JPH01265150A - Biosensor - Google Patents

Biosensor

Info

Publication number
JPH01265150A
JPH01265150A JP63094865A JP9486588A JPH01265150A JP H01265150 A JPH01265150 A JP H01265150A JP 63094865 A JP63094865 A JP 63094865A JP 9486588 A JP9486588 A JP 9486588A JP H01265150 A JPH01265150 A JP H01265150A
Authority
JP
Japan
Prior art keywords
sample
contact
buffer solution
membrane
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63094865A
Other languages
Japanese (ja)
Other versions
JPH0672858B2 (en
Inventor
Yoshiharu Tanaka
良春 田中
Hiroshi Hoshikawa
星川 寛
Teruyoshi Kobayashi
小林 照義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63094865A priority Critical patent/JPH0672858B2/en
Publication of JPH01265150A publication Critical patent/JPH01265150A/en
Publication of JPH0672858B2 publication Critical patent/JPH0672858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To maintain the specified pH in an immobilizing film holding microorganisms, etc., by forming both side faces of the immobilizing film as a flow passage for a buffer soln. and a flow passage for a sample and bringing a platinum cathode into contact with the side face where the buffer soln. flows via a gas permeable membrane. CONSTITUTION:A flow cell 40 is constituted by sandwiching the immobilizing film 34 which holds the microorganisms or enzyme reacting by coming into contact with the sample and providing the flow passage 36 for guiding the buffer soln. in contact with one side face of the immobilizing film 34 and the flow passage 38 for guiding the same in contact with the other side face to said film. A detector 42 is provided to this flow cell 40. The buffer soln. flows in the circumference of the immobilizing film 34 an a platinum cathode electrode 4 which comes into contact with said film via the gas permeable membrane 60. The ammonia oxidizing bacteria held in the immobilizing film 34 in this constitution are held in the state of nearly specified pH by the buffer soln. penetrating in the immobilizing film 34 and, therefore, the sample does not require a pH adjustment and is not diluted by the buffer soln. The working conditions of the sample and the immobilizing film 34 are thus maintained constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微生物、酵素、細胞などを分子識別素子(レ
セプタ)として多孔性膜に固定して、被測定試料の成分
測定をするバイオセンサに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a biosensor that measures the components of a sample by immobilizing microorganisms, enzymes, cells, etc. as molecular identification elements (receptors) on a porous membrane. Regarding.

〔従来の技術〕[Conventional technology]

この種のバイオセンサは微生物、酵素などを分子識別素
子(レセプタ)として固定化膜に固定し。
This type of biosensor immobilizes microorganisms, enzymes, etc. on an immobilization membrane as a molecular recognition element (receptor).

これをフローセルに装着し、溶存酸素検出器などの電極
使用の電気化学的検出器と組合わせて、被測定試料(以
下単に試料と記する)を前記の固定化膜に接触させ、こ
の間に生じる生化学的反応による変化を電気化学的検出
器の電極の出力電流として感知させ、この計測値を演算
・制御回路部で信号処理をして試料の成分測定を行うセ
ンナであり、以下のような特徴を有している。
This is attached to a flow cell, combined with an electrochemical detector using electrodes such as a dissolved oxygen detector, and the sample to be measured (hereinafter referred to simply as the sample) is brought into contact with the immobilized membrane, and the This is a sensor that detects changes caused by biochemical reactions as the output current of the electrode of an electrochemical detector, and processes these measured values in the arithmetic and control circuit to measure the components of the sample. It has characteristics.

(イ)選択性に優れている (口)微生物、酵素などのレセプタを反復して使用でき
る (ハ)簡単な操作でかつ短時間で分析ができるに)少量
の試料で分析ができる (ホ)測定結果を直接電気信号として取り出せ自動計測
に適する したがって、血液検査などの医療分野1食品の品質管理
などの食品工業分野、排水処理などの環境計測分野など
への広範囲な応用が期待され、研究開発が活発にすすめ
られている。
(b) It has excellent selectivity (1) Receptors for microorganisms, enzymes, etc. can be used repeatedly (3) Analysis can be performed with simple operations and in a short time) (5) A small amount of sample can be used for analysis. Measurement results can be taken directly as electrical signals, making it suitable for automatic measurement.Therefore, it is expected to have a wide range of applications in medical fields such as blood testing, food industry fields such as food quality control, and environmental measurement fields such as wastewater treatment. is being actively promoted.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、バイオセンサは生物体や生体物質を使用
しているため、以下のような特徴がある。
However, since biosensors use living organisms and biological materials, they have the following characteristics.

(イ)微生物の物質代謝機能や酵素反応は周囲のpH条
件に左右され、一般に反応の至適p)(と呼ばれる領域
が存在し、微生物や酵素をバイオセンナとして利用する
場合には安定したセンサ出力を得るためにpHを一定に
保つ必要がある。
(b) The metabolic functions and enzymatic reactions of microorganisms are affected by the surrounding pH conditions, and there is generally a region called optimum p) for the reaction, and when using microorganisms and enzymes as biosenna, stable sensors are It is necessary to keep the pH constant in order to obtain output.

