JPH01266739A - Dicing line structure for separation of semiconductor chip - Google Patents

Dicing line structure for separation of semiconductor chip

Info

Publication number
JPH01266739A
JPH01266739A JP63096275A JP9627588A JPH01266739A JP H01266739 A JPH01266739 A JP H01266739A JP 63096275 A JP63096275 A JP 63096275A JP 9627588 A JP9627588 A JP 9627588A JP H01266739 A JPH01266739 A JP H01266739A
Authority
JP
Japan
Prior art keywords
chip
bank
dicing
area
dicing line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63096275A
Other languages
Japanese (ja)
Inventor
Ryoji Takahashi
良治 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63096275A priority Critical patent/JPH01266739A/en
Publication of JPH01266739A publication Critical patent/JPH01266739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dicing (AREA)

Abstract

PURPOSE:To prevent any crack produced upon dicing and die-bonding from extending to an active region by providing an uppermost stage bank on the outer circumference of the active region and providing a second stage bank on the outer circumference of the resulting uppermost stage bank. CONSTITUTION:An uppermost stage bank 9 located higher than a surface where an active region is located is provided on a device formation region, particularly at least on the outer circumference of said surface of the active region at the end of the same. Around the outer circumference of the uppermost stage bank a bank 10 lower than said bank is formed, and a dicing surface 5b to be cut actually is formed at a further lower stage. Accordingly, when a chip 13 is attracted by an attraction collet 12, the attraction collet 12 and the chip 13 make contact with the end of the uppermost stage bank 9 and with the end of an outermost bank 10 of the second stage bank, and the collet 12 does not not abut the cut end portion in which chipping 8 caused by dicing. Thus, any crack can be prevented from developing further without transmitting external influences produced upon the dicing and die-bonding to the active region.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体チップの分離切離し用のダイシングラ
イン構造に関し、さらに詳しくは半導体ウェハ上に並設
して形成される複数の半導体チップを個々の半導体チッ
プに切断して分離するためのダイシングライン構造に係
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a dicing line structure for separating and cutting semiconductor chips, and more specifically, for separating a plurality of semiconductor chips formed in parallel on a semiconductor wafer into individual dicing lines. This relates to a dicing line structure for cutting and separating semiconductor chips.

〔従来の技術〕[Conventional technology]

