JPH01265571A - Manufacture of high electron mobility transistor - Google Patents

Manufacture of high electron mobility transistor

Info

Publication number
JPH01265571A
JPH01265571A JP9292888A JP9292888A JPH01265571A JP H01265571 A JPH01265571 A JP H01265571A JP 9292888 A JP9292888 A JP 9292888A JP 9292888 A JP9292888 A JP 9292888A JP H01265571 A JPH01265571 A JP H01265571A
Authority
JP
Japan
Prior art keywords
layer
source
drain
gate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9292888A
Other languages
Japanese (ja)
Other versions
JP2670293B2 (en
Inventor
Kenichi Imamura
健一 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63092928A priority Critical patent/JP2670293B2/en
Publication of JPH01265571A publication Critical patent/JPH01265571A/en
Application granted granted Critical
Publication of JP2670293B2 publication Critical patent/JP2670293B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make a width of a gate, a space between a gate and a source, and a space between the gate and a drain small to enable a transistor of this design to be high in an operational speed by a method wherein a source, a drain, and a gate electrode are formed in a self-aligned manner. CONSTITUTION:An AlGaAs buffer layer 11, a non-doped GaAs layer 12, an n-type AlGaAs layer 13, an n<+>-type GaAs layer 14, and a Si3N4 layer 20 are formed on a GaAs semi-insulating substrate 10. The layers 20 and 14 are removed through an etching to be partially left unremoved, and a SiO2 layer 24 is formed thereon. The layer 24 is removed leaving its side walls 25a and 25b unremoved, and then the Si3N4 layer 20 is selectively removed through an etching. Resist is provided to the left of the side wall 25a and the right of the side wall 25b, and Al or the like is evaporated to form a source electrode 27, a drain electrode 28, and a gate electrode 29 in a self-aligned manner. After the resist is removed, an ion trimming is performed at an incident angle of 60 degrees to remove the metal evaporated on the side walls 25a and 25b. The space d4 between a source and a drain can be nearly equal to 1mum.

Description

【発明の詳細な説明】 〔概要〕 ソース、ドレイン、ゲートの電極をセルファラインで形
成する高電子移動度トランジスタに関し、ゲート電極幅
及びゲート・ソース間、ゲート・ドレイン量大々の幅を
小さくすることを目的とし、ヘテロ接合界面に形成され
る2次元電子ガス層をチャネル層に使用する高電子移動
度トランジスタの製造方法において、第1の絶縁物を表
面に形成した半導体層をエツチングして互いに一定距離
離するソース層及びトレイン層を形成し、該第1の絶縁
物を有するソース層及びドレイン層夫々に該第1の絶縁
物とは異なる物質の第2の絶縁物で側壁を形成し、該第
1の絶縁物を選択的にエツチングして除去し、金属を蒸
着して該側壁夫々に囲まれたソース層、ドレイン層夫々
の上にソース電極、ドレイン電極夫々を形成すると共に
、該側壁の間にゲート電極を形成するよう構成する。
[Detailed Description of the Invention] [Summary] Regarding a high electron mobility transistor in which the source, drain, and gate electrodes are formed by self-alignment, the width of the gate electrode, the distance between the gate and the source, and the width of the gate and drain amount are reduced. In a method for manufacturing a high electron mobility transistor in which a two-dimensional electron gas layer formed at a heterojunction interface is used as a channel layer, a semiconductor layer having a first insulator formed on its surface is etched so as to separate from each other. forming a source layer and a train layer separated by a certain distance; forming sidewalls of a second insulator of a different material from the first insulator on each of the source layer and the drain layer having the first insulator; The first insulator is selectively etched and removed, and metal is deposited to form a source electrode and a drain electrode on the source layer and drain layer surrounded by the sidewalls, respectively, and The structure is such that a gate electrode is formed between them.

〔産業上の利用分野〕[Industrial application field]

本発明は高電子移動度トランジスタの製造方法に関し、
特にソース、ドレイン、ゲートの電極をセルファライン
で形成する高電子移動度トランジスタの製造方法に関す
る。
The present invention relates to a method for manufacturing a high electron mobility transistor,
In particular, the present invention relates to a method of manufacturing a high electron mobility transistor in which source, drain, and gate electrodes are formed using self-aligned lines.