(ロ)生物体や生体物質は一般に不安定であり、これら
の作用活性の維持のため微量の金属元素などの供給が必
要となり、これらを緩衝溶液に添加して供給する場合も
あり、バイオセンナを実用化していく上でこれに使用さ
れる緩衝溶液は重要で欠くことができないものになって
いる。
(b) Living organisms and biological substances are generally unstable, and in order to maintain their action and activity, it is necessary to supply trace amounts of metal elements, etc. In some cases, these are added to a buffer solution and supplied. The buffer solution used in this process is important and indispensable for its practical application.

(ハ)一般にバイオセンナの測定範囲は狭いため。(c) Generally, the measurement range of biosenna is narrow.

試料の希釈が必要な場合が多く、試料の希釈のためにも
緩衝溶液が必要となる。
Dilution of the sample is often required, and a buffer solution is also required for sample dilution.

このような特徴のため、バイオセンナを使った連続測定
装置の場合には。
Because of these characteristics, in the case of continuous measurement devices using biosensors.

(a)  緩衝溶液の消費が多い 告)緩衝溶液のv4mに手数が掛る (C)  試薬の費用が掛る (d)  低濃度の試料の場合には、 pH調整のため
の緩衝溶液の添加によって試料が測定限界以下に希釈さ
れてしまう などの問題点があった。
(a) Buffer solution consumption is high (C) Reagent costs are high (d) In the case of a sample with a low concentration, adding a buffer solution to adjust the pH is necessary. There were problems such as dilution of the liquid below the measurement limit.

本発明は、前記の問題点を解決するためになされたもの
で、試料のpH,Jl整を必要とせず%緩衝溶液を循環
再利用することによって消費する緩衝溶液の量を減少さ
せて、測定装置の維持管理性を改善したバイオセンナを
提供することを目的としている。
The present invention was made to solve the above-mentioned problems, and it reduces the amount of buffer solution consumed by circulating and reusing the buffer solution without requiring pH and Jl adjustment of the sample. The purpose of the present invention is to provide a biosenna with improved equipment maintenance.

〔課題を解決するための手段〕[Means to solve the problem]

前記の課題を解決するために1本発明は、微生物または
酵素を保持した固定化膜を挟持し、この固定化膜の一方
の側面側を緩衝溶液の流路、他方の側面側を試料の流路
として構成するフローセルと、この固定化膜の一方の側
面側に設け試料と固定化膜との反応で消費される酸素量
または生成される生成物量を電流値として検出する検出
器を前記+7)71:I−七k17固定したバイオセン
サであって。
In order to solve the above-mentioned problems, the present invention comprises an immobilized membrane holding microorganisms or enzymes, one side of the immobilized membrane is a flow path for a buffer solution, and the other side is a flow path for a sample. A flow cell configured as a channel and a detector provided on one side of the immobilized membrane to detect the amount of oxygen consumed or the amount of products generated in the reaction between the sample and the immobilized membrane as a current value (+7) above. 71:I-7k17 immobilized biosensor.

(イ) フローセルに固定した管状の本体(ロ) フロ
ーセルへの固定部と反対側の本体の一端部に固定して本
体の内部に設けるアノード(ハ)前記の緩衝mti、に
接触する固定化膜の一方の側面に1本体の他端部に備え
るガス透過膜を介して接触し、前記の7ノードに絶縁層
を介して設ける白金カソード に)本体内部の前記のアノードと白金カソード間に充て
んする電解液 とから成る検出器を備えるものとする。
(B) A tubular body fixed to the flow cell (B) An anode fixed to one end of the body opposite to the part fixed to the flow cell and provided inside the body (C) An immobilized membrane in contact with the buffer mti mentioned above. A platinum cathode is in contact with one side of the main body via a gas permeable membrane provided at the other end of the main body, and is provided at the seven nodes via an insulating layer). The sensor shall be equipped with a detector consisting of an electrolyte.

〔作用〕[Effect]

本発明は、微生物または酵素を保持した固定化膜を挟持
し、この固定化膜の一方の側面側を緩衝溶液の流路、他
方の側面側を試料の流路にしてフローセルを構成し、こ
の固定化膜の緩衝溶液が流れる一方の側面にガス透過膜
を介して接触する白金カソードを備えた検出器を固定し
たバイオセンナである。固定化膜と試料との反応で消費
される酸素量または生成される生成物量を電流値として
検出器により検出して試料の成分測定をする。さらに固
゛定化膜に接触して循環する緩衝溶液の作用によって固
定化膜の膜内のpHが一定に保たれるため、試料のpH
fA整を行わなくても安定した連続測定ができる。
In the present invention, a flow cell is constructed by sandwiching an immobilized membrane holding microorganisms or enzymes, and using one side of the immobilized membrane as a flow path for a buffer solution and the other side as a flow path for a sample. This biosenner has a detector equipped with a platinum cathode that is in contact with one side of the immobilized membrane through which the buffer solution flows through a gas permeable membrane. The components of the sample are measured by detecting the amount of oxygen consumed or the amount of products produced in the reaction between the immobilized membrane and the sample as a current value with a detector. Furthermore, the pH inside the immobilized membrane is kept constant by the action of the buffer solution that circulates in contact with the immobilized membrane, so the pH of the sample
Stable continuous measurement is possible without fA adjustment.