第7図は従来の半導体チップの分離切離し用のダイシン
グライン構造の断面図、28図は第1図のダイシングラ
イン端部の拡大した部分断面図、第9図は分離されたチ
ップの斜視図、第10図はダイポンド時吸着コレットで
吸着された断面図を示す。@7図および第8図において
、(llは半導体基板(半導体ウェハ) 、[21は同
半導体基板fi+の表面所定位置に形成された酸化層、
(3)は素子の一部を構成する拡散領域、(<1は同じ
くガラスコートなどの絶縁層とかアルミ導体層等のいわ
ゆる積層構造を省略して示す積層構造部で、これらによ
って能動@域を含んだ素子形成領域を構成する。(5b
)はダイシングライン面、(5a)Uウニハエ程の中間
処理で生じる不要合金層、(6a)、(6b) vlダ
イシングライン面(5b)の両端にあって、能動領域の
配置面、つまり具体的には積層構造部(4)に接する境
界線、(8)は切刃によって切断される時の、または切
断された時に生ずる両チップ端側での欠け、いわゆるチ
ッピングである。この従来例において、切刃による切断
で生じた両チップ端部側でのチッピング+81 +81
はダイシングライン境界線(6a)および(6b)が酸
化層(2)、拡散領域(3)とか殊に積層構造部(4)
と同一面で接していることから、このチッピング+81
 +81が大きくなると、そのチッピング端が酸化層(
2)とか積層構造部(4)に達してクラックなどを発生
し易<、シかもその後の組み立て工程で、例えば第10
図に示すダイポンド時の吸着コレットでチッピングを生
じているチップエツジと接してチップを吸着する時、も
ともと切断時に生じていたチッピングや微小クラックが
チップ能動領域の内部にまで進展する虞れがあるため、
ダイシングライン面(5b)の幅寸法は十分な余裕をみ
て、これを可能な限りに幅広くとるようにしており、そ
の結果として必然的にウェハの有効面積が狭められ、ま
た吸着コレットでは真空で引いているため、吸着によっ
て生じたチップの欠は全吸上げ、チップ表面に落したり
、吸着コレットに喰い込み、遂に吸着したチップにダメ
ージを与えたり、真空ノズルをつまらせるなどの課mt
有する。
FIG. 7 is a sectional view of a conventional dicing line structure for separating semiconductor chips, FIG. 28 is an enlarged partial sectional view of the end of the dicing line in FIG. 1, and FIG. 9 is a perspective view of separated chips. FIG. 10 shows a cross-sectional view of the die-pounded material which is adsorbed by the adsorption collet. @ In Figures 7 and 8, (ll is a semiconductor substrate (semiconductor wafer), [21 is an oxide layer formed at a predetermined position on the surface of the semiconductor substrate fi+,
(3) is a diffusion region that constitutes a part of the element; constitute an element formation region including (5b
) is the dicing line surface, (5a) is an unnecessary alloy layer generated in the intermediate processing of U sea urchin fly, (6a), (6b) is located at both ends of the vl dicing line surface (5b), and is the active area arrangement surface, that is, the concrete The boundary line (8) is in contact with the laminated structure (4), and the chip (8) is a so-called chipping, which occurs at both ends of the chip when it is cut by a cutting blade or when it is cut. In this conventional example, chipping on both chip end sides caused by cutting by the cutting blade +81 +81
The dicing line boundaries (6a) and (6b) are the oxide layer (2), the diffusion region (3), and especially the laminated structure part (4).
Since it is in contact with the same surface, this chipping +81
When +81 becomes large, the chipping edge becomes an oxide layer (
2) or the laminated structure part (4), which may easily cause cracks, etc. In the subsequent assembly process, for example, the 10th
When the suction collet shown in the figure comes into contact with a chipping chip edge and suctions the chip, there is a risk that the chipping and microcracks that originally occurred during cutting may progress to the inside of the chip active area.
The width of the dicing line surface (5b) is designed to be as wide as possible with sufficient margin, and as a result, the effective area of the wafer is inevitably narrowed. Therefore, chip chips caused by suction can be completely sucked up, fall onto the chip surface, or be bitten into the suction collet, causing damage to the suctioned chip or clogging the vacuum nozzle.
have

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように従来のウェハのダイシングライン構造はダイ
シングライン面が能動領域積層構造部と同一平面に形成
されている之めに、切刃によるダイシング時のチッピン
グに伴なう能動領域積層構造部へのクラックの進展を阻
止できないこと、またその後のグイポンド工程において
チップを吸着する時、チッピングを生じているための欠
けが生じたり、微小なりラックを生じている部分をつか
むため、新たにチップの欠けを生じたり、クラックが能
動領域へ進展するのを阻止できないなどの課題があった
In this way, in the conventional wafer dicing line structure, the dicing line surface is formed on the same plane as the active area stacked structure, so the active area stacked structure is susceptible to chipping caused by the cutting blade during dicing. The development of cracks cannot be prevented, and when chips are adsorbed in the subsequent Guipon process, chips may occur due to chipping, or new chip chips may be created to grasp small parts where racks are occurring. There have been problems such as the inability to prevent cracks from forming or propagating into the active area.

この発明は従来のこのような課題を改善するためになさ
れたもので、その目的とするところはダイシング時ブレ
ードにより発生する熱や切断端に生じる微小クラック等
のダイシング時のチッピングに伴なう能動領域積層構造
部へのクラックの進展を効果的に阻止すると共に、後工
程のダイポンド時に吸着によるチップエツジのクラック
が能動領域に進展するのを阻止できるようにした半導体
チップの分離切離し用のダイシングライン構造を提供す
るものである。
This invention was made in order to improve these conventional problems, and its purpose is to reduce the heat generated by the blade during dicing, the micro cracks that occur at the cut end, and other active factors associated with chipping during dicing. A dicing line structure for separating semiconductor chips that effectively prevents the propagation of cracks to the area stacked structure and also prevents cracks at the chip edge caused by adsorption during die pounding in the subsequent process from propagating to the active area. It provides:

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体チップの分離切離し用のダイシン
グライン構造は素子形成領域、特に少なくとも能動領域
の配置面端部外周に能動領域配置面より高い最上段部機
を設け、その堤の外周にそれより低い段の堤で囲むと共
に、実際に切断するダイシング面はさらに低い段に形成
することにより、吸着コレットでチップを吸着した時吸
着コレットとチップは最上段堤の端部と、2段目の最外
周堤の端部に接し、ダイシングによって生じたチッピン
グを生じている切断端部にはコレットが当らないように
したものである。
The dicing line structure for separating and cutting out semiconductor chips according to the present invention is provided with a top stage machine higher than the active region arrangement surface on the outer periphery of the element forming region, especially at least the end of the active region arrangement surface, and on the outer periphery of the embankment. By surrounding the chip with a lower stage embankment and by forming the dicing surface that is actually cut at an even lower stage, when the adsorption collet adsorbs the chip, the adsorption collet and the chip are connected to the end of the uppermost stage embankment and the top of the second stage. The collet is designed to prevent the collet from hitting the cut end that is in contact with the edge of the outer peripheral embankment and has chipping caused by dicing.

〔作用〕[Effect]

この発明のダイシングライン構造は少なくとも能動領域
の外周部に最上段堤を設け、勾配をもった吸着コレット
でチップを吸着する時、チップと吸着コレットは最初に
この最上段堤の外周部に当ることで、能動領域には接触
しないため能動領域にダメージを与えることがなく、ま
たチップの傾きがあった場合、最外周に設けた2段目の
堤の外周部と接触するため、吸着コレットはダイシング
によって生じたチッピングが生じた部分とは接触しない
ためクラックの進展を阻止できる。
In the dicing line structure of the present invention, a top bank is provided at least on the outer periphery of the active area, and when a chip is sucked by a suction collet with a slope, the chips and the suction collet first hit the outer periphery of the top bank. Since it does not contact the active area, there is no damage to the active area, and if the chip is tilted, it will come into contact with the outer periphery of the second bank provided at the outermost periphery, so the suction collet will not damage the active area. Since the cracks do not come into contact with the areas where the chipping has occurred, the cracks can be prevented from growing.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、(4)は素子を構成する積層構造部、(6
a)は素子能動領域境界線、(11)は素子能動領域境
界線(6a)の外周部に最小幅5/!m以上設けられた
基板fi+の上表面の露出領域、(9)は基板露出領域
(11)の外周に設けられた最上段堤、(10)は最上
段堤(9)の外周に設けられた2段目堤、(5b)はダ
イシングライン面、(8)はチッピング、+71Hダイ
シングにより削り去られた後切残された基板(1)のチ
ップ側面を示す。第2図は第1図のダイシングライン端
階段状寸法の拡大断面図、第3図は分離されたチップの
斜視図、第4図は吸着コレット(+21により分離され
たチップα3)を吸着した状態を示す断面図で−ある。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (4) is a laminated structure part that constitutes the element, (6
a) is the element active area boundary line, and (11) is the minimum width 5/! on the outer periphery of the element active area boundary line (6a). The exposed area of the upper surface of the substrate fi+ provided at least m, (9) is the top bank provided on the outer periphery of the substrate exposed area (11), and (10) is the top bank provided on the outer periphery of the top bank (9). In the second stage embankment, (5b) shows the dicing line surface, and (8) shows the chip side surface of the substrate (1) that remains after being cut away by chipping and +71H dicing. Figure 2 is an enlarged sectional view of the stepped dimension at the end of the dicing line in Figure 1, Figure 3 is a perspective view of separated chips, and Figure 4 is a state in which a suction collet (chip α3 separated by +21) is sucked. FIG.