近年、コンピュータ等の情報処理装置或いは通信装置の
高速化が要望されており、そのためには、より高速の半
導体素子の開発が急務である。このような高速の半導体
素子の1つに高電子移動度トランジスタ(HEMT)が
ある。
In recent years, there has been a demand for higher speed information processing devices or communication devices such as computers, and to this end, there is an urgent need to develop higher speed semiconductor devices. One such high-speed semiconductor device is a high electron mobility transistor (HEMT).

〔従来の技術〕[Conventional technology]

第2図は従来のHEMTの断面構造を示す。 FIG. 2 shows a cross-sectional structure of a conventional HEMT.

同図中、10はGaAS半絶縁性の基板、11は厚さ略
2000人゛のAeGaASのバッファ層、12G;L
J!l略1000A (7)ノンドープGaAs1l、
13は3iをI X 10” ax′3程度ドープした
厚さ略1000人のn−AtGaASL!、14a、1
4bはSiを5×1018CjI′3程度ドープした厚
さ略2000人のn” −GaAsのソース層及びドレ
イン層であり、15.16は厚さ略200人のAuGe
と厚さ略3000人のAuとを層状に重ねたソース電極
、トレイン電極で、17は厚さ略3000人のA之のゲ
ート電極である。
In the figure, 10 is a GaAS semi-insulating substrate, 11 is an AeGaAS buffer layer with a thickness of approximately 2000 mm, and 12G;
J! l approximately 1000A (7) Non-doped GaAs1l,
13 is n-AtGaASL doped with 3i to about I x 10"ax'3 and has a thickness of about 1000 people!, 14a, 1
4b is a source layer and drain layer of n''-GaAs doped with approximately 5×1018 CjI'3 of Si and has a thickness of about 2000 nm, and 15.16 is an AuG layer with a thickness of about 200 nm.
A source electrode and a train electrode are formed by layering Au with a thickness of about 3000 mm, and 17 is a gate electrode of A with a thickness of about 3000 mm.

HEMl;tGaAs層12とn−AJ!GaAs[1
13とのへテロ接合界面に形成される2次元電子ガス層
をチャネル層として用いるため。電子は不純物による散
乱を受けることがなく、電子の移動度が大きく伝達コン
ダクタンスga+が通常のMESFET (メタル・セ
ミコンダクタ・電界効果トランジスタ)より大きく、高
速動作を行なう。
HEMl; tGaAs layer 12 and n-AJ! GaAs[1
In order to use the two-dimensional electron gas layer formed at the heterojunction interface with 13 as a channel layer. Electrons are not scattered by impurities, have high electron mobility, have a larger transfer conductance ga+ than ordinary MESFETs (metal semiconductor field effect transistors), and operate at high speed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のHEMTは通常のフォトリソグラフィーによって
n” −GaAS層14及び電極15〜17が形成され
ている。このため、微細化には限界がありゲート電極1
7の幅dl、ゲート・ソース間の幅d2.ゲート・ドレ
イン間の幅d3夫々は通常1μm程度であり、己れを0
.5μ−以下にすることは実用上困難であるという問題
があった。
In the conventional HEMT, the n"-GaAS layer 14 and the electrodes 15 to 17 are formed by ordinary photolithography. Therefore, there is a limit to miniaturization, and the gate electrode 1
7 width dl, gate-source width d2. The width d3 between the gate and drain is usually about 1 μm, and the width is 0.
.. There is a problem in that it is practically difficult to reduce the thickness to 5μ or less.

上記の幅d、−d、が大ぎいと、ソース抵抗が大きく、
ゲート・ソース間の容量が大きく、かつ伝達コンダクタ
ンスgaが小さく、高速化を実現できない。
If the above widths d and -d are large, the source resistance is large,
The gate-source capacitance is large and the transfer conductance ga is small, making it impossible to achieve high speed.