〔実施例〕〔Example〕

第1図ないし第3図は本発明の実施例を示すもので、第
1図は測定装置の構成を示すフロー図、第2図は本発明
のバイオセンサ16の構成を示す断面図、第3図は第2
図の部分拡大図である。なお本実施例では試料として下
水排水を対象とし、その排水中のアンモニア性窒素(N
I(;−N)の成分測定を例として説明するが、適合す
るバイオセンナを使用して前記以外の試料の成分測定を
同様に実施することもできる。
1 to 3 show embodiments of the present invention, in which FIG. 1 is a flow diagram showing the configuration of a measuring device, FIG. 2 is a sectional view showing the configuration of a biosensor 16 of the present invention, and FIG. The figure is the second
It is a partially enlarged view of the figure. In this example, sewage wastewater was used as a sample, and ammonia nitrogen (N
Although the measurement of the components of I(;-N) will be explained as an example, it is also possible to similarly measure the components of other samples using a suitable biosenna.

第1図において、試料2は、切換弁4を通過して送液ボ
ンズ6によって測定部8に送液される。
In FIG. 1, a sample 2 passes through a switching valve 4 and is sent to a measuring section 8 by a liquid sending tube 6.

このときエアポンプ10により空気を試料2に混入させ
溶存酸素を飽和させる場合もある。測定部8で、恒温槽
12中の熱交換器14中を通過することにより、試料2
が温度300CK一定になるよう加温され。
At this time, air may be mixed into the sample 2 using the air pump 10 to saturate the sample 2 with dissolved oxygen. In the measuring section 8, the sample 2 is passed through the heat exchanger 14 in the constant temperature bath 12.
is heated to a constant temperature of 300CK.

バイオセンナ16中を通過して測定された後系外に排出
される。容器18中の緩衝溶液20は、循環ポンプ22
により熱交換器23を通過することによシ、バイオセン
サ16に送液されてバイオセンサ16に接触した後に再
び容器18中に戻され、この循環をくり返えし行ってい
る。第1の標準溶液24と第2の標準溶液26とはそれ
ぞれ容器に貯えられ、所望の時に切換弁28,4を切換
えて送液ポンプ6によって測定部8に送液される。バイ
オセンサ16は信号線3゜によって演算・制御回路部3
2に接続され、測定結果が演算表示される。
After passing through the biosenna 16 and being measured, it is discharged outside the system. Buffer solution 20 in container 18 is pumped through circulation pump 22
By passing through the heat exchanger 23, the liquid is sent to the biosensor 16, and after contacting the biosensor 16, it is returned to the container 18, and this circulation is repeated. The first standard solution 24 and the second standard solution 26 are stored in respective containers, and are sent to the measuring section 8 by the liquid sending pump 6 by switching the switching valves 28 and 4 at desired times. The biosensor 16 is connected to the calculation/control circuit section 3 by the signal line 3°.
2, and the measurement results are calculated and displayed.

第2図は1本発明のバイオセンサ16の構成を示す断面
図、第3図は第2図の部分拡大図であり。
FIG. 2 is a sectional view showing the structure of the biosensor 16 of the present invention, and FIG. 3 is a partially enlarged view of FIG. 2.

この第2図、第3図によってバイオセンサ16の構成を
以下説明する。バイオセンサ16は後記する手順で作成
した。試料2と接触して反応する微生物または酵素を保
持した固定化膜34を挟持し、この固定化膜34の一方
の側面(図において右側面)に接触する前記の緩衝溶液
20を導く流路36と、他方の側面(図において左側面
)に接触する前記の試料2を導く流路38とを備えてフ
ローセル40を構成し、このフローセル40に検出器4
2を備えたものである。前記の流路36に流入部44.
流出部46を、流路38に流入部48.流出部50を設
けている。検出器42は、前記の緩衝溶液20に接触す
る固定化膜34の一方の側面側(図において右側面1i
lll)に設け、試料2と固定化膜34との反応により
消費される酸素量、または反応により生成される生成物
fを1!流値として検出するもので。
The configuration of the biosensor 16 will be explained below with reference to FIGS. 2 and 3. Biosensor 16 was created by the procedure described below. A flow path 36 that sandwiches the immobilized membrane 34 holding microorganisms or enzymes that react with the sample 2 and guides the buffer solution 20 that comes into contact with one side (the right side in the figure) of the immobilized membrane 34. and a flow path 38 that guides the sample 2 that comes into contact with the other side (the left side in the figure), forming a flow cell 40.
2. An inflow portion 44 into the flow path 36 .
The outflow section 46 is connected to the flow path 38 and the inflow section 48 . An outflow portion 50 is provided. The detector 42 is located on one side of the immobilized membrane 34 that contacts the buffer solution 20 (the right side 1i in the figure).
lll), and the amount of oxygen consumed by the reaction between the sample 2 and the immobilized membrane 34 or the product f generated by the reaction is set to 1! It is detected as a flow value.