図において、素子能動領域境界線(6a)の部分より外
周に写真製版時の誤差を吸収できるように一般的には第
2図に示すX4の寸法を10)Am最小でも5声m離れ
た外周に、吸着コレットでチップを吸着する吸着領域(
最上段)(9)の内周を配置することで、チップ吸着領
域に外部より荷重が負荷された場合、吸着領域(9)に
局部的クラック損傷を生じても、そのクラックの進展が
能動領域境界線(6a)より内側に進展しないようにし
である。また、最上段吸着@ 戚t91の外周に2段目
の低い堤(101を設けることにより、吸着コレットで
チップを吸着する時、最上段エツジaのみではコレット
との接触部応力が大きくなるため、応力緩和する目的で
、第2図において8点とb点で接触するようにすると共
に、吸着するチップの傾きを少なくする目的で設けであ
る。また、2段目堤(10)の寸法x2とY3はダイシ
ングエツジに生じるチッピング(8)のエツジCに接触
しないように、最上段板(9)の寸法X3と(Y2 +
 Y3)および2段目堤(lO)の寸法X2とY2を決
定する。また、ダイシングライン面(5b)と素子配置
面(Illと吸着コレット面とIrls点とd点で接触
するダイシングライン面(5b)を掘り込む目的はチッ
ピングを生じているc、aをd点より下げる目的がある
。また、X2.X3 、Y2.Y3寸法は写真製版位置
精度、エツチング時の精度等を考えても1〜2μmの精
度でパターンニングできるのに対し、X1寸法誤差はダ
イシング時に機械の切削精度、ブレード厚さ精度2位置
合わせ精度、チッピング寸法のばらつき等を考慮しても
±10)tmとX2.X3寸法誤差の10倍以上の誤差
を有する事から、72寸法を大きくとらなければならな
いが、ダイシングラインを堀り下げることにより、Y2
i低くする事ができる。また、この発明によるチップ外
周に設けられた堤が切断前後のチップ周辺の剛性を上昇
させてチップ能動領域を保護し、内部能動領域への欠陥
の進展を極力少なくすると共に切断時の発生熱を放散さ
せるヒートシンクの効果を有し、内部への切断時の熱伝
達を少なくする効果がある。
In the figure, in order to absorb errors during photolithography, the dimension of There is a suction area (
By arranging the inner periphery of (9) in the top row, when a load is applied to the chip adsorption area from the outside, even if local crack damage occurs in the adsorption area (9), the crack propagation will be in the active area. This is to prevent it from growing inward from the boundary line (6a). In addition, by providing a second low bank (101) on the outer periphery of the top stage suction @ relative t91, when a chip is suctioned by the suction collet, the stress at the contact area with the collet increases if only the top stage edge a is used. In order to relieve stress, it is provided so that points 8 and b in Fig. 2 are in contact with each other, and to reduce the inclination of the chips to be attracted.Also, the dimensions x2 and Y3 is the dimension X3 of the uppermost plate (9) and (Y2 +
Y3) and the dimensions X2 and Y2 of the second stage embankment (lO) are determined. In addition, the purpose of digging the dicing line surface (5b), which contacts the dicing line surface (5b), the element arrangement surface (Ill, the adsorption collet surface, Irls point, and d point) is to remove chipping c and a from point d. In addition, the X2, Even considering cutting accuracy, blade thickness accuracy 2 positioning accuracy, variation in chipping dimensions, etc., ±10) tm and X2. Since the error is more than 10 times the error in the X3 dimension, the 72 dimension must be made larger, but by digging down the dicing line, the Y2
i can be lowered. In addition, the embankment provided on the outer periphery of the chip according to the present invention increases the rigidity around the chip before and after cutting, protects the active area of the chip, minimizes the propagation of defects to the internal active area, and reduces the heat generated during cutting. It has the effect of a heat sink to dissipate heat, and has the effect of reducing heat transfer to the inside during cutting.

