evening @E';, ? ,, Swords Nj4tbeCb) /l・Sidust film/2- Fr Island 1 degree company-wide Pe 2nd mouth (d-) 弗 3 mouth 2/6 4th former 5th Showa

Claims (1)

【特許請求の範囲】 1、半導体層表面にソース領域、ドレイン領域、表面ゲ
ート領域を有し、半導体基板を基板ゲートとして使用す
る接合形電界効果トランジスタにおいて、ソース領域あ
るいはドレイン領域直下付近の一部領域または全部の領
域に、導電チャネル領域よりも高濃度の不純物領域を形
成したことを特徴とする接合形電界効果トランジスタ。 2、ソース領域、あるいはドレイン領域直下の一部領域
あるいは全部の領域に、基板ゲートよりも高濃度の不純
物領域を形成したことを特徴とする接合形電界効果トラ
ンジスタ。 3、導電チャネル領域より高濃度のソース領域またはド
レイン領域が基板ゲート領域に到達していることを特徴
とする接合形電界効果トランジスタ。 4、高濃度のソース領域あるいはドレイン領域の直下付
近の一部または全部の領域に形成された基板ゲート領域
と同導電形の高濃度領域の一方の端が基板ゲート領域に
達し、かつもう一方の端が基板ゲート領域と反対導電形
の導電チャネル領域より高濃度のソース領域またはドレ
イン領域に達していることを特徴とする接合形電界効果
トランジスタ。 5、特許請求の範囲第1項乃至第4項に記載の接合形電
界効果トランジスタを使用することを特徴とするビデオ
カメラ。
[Claims] 1. In a junction field effect transistor that has a source region, a drain region, and a surface gate region on the surface of a semiconductor layer and uses a semiconductor substrate as a substrate gate, a part of the area immediately below the source region or the drain region. A junction field effect transistor characterized in that an impurity region having a higher concentration than a conductive channel region is formed in one region or the entire region. 2. A junction field effect transistor characterized in that an impurity region having a higher concentration than the substrate gate is formed in a part or all of the region immediately below the source region or the drain region. 3. A junction field effect transistor characterized in that a source region or a drain region having a higher concentration than a conductive channel region reaches a substrate gate region. 4. One end of a highly doped region of the same conductivity type as the substrate gate region formed in a part or all of the region immediately below the highly doped source or drain region reaches the substrate gate region, and the other end reaches the substrate gate region. A junction field effect transistor characterized in that an end reaches a source region or a drain region that is more highly doped than a conductive channel region of the opposite conductivity type as a substrate gate region. 5. A video camera characterized by using the junction field effect transistor according to claims 1 to 4.
JP63095526A 1988-04-20 1988-04-20 Junction type field-effect transistor and video camera using same Pending JPH01268068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63095526A JPH01268068A (en) 1988-04-20 1988-04-20 Junction type field-effect transistor and video camera using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095526A JPH01268068A (en) 1988-04-20 1988-04-20 Junction type field-effect transistor and video camera using same

Publications (1)

Publication Number Publication Date
JPH01268068A true JPH01268068A (en) 1989-10-25

Family

ID=14139997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095526A Pending JPH01268068A (en) 1988-04-20 1988-04-20 Junction type field-effect transistor and video camera using same

Country Status (1)

Country Link
JP (1) JPH01268068A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059979A (en) * 2007-09-03 2009-03-19 Shindengen Electric Mfg Co Ltd Static induction transistor
WO2011145253A1 (en) * 2010-05-17 2011-11-24 パナソニック株式会社 Junction field effect transistor, method for manufacturing same, and analog circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059979A (en) * 2007-09-03 2009-03-19 Shindengen Electric Mfg Co Ltd Static induction transistor
WO2011145253A1 (en) * 2010-05-17 2011-11-24 パナソニック株式会社 Junction field effect transistor, method for manufacturing same, and analog circuit
JP2011243708A (en) * 2010-05-17 2011-12-01 Panasonic Corp Junction field effect transistor, method of manufacturing the same, and analog circuit
US9269830B2 (en) 2010-05-17 2016-02-23 Panasonic Intellectual Property Management Co., Ltd. Junction field effect transistor and analog circuit

Similar Documents

Publication Publication Date Title
TWI414023B (en) Method for making a semiconductor device
JP3122403B2 (en) Semiconductor device and manufacturing method thereof
JP2997377B2 (en) Semiconductor device and manufacturing method thereof
JPH01268068A (en) Junction type field-effect transistor and video camera using same
US6727149B1 (en) Method of making a hybrid SOI device that suppresses floating body effects
JPH01120033A (en) Semiconductor device
JPS5830742B2 (en) Junction field effect semiconductor device
JPH06132489A (en) Mos transistor, integrated circuit employing same, and manufacture of mos transistor
KR100521994B1 (en) Trench gate type MOS transistor and its manufacturing method
KR100602128B1 (en) Method for fabricating high voltage transistor
KR100260366B1 (en) Method for fabricating semiconductor device
JPS61101082A (en) Manufacture of semiconductor device
KR940009359B1 (en) Bicmos and manufacturing metod thereof
JPS61156830A (en) Semiconductor device and manufacture thereof
JPS6395664A (en) Semiconductor device and manufacture thereof
KR930001290B1 (en) Mos transistor with high junction voltage and its manufacturing method
KR100571423B1 (en) Bipolar transistor in bicmos device and method of fabricating the same
KR940005726B1 (en) Npn transistor of bicmos device and making method thereof
JPH08340108A (en) Mos field effect transistor and manufacture thereof
JPS61210672A (en) Semiconductor device
JPH03104283A (en) Mos type semiconductor device
JPH0321074A (en) Semiconductor integrated circuit device
JPS6254959A (en) Manufacture of mis semiconductor device
JPS6386569A (en) Semiconductor device and manufacture thereof
JPS59181612A (en) Semiconductor device and manufacture thereof