(イ) フローセル40に固定した管状の本体52(ロ
) フローセル40への固定部54と反対側の本体52
の一端部に固定して本体52内部設けるアノード←→ 
前記の緩衝溶液20に接触する固定化膜34の一方の側
面(図において右側面)K、本体52の他端部にOリン
グ58によってシールされて備えるガス透過膜60を介
して接触し、前記のアノード56に絶縁層62を介して
設け名白金カソード64に) 本体52内部の前記のア
ノード56と白金カソード64間に充てんする電解液6
6 とから成る検出器42を備えて、バイオセンサ16とし
たもので、とくに固定化M34にガス透過膜6゜を介し
て白金カソード64が接触している点に特徴がある。
(a) Tubular main body 52 fixed to the flow cell 40 (b) Main body 52 on the opposite side from the part 54 fixed to the flow cell 40
An anode fixed to one end and provided inside the main body 52 ←→
One side (right side in the figure) of the immobilization membrane 34 that comes into contact with the buffer solution 20 comes into contact with the other end of the main body 52 through a gas permeable membrane 60 that is sealed with an O-ring 58 and An electrolytic solution 6 filled between the anode 56 and the platinum cathode 64 inside the main body 52
The biosensor 16 is equipped with a detector 42 consisting of the following: 6, and is characterized in that a platinum cathode 64 is in contact with the immobilized M34 through a gas permeable membrane 6°.

つぎに、第2図と第3図とに示すバイオセンナ16の固
定化膜34について、アンモニア性窒素(剖−N)の成
分測定用のものを例として説明する。第1表に示す組成
の液体培地50m4に、アンモニア酸化細菌例えば、ニ
トロソモナス・ヨーロバエア(Nitrosomona
s europaea ATCC25978)を約10
1Vm!含む培養液5m/を接種し、これをLoom/
の三角フラスコにて3000.毎分120回転の条件で
6日間回転振とり培養を行った。
Next, the immobilized membrane 34 of the biosenna 16 shown in FIGS. 2 and 3 will be described by taking as an example a membrane for measuring the component of ammonia nitrogen (anatomy-N). Ammonia oxidizing bacteria, such as Nitrosomonas eurobaea, were added to 50 m4 of a liquid medium having the composition shown in Table 1.
s europaea ATCC25978) about 10
1Vm! Inoculate 5m/ of culture solution containing this into Loom/
3000 in Erlenmeyer flask. Rotary shaking culture was performed for 6 days at 120 revolutions per minute.

第  1  費 次いでこの培養液を第1表に示す組成の液体培地500
m1に全量投入し、 30’Cの条件で6日間通気撹拌
培養を行った。この培養液100m4を20℃、毎分7
.000回転の条件で遠心分離を行い、・菌体を濃縮し
た後、この菌体懸濁液を多孔性非対称膜のスキン層側(
孔径0.2μm)に積層させ、このスキン層側にさらに
同様に積層させた多孔性非対称膜をスキン層同士が接す
るように重ね、膜間を接着して菌体の微生物を保持した
固定化膜34を得た。この固定化膜34を前記に説明し
た構造のフローセル40として構成し、検出器42t−
備えて、アンモニア性窒素(NHニーN)の成分測定を
するバイオセンサ16として構成し、前記の第1図にお
いて説明したようにして成分測定を行う。
1. Next, this culture solution was used as a liquid medium 500ml having the composition shown in Table 1.
The whole amount was added to M1, and cultured with aeration and stirring at 30'C for 6 days. 100m4 of this culture solution at 20°C, 7 min.
.. After centrifuging at 000 rpm to concentrate the bacterial cells, the bacterial cell suspension was transferred to the skin layer side of the porous asymmetric membrane (
A porous asymmetric membrane is layered with a pore diameter of 0.2 μm), and a porous asymmetric membrane is layered in the same way on the skin layer side, and the skin layers are in contact with each other, and the membranes are bonded to form an immobilized membrane that retains microorganisms. I got 34. This immobilized film 34 is configured as a flow cell 40 having the structure described above, and a detector 42t-
The biosensor 16 is configured to measure the components of ammonia nitrogen (NH-N), and the components are measured as described in FIG. 1 above.

なお、第2図、第3図における固定化膜34とガス透過
膜60を介して接触する白金カソード電極64との周囲
を緩衝溶液20が流れ、固定化膜34の左側面には試料
2が流れる。この構成で固定化膜34に保持されたアン
モニア酸化細菌は、固定化膜341C浸透する緩衝溶液
によりpHがほぼ一定の状態に保たれているため、試料
2はpH調整を必要とせず。
Note that the buffer solution 20 flows around the platinum cathode electrode 64 that contacts the immobilization membrane 34 through the gas permeable membrane 60 in FIGS. 2 and 3, and the sample 2 is on the left side of the immobilization membrane 34. flows. With this configuration, the pH of the ammonia-oxidizing bacteria held on the immobilization membrane 34 is kept almost constant by the buffer solution that permeates the immobilization membrane 341C, so sample 2 does not require pH adjustment.