次にグイポンドする時に吸着コレットでチップを吸着す
る時、吸着コレットとチップの接触は第2図において精
度良く形成された所定のatb点で接する之め、チップ
の傾斜は少なくなると共に吸着コレットによる応力もa
、b点に分散され小さくなり、著し過大な吸着力で吸着
したとしても外周の堤が能動領域からはX4寸法切離さ
れているため、能動領域への外力の影響は分離され極力
小さくなる。
Next, when the chip is sucked by the suction collet during the gripping, the suction collet and the chip come into contact at the predetermined atb point formed with high accuracy as shown in Figure 2, so the tilt of the chip is reduced and the stress caused by the suction collet is reduced. Moa
, it is dispersed at point b and becomes small, and even if it is attracted with a significantly excessive adsorption force, the influence of external force on the active area is separated and minimized because the outer dam is separated from the active area by a dimension of X4. .

上記実施例では第2図でa、b点で接する吸着方法を示
したが、吸着点を精度良くバターニングされた部分で行
なうために第2図においてa点す点及びf点全d点迄延
長した3点で吸着しても良く、また¥J5図に示すよう
にb点とf点の2点または第6図に示す81点とf点の
2点で行なうように設計することも可能で、上記実施例
と同様の効果を奏する。また、第2図においてa点は全
周連続であっても、断続的であっても良く、同様にb点
も全周連続であっても断続的であってもヒートシンク効
果は得られる。また、第2図においてa+bを、第5図
においてす、fを、第6図においてf、a’を勾配で構
成しても上記実施例と同様の効果を奏する。
In the above embodiment, a suction method in which points a and b touch each other is shown in FIG. It may be adsorbed at three extended points, or it can be designed to be adsorbed at two points, point b and point f, as shown in Figure J5, or at point 81 and point f, as shown in Figure 6. Therefore, the same effects as in the above embodiment can be achieved. Further, in FIG. 2, the point a may be continuous all the way around or intermittently, and similarly the heat sink effect can be obtained even if the point b is continuous all the way around or intermittently. Further, even if a+b in FIG. 2, s and f in FIG. 5, and f and a' in FIG. 6 are configured as gradients, the same effect as in the above embodiment can be obtained.

この発明に係るダイシングライン構造は、■ダイシング
ラインにて切離すためにダイシングブレードにて実際に
切断されるダイシングラインの面(5b)を最も低い溝
底にすること、■基板fi+の基板表面(11)よりダ
イシングライン面(5b) U低くなっていること、■
ダイシングライン面より段差をつけて高く、なおかつダ
イシングラインより内側に第1のチップ吸着領域(10
1を設けること、■gIJ2のチップ吸着領域(9)を
gK1チップ吸着領[(io+の内部に第1チツプ吸着
領域より高く設けること、■第2のチップ吸着領域(9
)と本番領域(6a)は基板表面露出領* (Illを
設は第2のチップ吸着領域(9)と本番領域(4)を分
離していることを特徴としている。
The dicing line structure according to the present invention includes: (1) making the surface (5b) of the dicing line that is actually cut by the dicing blade for separation on the dicing line the lowest groove bottom; (2) making the surface of the substrate fi+ ( 11) The dicing line surface (5b) U is lower than ■
The first chip adsorption area (10
1, ■ Providing the chip suction area (9) of gIJ2 higher than the first chip suction area (9) inside the gK1 chip suction area [(io+), ■ Providing the second chip suction area (9)
) and the production area (6a) are characterized by separating the second chip adsorption area (9) from the production area (4).

効果としては、〔ア〕精度良くバターニングされた部分
で吸着することで局部応力の高い部分をなくす、〔イ〕
チッピングを生じているチップ端には吸着時コレットを
接触させないためチップにクラックを生じないことと、
欠はチップによるノズルつまり等の不具合をなくせる、
〔つ〕素子形成領域とチップ吸着時外力が掛り変位を生
じる領域と分離していることにより、素子形成領域へダ
イシング時の力の軽減、切断熱伝達を少なくでき、チッ
プ吸着時の外力は非常に小さくできる、〔工〕この構造
を取ると、吸着領域の構造や材質の選定によりチップ素
子形成領域の応力分布をコントロール可能である。この
実施例では吸着領域は2段の堤の場合を示したが、エツ
チング工程を分割することにより、さらに多段とするこ
とは容易である。
The effects are: (a) Eliminate areas with high local stress by adhering to precisely patterned areas; and (b)
The collet does not come into contact with the edge of the chip where chipping occurs during suction, so the chip does not crack.
The problem is that it eliminates problems such as nozzle clogging due to chips.
[And] By separating the element formation area from the area where external force is applied during chip adsorption and causes displacement, it is possible to reduce the force during dicing and cut heat transfer to the element formation area, and the external force during chip adsorption is extremely small. With this structure, the stress distribution in the chip element formation region can be controlled by selecting the structure and material of the suction region. In this embodiment, the adsorption region has a two-stage embankment, but it is easy to make the adsorption region more multi-stage by dividing the etching process.