本発明は上記の点に鑑みなされたもので、ゲート電極幅
及びゲート・ソース間、ゲート・ドレイン量大々の幅を
小さくする高電子移動度トランジスタの製造方法を提供
することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing a high electron mobility transistor in which the width of the gate electrode, the distance between the gate and the source, and the amount of the gate and drain are reduced.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の高電子移動度トランジスタの製造方法は、 ヘテロ接合界面に形成される2次元電子ガス層をチャネ
ル層に使用する高電子移動度トランジスタの製造方法に
おいて、 第1の絶縁物(20)を表面に形成した半導体71(1
4)をエツチングして互いに一定距vtm間するソース
II(14a)及びドレインIm(14b)を形成し、 第1の絶縁物(20)を有するソース層(14a)及び
ドレイン層(14b)夫々に第1の絶縁物(20)とは
異なる物質の第2の絶縁物で側壁(25a、25b)を
形成し、 第1の絶縁物(20)を選択的にエツチングして除去し
、 金属を蒸着して側壁(25a、25b)夫々に囲まれた
ソース層(14a)、ドレイン層(14b)夫々の上に
ソース電極(27)、ドレイン電極(28)夫々を形成
すると共に、側壁(25a。
A method for manufacturing a high electron mobility transistor according to the present invention includes a method for manufacturing a high electron mobility transistor in which a two-dimensional electron gas layer formed at a heterojunction interface is used as a channel layer. Semiconductor 71 (1
4) to form a source II (14a) and a drain Im (14b) that are spaced apart from each other by a certain distance vtm, and the source layer (14a) and drain layer (14b) each having the first insulator (20) are etched. Forming side walls (25a, 25b) with a second insulator made of a different material from the first insulator (20), selectively etching and removing the first insulator (20), and depositing metal. A source electrode (27) and a drain electrode (28) are respectively formed on the source layer (14a) and drain layer (14b) surrounded by the sidewalls (25a, 25b), respectively.

25b)の間にゲート電極(29)を形成する。25b), a gate electrode (29) is formed between them.

(作用) 本発明方法では、通常のフォトリソグラフィーによりソ
ース71(14a)とドレインJW(14b)を最小の
一定距離だけ離間させて形成し、このソース層(14a
)及びトレイン層(14b)夫々に側壁(25a、25
b)を設け、この側壁(25a、25b)間にゲート電
極(29)をソース電極(27)及びドレイン電極(2
8)と同時にセルファラインで形成するため、ゲート電
極の幅及びゲート・ソース間、ゲート・ドレイン量大々
の間隔を小さくできる。
(Function) In the method of the present invention, the source 71 (14a) and the drain JW (14b) are formed with a minimum fixed distance apart by ordinary photolithography, and this source layer (14a)
) and the train layer (14b), respectively, have side walls (25a, 25
b), and the gate electrode (29) is connected between the side walls (25a, 25b) by the source electrode (27) and the drain electrode (2
8) At the same time, the width of the gate electrode and the distance between the gate and the source and the distance between the gate and the drain can be reduced because the self-alignment is formed.

〔実施例〕〔Example〕

第1図は本発明方法の一実施例の各][程の断面構造を
示す。
FIG. 1 shows a cross-sectional structure of an embodiment of the method of the present invention.

まず、第1図(A)に示す如く、GaAs半絶縁性の基
板10上に厚さ略2000人のA2GaAsのバッファ
W111、厚さ1000人のノンドープGaAs層12
、SiをI X 10I8ax−3程度ドープした厚さ
略1000人のn−AlGaAs層13.3iを5X1
0I8α−3程度ドープした厚さ略2000人のn+−
GaASJi!il 4を夫々形成する。この後、プラ
ズマCVD法により4000人程度O8izN4層(第
1の絶縁物)20を形成し、更にソース及びドレイン用
のレジスト21.22を略1μm間隔で形成する。
First, as shown in FIG. 1(A), on a GaAs semi-insulating substrate 10, an A2GaAs buffer W111 with a thickness of about 2000 layers and a non-doped GaAs layer 12 with a thickness of 1000 layers are formed.
, a 5X1 n-AlGaAs layer 13.3i doped with Si to a thickness of about 1000 layers
0I8α-3 doped approximately 2000 n+-
GaASJi! il 4 respectively. Thereafter, about 4000 O8izN4 layers (first insulator) 20 are formed by plasma CVD, and resists 21 and 22 for source and drain are formed at intervals of approximately 1 μm.