緩衝溶液20で希釈されることがなく、試料2と固定化
膜34との作用条件が一定に維持される。
It is not diluted with the buffer solution 20, and the working conditions of the sample 2 and the immobilized membrane 34 are maintained constant.

第4図は本発明の実施例のバイオセンサ16の特性を示
す図で、横軸に時間粉)、縦軸にセンナ出力′鑞流(μ
A)をとって示した特性図である。第1図ないし第4図
の図面によって以下本発明の測定例について説明する。
FIG. 4 is a diagram showing the characteristics of the biosensor 16 according to the embodiment of the present invention, in which the horizontal axis is time (time) and the vertical axis is senna output
It is a characteristic diagram shown by taking A). Measurement examples of the present invention will be explained below with reference to the drawings of FIGS. 1 to 4.

まず切換弁4.28により流路を切換え、アンモニア性
窒素(4−N)を含まない(Omf/υの第1の標準溶
液24(たとえばイオン交換水)をポンプ6で送液し、
エアポンプ10で空気を混入して溶存酸素を飽和させ、
バイオセンサ16の流路38に流し、同時に緩衝溶液2
0を循環ポンプ22で送液し、バイオセンサ16の流路
36に流して循環させる。この循環ポンプ22は測定中
は常時運転し、毎分3〜4mlの一定流量で連続的に緩
衝溶液20を循環させておく。
First, the flow path is switched by the switching valve 4.28, and the first standard solution 24 (for example, ion-exchanged water) containing no ammonia nitrogen (4-N) (Omf/υ) is sent by the pump 6.
Mix air with the air pump 10 to saturate dissolved oxygen,
At the same time, the buffer solution 2
0 is sent by the circulation pump 22 and passed through the flow path 36 of the biosensor 16 to be circulated. The circulation pump 22 is constantly operated during the measurement, and continuously circulates the buffer solution 20 at a constant flow rate of 3 to 4 ml per minute.

このときバイオセンナ16の検出器42は、アノード5
6と白金カソード64間に電解液66を介して電流が流
れ、信号線30によって演算・制御回路部32に接続さ
れ、測定結果が演算表示されるが、第1の標準溶液24
を使用したこのときのバイオセンナ16の出力電流を1
1とする。
At this time, the detector 42 of the biosenna 16 detects the anode 5
A current flows between the first standard solution 24 and the platinum cathode 64 via the electrolytic solution 66, which is connected to the calculation/control circuit section 32 by the signal line 30, and the measurement results are calculated and displayed.
The output current of the biosenna 16 at this time using
Set to 1.

次に切換弁28を切換え、アンモニア性窒素(NH4−
N)の濃度が既知の第2の標準溶液26をポンプ6で送
液し、エアポンプ10で空気を混入して溶存酸素を飽和
させ、バイオセンサ16の流路38に流して前記と同様
に測定すると、バイオセンサ16の固定化膜34内に保
持されたアンモニア酸化細菌が、この第2の標準溶液2
6のアンモニア性窒素(NHニーN)に作用してこれを
酸化させるため、固定化膜34近傍の溶存酸素量が減少
して、バイオセンナ16の出力電流が徐々に減少し、1
0〜15分後に一定出力I2となる。前記の11との差
* ”1−”2は第2の標準溶液26のアンモニア性窒
素(+;−N)の濃度に対応した値として得られ、この
ようにして第4図に示すバイオセンサ16の較正を終了
する。
Next, the switching valve 28 is switched to ammonia nitrogen (NH4-
A second standard solution 26 with a known concentration of N) is sent by the pump 6, air is mixed in with the air pump 10 to saturate the dissolved oxygen, and the solution is flowed into the flow path 38 of the biosensor 16 and measured in the same manner as above. Then, the ammonia-oxidizing bacteria retained within the immobilized membrane 34 of the biosensor 16 are exposed to this second standard solution 2.
In order to act on ammonia nitrogen (NH-N) of 6 and oxidize it, the amount of dissolved oxygen near the immobilization membrane 34 decreases, and the output current of the biosenna 16 gradually decreases.
After 0 to 15 minutes, the output becomes constant I2. The difference from the above 11* "1-" 2 is obtained as a value corresponding to the concentration of ammonia nitrogen (+; -N) in the second standard solution 26, and in this way, the biosensor shown in FIG. 16 calibration is completed.