また、吸着領域のチップ吸着部は合金層や酸化層を構成
し、角部の損傷を軽減することも容易に可能である。
Furthermore, it is also possible to easily reduce damage to the corners by forming an alloy layer or an oxide layer on the chip adsorption portion of the adsorption area.

チップ吸着領域は基板をエツチングして第6図に示すよ
うに構成することも可能である。
The chip adsorption area can also be constructed by etching the substrate as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、能動領域の外側の従来
のダイシングライン領域に、(1)基板表面露出領域、
(2)吸着領域を構成する最上段機、(3)2段目吸着
領域堤、(4)基板表面領域、(5)ダイシング面を基
板表面領域より下げて構成したので、(イ)ダイシング
時の外力の影響を能動領域に伝えない、←)ダイポンド
時の吸着コレットによる外力を能動領域に伝えない、e
→ダイシング時に発生する粋を能動領域に直接伝達しな
いと共に吸着領域で放熱を行ない伝達熱量を大幅に減少
できる、に)チップエツジに堤を設けることでエツジ部
剛性を上げ、クラックの進展を阻止でき信頼性の高いチ
ップを提供することができる。
As described above, according to the present invention, in the conventional dicing line area outside the active area, (1) the substrate surface exposed area;
(2) The top stage machine that forms the suction area, (3) the second stage suction area embankment, (4) the substrate surface area, and (5) the dicing surface is lower than the substrate surface area, so (a) during dicing. Do not transmit the influence of external force to the active area, ←) Do not transmit the external force caused by the suction collet during die pounding to the active area, e
→The energy generated during dicing is not directly transferred to the active area, and the heat is dissipated in the adsorption area, which greatly reduces the amount of transferred heat.2) By providing a bank at the chip edge, the edge rigidity is increased and crack growth is prevented, making it reliable. We can provide high quality chips.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第5図、第6図はこの発明の一実施例によるダ
イシング構造金示す断面図、第2図は第1図のダイシン
グライン詳細の拡大断面図、第3図はこのダイシングラ
インに沿ってダイシングし切離されたチップの斜視図、
第4図はそのチップを吸着コレットで吸着した状態を示
す断面図、第7図は従来のダイシングライン構造を示す
断面図、第8図は第7図のダイシングラインと能動領域
の関係を示す拡大断面図、!9図は従来のダイシングラ
インに沿って切離されたチップの斜視図、第10図は吸
着コレットで吸着した時の断面図を示す。 図において、10は基板、(2)は酸化層、(31は拡
散領域、(4)は積層構造部、(5b)はダイシングラ
イン面、(6B)は能動領域境界線、(7)はチップの
側面、(8)はチッピング、(9)は第1の吸着領V、
、(最上段機χ(10)は第2の吸着領域(2段目堤)
 、(Illは基板fi+の露出領域、(12)は吸着
コレット、Q3)は分離されたチップを示す。 なお、図中、同一符号は同一、または相当部分を示す。
1, 5, and 6 are cross-sectional views showing the dicing structure according to an embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view of the details of the dicing line in FIG. 1, and FIG. A perspective view of the chip diced along and separated;
Figure 4 is a cross-sectional view showing the state in which the chip is attracted by a suction collet, Figure 7 is a cross-sectional view showing the conventional dicing line structure, and Figure 8 is an enlarged view of the relationship between the dicing line and the active area of Figure 7. Cross section! FIG. 9 is a perspective view of a chip separated along a conventional dicing line, and FIG. 10 is a cross-sectional view of the chip when it is attracted by a suction collet. In the figure, 10 is the substrate, (2) is the oxide layer, (31 is the diffusion region, (4) is the stacked structure part, (5b) is the dicing line surface, (6B) is the active area boundary line, (7) is the chip side surface, (8) is chipping, (9) is the first adsorption area V,
, (the top stage machine χ(10) is the second adsorption area (second stage embankment)
, (Ill shows the exposed area of the substrate fi+, (12) shows the suction collet, and Q3 shows the separated chip. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  半導体ウェハ上に形成される複数の半導体チップを個
々に切断、分離するためのダイシングライン構造におい
て、基板表面上にチップ吸着領域を素子形成領域の外周
全域に基板表面露出領域を隔てて配置すると共に、その
外周領域に低い段差を有するチップ吸着領域で囲むと共
に実際にダイシングする面は基板面表面よりエッチング
等で最下段になるように堀り下げて構成したことを特徴
とする半導体チップの分離、切離し用のダイシングライ
ン構造。
In a dicing line structure for individually cutting and separating a plurality of semiconductor chips formed on a semiconductor wafer, a chip adsorption area is arranged on the substrate surface over the entire outer periphery of the element formation area, with the substrate surface exposed area being separated. Separation of semiconductor chips, characterized in that the outer peripheral area is surrounded by a chip adsorption area with a low level difference, and the surface to be actually diced is dug down from the surface of the substrate by etching etc. so that it is at the lowest level. Dicing line structure for separation.
JP63096275A 1988-04-18 1988-04-18 Dicing line structure for separation of semiconductor chip Pending JPH01266739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63096275A JPH01266739A (en) 1988-04-18 1988-04-18 Dicing line structure for separation of semiconductor chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63096275A JPH01266739A (en) 1988-04-18 1988-04-18 Dicing line structure for separation of semiconductor chip