次に、CHFz  (3フツ化メタン)を用いた反応性
イオンエツチング(RIE)によって5t3Nt層20
をエツチングし、更にCCez F2  (2フツ化2
塩化メタン・)を用いて例えば100W、4Paの環境
で略2分間反応性イオンエッヂングを行ない、厚さ略2
000人のn”−GaAs半絶縁性をエツチングする。
Next, the 5t3Nt layer 20 is etched by reactive ion etching (RIE) using CHFz (methane trifluoride).
, and further CCez F2 (2-foot conversion 2
Reactive ion etching is performed for approximately 2 minutes using methane chloride in an environment of 100 W and 4 Pa, and the thickness is approximately 2.
000 n''-GaAs semi-insulating etch.

これによってソース層14a及びドレイン層14bが形
成される。この後レジスト21.22を除去して全面に
4000人程度O8!02 (第2の絶縁物)層24を
形成する。これによって第1図(B)に示す状態となる
As a result, a source layer 14a and a drain layer 14b are formed. Thereafter, the resists 21 and 22 are removed, and an O8!02 (second insulator) layer 24 of about 4,000 layers is formed on the entire surface. This results in the state shown in FIG. 1(B).

次に、CHF3を用いた例えば100W、4Paの環境
の反応性イオンエツチングを10分間行なって5tOz
層24を厚さ4000人エツチングし、第1図(C)に
示す3i02の側壁25a〜25dを形成する。
Next, reactive ion etching is performed for 10 minutes using CHF3 at 100 W and 4 Pa for 5 tOz.
Layer 24 is etched to a thickness of 4000 mm to form side walls 25a-25d of 3i02 shown in FIG. 1(C).

この後、NF3  (3フツ化チツソ)を用いた反応性
イオンエツチングによってダミー電極である5ixNn
層20を選択的にエツチングして側壁25a、25bを
残し、第1図(D)に示す状態とする。
After this, 5ixNn, which is a dummy electrode, was etched by reactive ion etching using NF3 (trifluoride trifluoride).
Layer 20 is selectively etched to leave sidewalls 25a and 25b, resulting in the state shown in FIG. 1D.

次に、n−AeGaAs層13上の側壁25aの左方及
び側?、 25 bの右方にレジストを設け、Ti/P
t/Auを夫々厚さ500人、 1ooo人。
Next, the left side and side of the side wall 25a on the n-AeGaAs layer 13? , 25 A resist is provided on the right side of b, and Ti/P
Thickness of t/Au is 500 and 100, respectively.

3000人蒸着する。これはA之蒸着に代えても良い。3000 people will be deposited. This may be replaced with the vapor deposition of A.

この後、レジストを除去すると共に、Arイオンを用い
て例えば加速電圧500vで、かつ入射角・60度のイ
オンミーリングで略10分間エツチングを行なって、側
壁25a、25b上のTi/Pt/Auを除去する。
Thereafter, the resist is removed, and etching is performed using Ar ions at an acceleration voltage of 500 V and an incident angle of 60 degrees for approximately 10 minutes by ion milling to remove the Ti/Pt/Au on the side walls 25a and 25b. Remove.

これによって第1図(E)に示す如くソース電極27.
ドレイン電極28.ゲート電極29がセルファラインで
形成される。ここでソース・ドレイン間の間隔d4は略
1μmとされており、側壁25b、25cの幅が即ちゲ
ート・ソース間、ゲート・ドレイン間の幅で略0.4μ
mとなり、ゲート電極29の幅は略0.2μmとなる。
As a result, as shown in FIG. 1(E), the source electrode 27.
Drain electrode 28. A gate electrode 29 is formed by a self-line. Here, the distance d4 between the source and drain is approximately 1 μm, and the width of the side walls 25b and 25c is approximately 0.4 μm in width between the gate and source and between the gate and drain.
m, and the width of the gate electrode 29 is approximately 0.2 μm.