次に切換弁4を切換え、アンモニア性窒素(NH;−N
)の濃度を測定しようとする試料2をポンプ6で送液し
、エアポンプ10で空気を混入して溶存酸素を飽和させ
、バイオセンサ16の流路38に流して前記と同様にし
て、試料2のアンモニア性窒素(NHニーN)の濃度に
対応した測定結果が得られる。なお以上の測定中に緩衝
溶液20は、循環撹拌され。
Next, switch the selector valve 4, and ammonia nitrogen (NH; -N
) The sample 2 whose concentration is to be measured is fed by the pump 6, air is mixed in with the air pump 10 to saturate the dissolved oxygen, and the sample 2 is fed into the flow path 38 of the biosensor 16 in the same manner as described above. Measurement results corresponding to the concentration of ammonia nitrogen (NH-N) are obtained. Note that during the above measurements, the buffer solution 20 was cyclically stirred.

容器18中の液面が空気に接触しているから、特にエア
ポンプで空°気を混入しなくても、常時緩衝溶液20中
の溶存酸素は飽和状態となっている。
Since the liquid level in the container 18 is in contact with air, the dissolved oxygen in the buffer solution 20 is always saturated even without mixing air with an air pump.

前記の測定における。バイオセンサ16の出力電流の変
化は、固定化膜34と白金カソード64とが。
In the above measurements. The change in the output current of the biosensor 16 depends on the immobilization membrane 34 and the platinum cathode 64.

ガス透過膜60(本実施例の場合はテフロン膜などの酸
素透過膜)を介して1本発明のように1接触していない
場合には、緩衝溶液20による固定化膜34への溶存酸
素供給速度のほうが、固定化膜34に保持される微生物
の酸素消費速度より大きく、このためにアン七ニア酸化
による試料2の溶存酸素の減少を、検出することができ
なかつ丸。本発明においては、前記に説明したように、
固定化膜34にガス透過膜60を介して白金カソード6
4が接触しているため、試料2の溶存酸素が固定化[3
4を通過して微生物によって消費され、減少した酸素が
If contact is not made through the gas permeable membrane 60 (in this embodiment, an oxygen permeable membrane such as a Teflon membrane) as in the present invention, dissolved oxygen is supplied to the immobilization membrane 34 by the buffer solution 20. This rate is higher than the oxygen consumption rate of the microorganisms retained on the immobilized membrane 34, and therefore, the decrease in dissolved oxygen in sample 2 due to annular oxidation cannot be detected. In the present invention, as explained above,
A platinum cathode 6 is attached to the immobilization membrane 34 via a gas permeable membrane 60.
4 is in contact with each other, the dissolved oxygen in sample 2 is immobilized [3
4, the oxygen is consumed by microorganisms and decreased.

ガス透過膜60を透過して白金カソード64に達するか
ら1本発明の検出器42の構造によって、はじめて微生
物によるアンそニア酸化に伴う溶存酸素の変化から、試
料2のアンモニア性窒素(+ニーN)の濃度を測定する
ことが可能となった。
Because it passes through the gas permeable membrane 60 and reaches the platinum cathode 64, the structure of the detector 42 of the present invention allows the ammonia nitrogen (+N ) has become possible to measure the concentration of

第5図は、横軸にアンモニア性窒素(mニーN)の濃度
(m#/Z)を、縦軸にセンナ出力電流差(μA)をと
って、濃度2ml/l 、4ml/eの各標準溶液につ
いて得られたアンモニア性窒素(鵬−N)の濃度とセン
サ出力電流差との検Ji線であり、これKよりセンサ出
力電流差から、試料2中のアンモニア性窒素(NH4−
N)の濃度を求めることができる。
Figure 5 shows the concentration of ammonia nitrogen (mN) (m#/Z) on the horizontal axis and the senna output current difference (μA) on the vertical axis. This is the test Ji line between the concentration of ammonia nitrogen (Peng-N) obtained for the standard solution and the sensor output current difference.
The concentration of N) can be determined.

また、測定に使用する緩衝溶液20としては、下記の第
2表に示す組成のものを使用することにより、1ケ月以
上の長期間にわたり長寿命の測定が可能なことが判明し
た。
Furthermore, it has been found that by using the buffer solution 20 used in the measurement having the composition shown in Table 2 below, it is possible to perform long-life measurements over a long period of one month or more.