Publications (1)

Publication Number Publication Date
JPH01266739A true JPH01266739A (en) 1989-10-24

Family

ID=14160587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63096275A Pending JPH01266739A (en) 1988-04-18 1988-04-18 Dicing line structure for separation of semiconductor chip

Country Status (1)

Country Link
JP (1) JPH01266739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163688A (en) * 1992-11-20 1994-06-10 Nec Corp Semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163688A (en) * 1992-11-20 1994-06-10 Nec Corp Semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
KR100344833B1 (en) Package of semiconductor and method for fabricating the same
TWI433222B (en) Stress relief of a semiconductor device
JP2009088252A (en) Method for dicing wafer, and semiconductor chip
US20090050927A1 (en) METHOD OF FABRICATION InGaAlN FILM AND LIGHT-EMITTING DEVICE ON A SILICON SUBSTRATE
JP2009099681A (en) Substrate dicing method
JPH0215652A (en) Semiconductor device and manufacture thereof
US6734040B2 (en) Method of manufacturing semiconductor devices
JP2005294842A (en) Semiconductor package having step type die and manufacturing method of the same
US7518240B2 (en) Deposition pattern for eliminating backside metal peeling during die separation in semiconductor device fabrication
JP2004055852A (en) Semiconductor device and its fabricating process
JP2009302231A (en) Method for manufacturing semiconductor device
JP5568824B2 (en) Manufacturing method of semiconductor device
JPH01266739A (en) Dicing line structure for separation of semiconductor chip
JPS59220947A (en) Manufacture of semiconductor device
JPH02308551A (en) Semiconductor wafer
US7320930B2 (en) Multi-elevation singulation of device laminates in wafer scale and substrate processing
JP2004349550A (en) Semiconductor device and its manufacturing method
US20200402956A1 (en) Method for manufacturing a semiconductor package having five-side protection
JP2004363517A (en) Method of chipping semiconductor wafer
JPS61267343A (en) Manufacture of semiconductor device
JP2022069301A (en) Semiconductor device and semiconductor wafer
TWI708286B (en) Semiconductor device and method for manufacturing the same
JP2003203882A (en) Semiconductor device and its manufacturing method
JPH08186064A (en) Semiconductor wafer and method for dicing semiconductor pellet
JPH05102300A (en) Semiconductor device