このように、ソース層14aとドレイン層14bを略1
μmfl1間させて、ソース電極27.ドレインl8i
28.ゲートff1wA29夫々をセルファ、ラインで
形成するため、ゲート電極29の幅及びゲート・ソース
間、ゲート・ドレイン量大々の間隔を従来より大幅に小
さくでき、ソース抵抗が減少し、ゲート・ソース間容量
が減少し、かつ伝達コンダクタンスq−が増大して、ト
ランジスタ動作の高速化が進む。
In this way, the source layer 14a and the drain layer 14b are approximately 1
Source electrodes 27.μmfl1. drain l8i
28. Since the gates ff1wA29 are each formed by a cell line and a line, the width of the gate electrode 29 and the distance between the gate and the source and the distance between the gate and the drain can be made much smaller than before, the source resistance is reduced, and the capacitance between the gate and the source is reduced. decreases and transfer conductance q- increases, leading to faster transistor operation.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明の高電子移動度トランジスタの製造
方法によれば、ゲート電極の幅及びゲート・ソース間、
ゲート・ドレイン量大々の間隔を小さくでき、トランジ
スタ動作の高速化が進み、実用上きわめて有用である。
As described above, according to the method of manufacturing a high electron mobility transistor of the present invention, the width of the gate electrode and the distance between the gate and source,
It is possible to reduce the distance between the gate and drain, and the speed of transistor operation is increased, which is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例の各工程の断面構造図、 第2図は従来のHE M Tの一例の断面構造図である
。 図において、 14はn” −GaAS層、 14aはソース層、 14bはドレイン層、 20はS!zN4層、 21.22はレジスト、 24はSiO2!i。 25a、25bは側壁、 27はソース電極、 28はドレイン電極、 29はゲート電極 を示す。 (A) クム (B) オリさβ彷層大の名シ馴乱Oり賀鎖構岩す幻第 璽 図
(−?の1) (C) (D) 杓ジ肪ま一’)各こ穫へi面楕羨口 筒 1 図(グの2) (E) 第1図(’?p)3) オら東のl−IEMTのCロ狛不冑妃り図第2図
FIG. 1 is a cross-sectional structural diagram of each step of an embodiment of the method of the present invention, and FIG. 2 is a cross-sectional structural diagram of an example of a conventional HEMT. In the figure, 14 is an n''-GaAS layer, 14a is a source layer, 14b is a drain layer, 20 is an S!zN4 layer, 21.22 is a resist, 24 is a SiO2!i, 25a and 25b are side walls, and 27 is a source electrode. , 28 indicates the drain electrode, and 29 indicates the gate electrode. ) (D) Ladle fat maichi') I-plane elliptical mouthpiece for each crop 1 Figure (Gu no 2) (E) Figure 1 ('?p) 3) C of the l-IEMT in the east Figure 2

Claims (1)

【特許請求の範囲】  ヘテロ接合界面に形成される2次元電子ガス層をチャ
ネル層に使用する高電子移動度トランジスタの製造方法
において、 第1の絶縁物(20)を表面に形成した半導体層(14
)をエッチングして互いに一定距離離間するソース層(
14a)及びドレイン層(14b)を形成し、 該第1の絶縁物(20)を有するソース層 (14a)及びドレイン層(14b)夫々に該第1の絶
縁物(20)とは異なる物質の第2の絶縁物で側壁(2
5a、25b)を形成し、 該第1の絶縁物(20)を選択的にエッチングして除去
し、 金属を蒸着して該側壁(25a、25b)夫々に囲まれ
たソース層(14a)、ドレイン層(14b)夫々の上
にソース電極(27)、ドレイン電極(28)夫々を形
成すると共に、該側壁(25a、25b)の間にゲート
電極(29)を形成することを特徴とする高電子移動度
トランジスタの製造方法。
[Claims] A method for manufacturing a high electron mobility transistor using a two-dimensional electron gas layer formed at a heterojunction interface as a channel layer, comprising: a semiconductor layer (20) having a first insulator (20) formed on its surface; 14
) are etched away from each other at a certain distance from the source layer (
14a) and a drain layer (14b), each of the source layer (14a) and drain layer (14b) having the first insulator (20) is made of a material different from the first insulator (20). Side wall with second insulator (2
5a, 25b), selectively etching and removing the first insulator (20), and depositing metal to form a source layer (14a) surrounded by the sidewalls (25a, 25b), respectively; A source electrode (27) and a drain electrode (28) are formed on each of the drain layers (14b), and a gate electrode (29) is formed between the sidewalls (25a, 25b). A method for manufacturing an electron mobility transistor.
JP63092928A 1988-04-15 1988-04-15 Method for manufacturing high electron mobility transistor Expired - Lifetime JP2670293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63092928A JP2670293B2 (en) 1988-04-15 1988-04-15 Method for manufacturing high electron mobility transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63092928A JP2670293B2 (en) 1988-04-15 1988-04-15 Method for manufacturing high electron mobility transistor

Publications (2)

Publication Number Publication Date
JPH01265571A true JPH01265571A (en) 1989-10-23
JP2670293B2 JP2670293B2 (en) 1997-10-29

Family

ID=14068155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092928A Expired - Lifetime JP2670293B2 (en) 1988-04-15 1988-04-15 Method for manufacturing high electron mobility transistor

Country Status (1)

Country Link
JP (1) JP2670293B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19631744C1 (en) * 1996-08-06 1998-03-12 Siemens Ag Method of manufacturing a field effect transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114871A (en) * 1982-12-21 1984-07-03 Toshiba Corp Manufacture of schottky gate type gallium arsenide field effect transistor
JPS62216374A (en) * 1986-03-18 1987-09-22 Toshiba Corp Manufacture of field-effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114871A (en) * 1982-12-21 1984-07-03 Toshiba Corp Manufacture of schottky gate type gallium arsenide field effect transistor
JPS62216374A (en) * 1986-03-18 1987-09-22 Toshiba Corp Manufacture of field-effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19631744C1 (en) * 1996-08-06 1998-03-12 Siemens Ag Method of manufacturing a field effect transistor

Also Published As

Publication number Publication date
JP2670293B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
CA1214575A (en) Method of manufacturing gaas semiconductor device
Waldron et al. A self-aligned InGaAs HEMT architecture for logic applications
JPS59114871A (en) Manufacture of schottky gate type gallium arsenide field effect transistor
JPH0260064B2 (en)
JPS6070768A (en) Manufacture of field-effect transistor
JPH02271538A (en) Manufacture of semiconductor device
JPH0684957A (en) High electron mobility field effect semiconductor device
JP3483716B2 (en) Semiconductor device
JPH01265571A (en) Manufacture of high electron mobility transistor
JP2630446B2 (en) Semiconductor device and manufacturing method thereof
JPH0271563A (en) Semiconductor device, insulated gate type field effect transistor and schottky gate type field effect transistor
JP3326928B2 (en) Method for manufacturing field effect transistor
JPH0491438A (en) Manufacture of field-effect transistor
JP3450183B2 (en) Method for manufacturing semiconductor device
JPH05335341A (en) Manufacture of iii-v compound semiconductor device
JPH02170439A (en) Field-effect transistor and its manufacture
JPS6222461B2 (en)
JPH05175243A (en) Manufacture of semiconductor device
JPH07240528A (en) Manufacture of semiconductor device gate and semiconductor device
JPH0249440A (en) Manufacture of semiconductor device
JPH05235056A (en) Semiconductor device and manufacture therof
JPH02191345A (en) Manufacture of field-effect transistor
JPS6021574A (en) Manufacture of semiconductor device
JP3304595B2 (en) Method for manufacturing semiconductor device
JPH03179782A (en) Field-effect transistor