第2表 第2表の組成の緩衝溶液にはアンモニア酸化細菌の微量
の栄養成分を加え、測定の誤差原因となる他の従属栄養
細菌の生育を阻害する物質クロラムフェニコールを加え
たので、これらの細菌による汚染もなく、安定に長期間
測定が可能となっ九〔発明の効果〕 本発明によれば、アンモニア酸化細菌などの微生物また
は酵素を保持した固定化膜に、テフロン膜などのガス透
過膜を介して、前記の固定化膜と試料との反応によ少消
費される酸素量または5反応により生成される生成物量
を電流値として検出する検出器の白金カソードを接触さ
せ、この周囲を緩衝溶液が流れて循環して利用できるよ
うにし、固定化膜に浸透する緩衝溶液によりpHがほぼ
一定の状態に保つことができるようになった。このため
、従来試料の至適測定条件(pH条件、濃度条件)の調
整用に大量に消費されていた緩衝溶液は循環使用するよ
うにして大幅に節減できるようKなり。
Table 2 A trace amount of nutritional components for ammonia-oxidizing bacteria was added to the buffer solution with the composition shown in Table 2, and chloramphenicol, a substance that inhibits the growth of other heterotrophic bacteria that causes measurement errors, was added. [Effects of the Invention] According to the present invention, a gas such as a Teflon membrane is attached to an immobilized membrane holding microorganisms such as ammonia-oxidizing bacteria or enzymes. Through the permeable membrane, the platinum cathode of a detector that detects the amount of oxygen consumed in the reaction between the immobilized membrane and the sample or the amount of products produced by the five reactions as a current value is brought into contact with the surrounding area. A buffer solution is made available by flowing and circulating, and the pH can now be maintained at a nearly constant state by the buffer solution permeating the immobilized membrane. Therefore, a large amount of buffer solution, which was conventionally consumed for adjusting the optimum measurement conditions (pH condition, concentration condition) of the sample, can be reused and can be significantly reduced.

コストの節減に加えて、使用する測定装置の維持管理費
を低減できる効果が得られた。また、使用する装置の緩
衝溶液の保持量が少なくてすみ、装置が小形化でき、さ
らに常に緩衝溶液を循環させることで、微生物または酵
素の触媒活性に必要な成分や、従属栄養細菌の生育を阻
害する物質を連続的に供給できるので、長期間にわたり
安定な測定を連続して行うことが可能となって、環境計
測(水質モニタ)や発酵食品工業プロセスのモニタとし
て、本発明のバイオセンサが応用可能となる。
In addition to cost savings, we also had the effect of reducing maintenance and management costs for the measuring equipment used. In addition, the amount of buffer solution retained in the equipment used can be reduced, making the equipment more compact, and by constantly circulating the buffer solution, the components necessary for the catalytic activity of microorganisms or enzymes and the growth of heterotrophic bacteria can be prevented. Since inhibiting substances can be continuously supplied, stable measurements can be performed continuously over a long period of time, and the biosensor of the present invention can be used as an environmental measurement (water quality monitor) or a monitor of fermented food industrial processes. It becomes applicable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の実施例を示すもので、第
1図は測定装置の構成を示すフロー図。 WJ2図は本発明のバイオセンサの構成を示す断面図、
第3図は第2図の部分拡大図、第4図は横軸に時間粉)
を縦軸にセンサ出力1!流(μA)をとって示したバイ
オセンサの特性図、第5図は横軸にアンモニア性窒素(
蛎−N)の濃度(mF/Z)を縦軸にセンサ出力電流差
(μA)をとって検量線を示した図である。 2・・・被測定試料(試料)、4.28・・・切換弁、
6・・・送液ポンプ& 8・・・測定部、10・・・エ
アポンプ、 16・・・バイオセンサ、 20・・・緩
衝溶液、22・・・循環ポンプ。 32・・・演算・制御回路部、34・・・固定化膜、3
6.38・・・流路、40・・・フローセル、42・・
・検出器、52・・・本体。 56・・・アノード、60・・・ガス透過膜、64・・
・白金カン−8/!!ソ定fηp 第1図 峙 闇 m) 第4VU 第5図
1 to 3 show an embodiment of the present invention, and FIG. 1 is a flow diagram showing the configuration of a measuring device. Figure WJ2 is a sectional view showing the configuration of the biosensor of the present invention,
Figure 3 is a partially enlarged view of Figure 2, and Figure 4 shows time on the horizontal axis)
Sensor output 1 on the vertical axis! The characteristic diagram of the biosensor shown in Figure 5 shows the current (μA), and the horizontal axis shows ammonia nitrogen (
FIG. 3 is a diagram showing a calibration curve in which the sensor output current difference (μA) is plotted against the concentration (mF/Z) of oyster-N) on the vertical axis. 2... Sample to be measured (sample), 4.28... Switching valve,
6...Liquid pump & 8...Measuring unit, 10...Air pump, 16...Biosensor, 20...Buffer solution, 22...Circulation pump. 32... Arithmetic/control circuit section, 34... Immobilization membrane, 3
6.38...Flow path, 40...Flow cell, 42...
・Detector, 52...Main body. 56... Anode, 60... Gas permeable membrane, 64...
・Shirokane Kang-8/! ! So fixed fηp Figure 1 Darkness m) Figure 4 VU Figure 5

Claims (1)

【特許請求の範囲】 1)被測定試料と接触して反応する微生物または酵素を
保持した固定化膜を挟持し、この固定化膜の一方の側面
に接触する緩衝溶液を導く流路と、他方の側面に接触す
る被測定試料を導く流路とを備えて構成するフローセル
と、前記の緩衝溶液に接触する固定化膜の一方の側面側
に設け被測定試料と前記の固定化膜との反応により消費
される酸素量または反応により生成される生成物量を電
流値として検出する検出器を備えるバイオセンサであっ
て、 (イ)フローセルに固定した管状の本体 (ロ)フローセルへの固定部と反対側の本体の一端部に
固定して本体内部に設けるアノード (ハ)前記の緩衝溶液に接触する固定化膜の一方の側面
に、本体の他端部に備えるガス透過膜を介して接触し、
前記のアノードに絶縁層を介して設ける白金カソード (ニ)本体内部の前記のアノードと白金カソード間に充
てんする電解液 とから成る検出器を備えることを特徴とするバイオセン
サ。
[Scope of Claims] 1) A channel that sandwiches an immobilized membrane holding a microorganism or enzyme that reacts with a sample to be measured, and that leads a buffer solution that contacts one side of the immobilized membrane, and the other side. a flow cell configured with a flow channel that guides the sample to be measured that contacts the side surface of the buffer solution, and a flow channel that is provided on one side surface of the immobilized membrane that contacts the buffer solution to prevent the reaction between the sample to be measured and the immobilized membrane. A biosensor equipped with a detector that detects the amount of oxygen consumed by or the amount of products produced by a reaction as a current value, (a) a tubular body fixed to the flow cell, and (b) opposite to the part fixed to the flow cell. (c) an anode fixed to one end of the main body and provided inside the main body;
A biosensor comprising: (d) a platinum cathode provided on the anode via an insulating layer; and an electrolytic solution filled between the anode and the platinum cathode inside the main body.
JP63094865A 1988-04-18 1988-04-18 Biosensor Expired - Fee Related JPH0672858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63094865A JPH0672858B2 (en) 1988-04-18 1988-04-18 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63094865A JPH0672858B2 (en) 1988-04-18 1988-04-18 Biosensor

Publications (2)

Publication Number Publication Date
JPH01265150A true JPH01265150A (en) 1989-10-23
JPH0672858B2 JPH0672858B2 (en) 1994-09-14

Family

ID=14121934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63094865A Expired - Fee Related JPH0672858B2 (en) 1988-04-18 1988-04-18 Biosensor

Country Status (1)

Country Link
JP (1) JPH0672858B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536662A (en) * 1990-06-04 1996-07-16 Molecular Devices Corporation Cell assay device
KR20020034421A (en) * 2000-11-01 2002-05-09 이성희 Ammonia gas sensor introduce flow cell structure
JP2010107335A (en) * 2008-10-30 2010-05-13 Funai Electric Advanced Applied Technology Research Institute Inc Concentration measuring system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365358A (en) * 1986-09-05 1988-03-23 Fujitsu Ltd Sensor for carbon dioxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365358A (en) * 1986-09-05 1988-03-23 Fujitsu Ltd Sensor for carbon dioxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536662A (en) * 1990-06-04 1996-07-16 Molecular Devices Corporation Cell assay device
KR20020034421A (en) * 2000-11-01 2002-05-09 이성희 Ammonia gas sensor introduce flow cell structure
JP2010107335A (en) * 2008-10-30 2010-05-13 Funai Electric Advanced Applied Technology Research Institute Inc Concentration measuring system

Also Published As

Publication number Publication date
JPH0672858B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
US4356074A (en) Substrate specific galactose oxidase enzyme electrodes
US5030333A (en) Polarographic method for measuring both analyte and oxygen with the same detecting electrode of an electroenzymatic sensor
Gough et al. Membrane-covered, rotated disk electrode
EP0025110A2 (en) Electrochemical measuring apparatus provided with an enzyme electrode
EP0020623B1 (en) Analytical process and means for measuring the amount of hydrogen peroxide in aqueous media and of organic substrates generating hydrogen peroxide by enzymatic oxidation
CA2146246A1 (en) Improvements in and relating to gas-permeable membranes for amperometric gas electrodes and uses thereof
JPH10501425A (en) Measuring device for analytes in liquid samples
US4153513A (en) Method and apparatus for the continuous determination of the concentration of an enzyme substrate
US20030146111A1 (en) Enzymatic-electrochemical measuring device
JPH01265150A (en) Biosensor
JP4355560B2 (en) How to monitor hazardous substances
Falck Amperometric oxygen electrodes
Popp et al. Sandwich enzyme membranes for amperometric multi-biosensor applications: improvement of linearity and reduction of chemical cross-talk
Geppert et al. Automatic on-line measurement of substrates in fermentation liquids with enzyme electrodes
JPH0735741A (en) Bod measuring equipment
Santucci et al. A glucose biosensor operating under non-isothermal conditions: the dynamic response
KR100259469B1 (en) Method for measuring biochemical oxygen demand of biological waste water and apparatus thereof
JPS6057537B2 (en) Ammonia determination method using microbial electrodes
JP2006105615A (en) Electrochemical measuring method and measuring apparatus using it
JP4161111B2 (en) How to monitor hazardous substances in environmental water
JPH0545352A (en) Bod measuring apparatus
JP4384556B2 (en) Biosensor device replacement unit
JP4448223B2 (en) Bacteria detection method and detection apparatus
JPH01187445A (en) Method for measuring ammonia nitrogen in solution
JPH04160354A (en) Biosensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees