JPH0545352A - Bod measuring apparatus - Google Patents

Bod measuring apparatus

Info

Publication number
JPH0545352A
JPH0545352A JP3205324A JP20532491A JPH0545352A JP H0545352 A JPH0545352 A JP H0545352A JP 3205324 A JP3205324 A JP 3205324A JP 20532491 A JP20532491 A JP 20532491A JP H0545352 A JPH0545352 A JP H0545352A
Authority
JP
Japan
Prior art keywords
bod
sample water
sensor
ozone
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3205324A
Other languages
Japanese (ja)
Other versions
JP3030955B2 (en
Inventor
Yoshiharu Tanaka
良春 田中
Kensuke Isobe
磯部  健介
Hiroshi Hoshikawa
寛 星川
Akio Izumida
明男 泉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3205324A priority Critical patent/JP3030955B2/en
Publication of JPH0545352A publication Critical patent/JPH0545352A/en
Application granted granted Critical
Publication of JP3030955B2 publication Critical patent/JP3030955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To measure both the biochemical oxygen demand(BOD) originated from a suspended organic substance and the BOD of a soluble organic substance of high molecular weight by providing a pretreatment device for oxidizing a sample water with using ozone in an apparatus housing CONSTITUTION:In accordance with a switching command of an output device 24, only a dilute water 7 is fed to a microbe sensor 5 through a valve 10 and a heat exchanger 20. The water enters at 29 and is discharged at 30. After the output of the sensor 5 is stabilized, the valves 8, 9, 10 are switched in a preset order and an inspection line is formed by a BOD standard solution. A BOD operating formula is stored in a memory 25. Then, simultaneously when the sensor 5 is calibrated, the sample water collected at 3 and solubilized at 2a is sent to the sensor 5 through a valve 11 and the heat exchanger 20, where the BOD value is measured. The pretreatment device 2a introduces the collected sample water to a reaction tube 31 and turns the condensed oxygen to ozone at 33 to react with the sample water at 31. Accordingly, the suspended substance is made soluble and of low molecular weight along with the dissolved organic substance. It thus becomes possible to measure a soluble organic substance of high molecular weight and improve the measuring accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工場,事業所等からの
排水および河川,湖沼等の環境水域の水中のBOD(生
物化学的酸素要求量)を測定する装置、特に懸濁性有機
物由来のBODを含有する試料水について、微生物セン
サを用い簡便で精度よく測定することができるBODの
測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring BOD (biochemical oxygen demand) in wastewater from factories, business establishments, etc., and in water in environmental waters such as rivers and lakes, especially from suspended organic matter. The present invention relates to a BOD measuring device capable of easily and accurately measuring a sample water containing BOD of 1.

【0002】[0002]

【従来の技術】BODは、微生物によって酸化分解され
る排水中の有機物量を、微生物の消費する酸素量で示す
ものであり、水質管理項目として重要である。BOD
は、通常公定法である日本工業規格(JIS)法(JI
SK 0102:工場排水試験方法)により測定されて
いるが、近年、固定化微生物膜を応用したバイオセンサ
(微生物センサ)を用いたBODの測定法が、特公昭6
1−7258号公報に記載されている。
2. Description of the Related Art BOD indicates the amount of organic matter in wastewater that is oxidatively decomposed by microorganisms by the amount of oxygen consumed by microorganisms, and is an important water quality control item. BOD
Is the Japanese Industrial Standard (JIS) method (JI
SK 0102: Factory effluent test method), but in recent years, a BOD measurement method using a biosensor (microorganism sensor) that applies an immobilized microbial membrane has been disclosed in Japanese Examined Patent Publication 6
No. 1-7258.

【0003】ところで、JIS法には次の点で問題があ
る。 (イ)測定結果を得るまでに5日間という長時間を要
し、排水処理等のプロセスの管理の上で、測定結果を速
やかに活かすことができない。 (ロ)例えば、試料の希釈率の測定、妨害の除去操作
(pH調整,毒物除去)、硝化の抑制、植種等,測定上
の操作が煩雑である。 (ハ)手分析であって自動計測ができない。
Incidentally, the JIS method has the following problems. (A) It takes a long time of 5 days to obtain the measurement result, and the measurement result cannot be used promptly in management of the process such as wastewater treatment. (B) For example, measurement operations such as measuring the dilution ratio of the sample, removing interference (pH adjustment, removing poisonous substances), suppressing nitrification, planting, etc. are complicated. (C) It is a manual analysis and automatic measurement cannot be performed.

【0004】一方、微生物センサを用いた上記のBOD
の測定装置は、排水中のBODを約20〜40分程度で
測定することができ、有効なBOD測定法ではあるが、
固定化された微生物は、固定化微生物膜の細孔が0.2
2〜0.45μm程度の小さいものであるから、この細
孔を通過する溶解性有機物は直接資化することができる
が、細孔を通過できない懸濁性有機物については、資化
することができず、BODの測定精度の点で非常に問題
である。また、このBOD測定に用いられる微生物セン
サは、試料水のpHの変動や固定化微生物膜内の微生物
が、試料水中の溶解性有機物を資化したときに生成する
有機酸等により、固定化微生物膜内のpHが変化してセ
ンサ出力が変動し、これを防ぐために緩衝溶液を用い、
試料水を緩衝溶液と混合、希釈した後測定を行なうよう
にしている。したがって、連続的に試料水中のBODを
モニタリングする際には、緩衝溶液の消費量はが多くな
るので、測定装置の保守管理等の点から問題である。
On the other hand, the above BOD using a microbial sensor
The measuring device of is capable of measuring BOD in wastewater in about 20 to 40 minutes, which is an effective BOD measuring method.
The immobilized microorganisms have pores of the immobilized microbial membrane of 0.2.
Since it is as small as about 2 to 0.45 μm, soluble organic substances that pass through the pores can be directly assimilated, but suspended organic substances that cannot pass through the pores can be assimilated. However, it is very problematic in terms of BOD measurement accuracy. In addition, the microorganism sensor used for this BOD measurement is such that the immobilized microorganisms are changed by the fluctuation of the pH of the sample water and the organic acids produced when the microorganisms in the immobilized microbial membranes assimilate the soluble organic matter in the sample water. The pH in the membrane changes and the sensor output fluctuates. A buffer solution is used to prevent this.
The sample water is mixed with the buffer solution, diluted, and then measured. Therefore, when continuously monitoring the BOD in the sample water, the consumption of the buffer solution increases, which is a problem from the viewpoint of maintenance of the measuring device.

【0005】これに対して本発明者らは、懸濁物質処理
装置により試料水中の懸濁物質を可溶化処理し、これま
での微生物センサ法では測定不可能であった懸濁性有機
物由来のBODを計測可能とし、緩衝溶液も節約される
実用的なBOD測定装置を、特開平2−31153号公
報により開示している。以下にその概要を述べる。
On the other hand, the present inventors solubilized suspended substances in sample water with a suspended substance treatment device, and derived from suspended organic substances that could not be measured by conventional microbial sensor methods. Japanese Patent Application Laid-Open No. 2-31153 discloses a practical BOD measuring device capable of measuring BOD and saving a buffer solution. The outline is described below.

【0006】図5は上記の本発明者らが開示したBOD
測定装置の構成と、試料水の流れ方向を矢印で示した模
式図である。図5において、採水装置は排水を採取す
る源水ポンプ1aと、オーバーフローにより採水された
試料水の貯留槽1bと配管類からなる。懸濁物質処理装
置2は、採水ポンプ3により一定量採取された試料水中
の懸濁物質を破砕し、可溶化処理するものであり、超音
波ホモジナイザ等で構成される。測定装置は、恒温槽4
中に設けた微生物センサと、標準溶液槽6,希釈水槽
7,バルブ8,9,10,11,ポンプ12と配管とか
らなる給液装置と、緩衝溶液槽13,ポンプ14と配管
とからなる緩衝溶液循環装置15と、微生物センサ
出力信号の演算処理と本測定装置の運転を制御する演算
・制御回路16から構成される。緩衝溶液としては、
0.05〜0.1M,pH7.0のりん酸緩衝溶液を用
いる。標準溶液は、グルコース,グルタミン酸の混合溶
液を用い、微生物センサの検量線の作成に役立てる。
希釈水はBOD0mg/l の標準溶液で、経路の洗浄、試
料水の希釈のために測定の都度用いる。
FIG. 5 shows the BOD disclosed by the present inventors.
It is a schematic diagram which showed the structure of a measuring device and the flow direction of the sample water with the arrow. In FIG. 5, the water sampling apparatus 1 is composed of a source water pump 1a for sampling waste water, a sample water storage tank 1b sampled by overflow, and pipes. The suspension substance treatment device 2 is for crushing and solubilizing the suspension substance in the sample water sampled by the water sampling pump 3 in a fixed amount, and is composed of an ultrasonic homogenizer or the like. The measuring device is a constant temperature bath 4.
From the microorganism sensor 5 provided therein, the standard solution tank 6, the dilution water tank 7, the valves 8, 9, 10, 11 and the pump 12 and the piping, the buffer solution tank 13, the pump 14 and the piping It is composed of a buffer solution circulating device 15 and an arithmetic / control circuit 16 for controlling the output signal of the microorganism sensor 5 and the operation of the measuring device. As a buffer solution,
A phosphate buffer solution of 0.05 to 0.1 M and pH 7.0 is used. A standard solution is a mixed solution of glucose and glutamic acid, which is useful for preparing a calibration curve of the microorganism sensor 5 .
The dilution water is a standard solution of BOD 0 mg / l, and is used each time for measurement to wash the route and dilute the sample water.

【0007】図6は微生物センサの構成を示す模式断
面図である。図6において微生物センサは、固定化微
生物膜17を取り付けたフローセル18と溶存酸素検出
器19とにより構成してあり、図5に示す恒温槽4に収
納して測定温度に保つことができる。なお、試料水およ
び緩衝溶液も恒温槽4の内部で熱交換器20,21を通
過させることにより測定温度に保っている。微生物セン
は、固定化微生物膜17の中に固定化された微生物
によって、有機物が資化される際に消費される溶存酸素
の減少量を、溶存酸素検出器19により電流値信号とし
て出力する。この溶存酸素の減少量は、試料水中に溶存
する溶解性有機物の濃度に比例するので、出力信号電流
値から演算・制御回路16で演算され、溶解性BODの
値を求めることができる。
FIG. 6 is a schematic sectional view showing the structure of the microorganism sensor 5 . In FIG. 6, the microorganism sensor 5 is composed of a flow cell 18 to which an immobilized microorganism membrane 17 is attached and a dissolved oxygen detector 19, and can be stored in the thermostatic chamber 4 shown in FIG. 5 and kept at the measurement temperature. The sample water and the buffer solution are also kept at the measurement temperature by passing through the heat exchangers 20 and 21 inside the constant temperature bath 4. The microorganism sensor 5 outputs a decrease amount of dissolved oxygen consumed when the organic matter is assimilated by the microorganisms immobilized in the immobilized microorganism film 17 as a current value signal by the dissolved oxygen detector 19. .. Since the amount of decrease in the dissolved oxygen is proportional to the concentration of the soluble organic substance dissolved in the sample water, the value of the soluble BOD can be calculated by the calculation / control circuit 16 from the output signal current value.

【0008】再び図5において、、微生物センサによ
るBOD測定は、試料水がフローセル18内に供給され
てから、5〜15分程度のあらかじめ設定した時間が経
過したときの出力信号の電流値について行なう。微生物
センサからの出力信号は、演算・制御回路16のA/
D変換器22でデジタル化されて演算装置23に送ら
れ、所定の演算式に従って検量線の式、試料水のBOD
値を演算し記録する。出力装置24からは、算出された
BOD値を出力し、もしくはあらかじめ設定した順序、
時間に従い、バルブ8,9,10,11の切り換えや、
採水ポンプ3,懸濁物質処理装置2の動作制御信号を出
力する。緩衝溶液は、微生物センサ内を図6に示した
ように、緩衝溶液入口27から流入して緩衝溶液出口2
8から流出し、常に4〜6ml/minで緩衝溶液循環装置
によって移送され、熱交換器21を通過して測定温度
に保たれて循環する。緩衝溶液には、前述の如く0.0
5〜0.1M,pH7.0のりん酸緩衝溶液を用い、ま
たこれに微量栄養分を添加したものも用いることができ
る。
Referring again to FIG. 5, in the BOD measurement by the microorganism sensor 5 , the current value of the output signal when a preset time of about 5 to 15 minutes has elapsed since the sample water was supplied into the flow cell 18 To do. The output signal from the microorganism sensor 5 is A / of the arithmetic / control circuit 16 .
The data is digitized by the D converter 22 and sent to the arithmetic unit 23, and the formula of the calibration curve and the BOD of the sample water according to a predetermined arithmetic formula
Calculate and record the value. From the output device 24, the calculated BOD value is output, or a preset order,
Switching valves 8, 9, 10, 11 according to time,
Outputs an operation control signal for the water sampling pump 3 and the suspended matter treatment device 2. Buffer solution, as shown microorganisms sensor 5 in FIG. 6, a buffer and flows from the buffer solution inlet 27 solution outlet 2
Effluent from 8 and always at 4-6 ml / min Buffer solution circulation device 1
5 is passed through the heat exchanger 21, passes through the heat exchanger 21, and is circulated while being maintained at the measurement temperature. The buffer solution contains 0.0
It is also possible to use a phosphate buffer solution of 5 to 0.1 M and pH 7.0, and to which a trace nutrient is added.

【0009】最初に出力装置24の切り換え指令に従っ
て、希釈水槽7内の希釈水のみがバルブ10を経て、ポ
ンプ12により熱交換器20を通過して測定温度に保た
れて、液入口29から流入し微生物センサ内に送ら
れ、液出口30から系外に排出される。微生物センサ
の出力信号が安定した後、あらかじめ設定した順序に従
って、順次バルブ8,9,10を切り換えて、BOD標
準溶液により検量線を作成し、メモリ25にBOD演算
式を記憶させる。次に、微生物センサの校正時に、同
時に採水ポンプ3により採水し、懸濁物質処理装置2で
可溶化処理された試料水が、バルブ11を通してポンプ
12により熱交換器20を通過して測定温度に保たれ
て、微生物センサへ送られBOD値が測定される。微
生物センサの校正は1日に数回行なわれ、試料水のB
OD測定を一定時間の間隔で繰り返し行なうことができ
る。
First, according to the switching command of the output device 24, only the dilution water in the dilution water tank 7 passes through the valve 10 and the heat exchanger 20 by the pump 12 to be kept at the measurement temperature, and then flows in from the liquid inlet 29. Then, it is sent into the microorganism sensor 5 and discharged from the liquid outlet 30 to the outside of the system. Microbial sensor 5
After the output signal of is stabilized, the valves 8, 9 and 10 are sequentially switched according to a preset order, a calibration curve is created with the BOD standard solution, and the BOD calculation formula is stored in the memory 25. Next, when the microorganism sensor 5 is calibrated, the water sampled by the water sampling pump 3 at the same time, and the sample water solubilized by the suspended matter treatment apparatus 2 passes through the valve 11 and the pump 12 through the heat exchanger 20. The BOD value is measured while being kept at the measurement temperature and sent to the microorganism sensor 5 . The microbial sensor 5 is calibrated several times a day, and
The OD measurement can be repeated at regular time intervals.

【0010】[0010]

【発明が解決しようとする課題】最近の研究によれば、
溶解性の有機物であっても、分子量の大きい物質の場合
は、公定法であるJIS法のBOD5 値と比較して低い
値となり、例えば、澱粉はJIS法では、BOD5 値7
3.4mg/lであるのに対して、微生物センサによる測定
値は、2.9mg/lとなることが、日本水質汚濁研究会発
行の第22回水質汚濁学会講演集 p. 75-76 (s63年
3月)に渡辺らにより「BODセンサの諸特性」に記載
されている。しかも最近、微生物センサは、「微生物電
極による生物化学的酸素消費量計測器」としてJISに
制定(JIS K3602 1990年9月1日)され
たが、水質汚濁防止法では、懸濁性有機物と溶解性有機
物の両方を測定する必要があり、この規格により水質汚
濁防止法で定める水質の管理を行なうことを認めていな
い。
According to recent research,
Even in the case of a soluble organic substance, in the case of a substance having a large molecular weight, the value becomes lower than the BOD 5 value of the JIS method which is an official method. For example, starch has a BOD 5 value of 7 in the JIS method.
The value measured by the microbial sensor is 2.9 mg / l, whereas the measured value by the microbial sensor is 2.9 mg / l. Proceedings of the 22nd Japan Society for Water Pollution Research published by Japan Society for Water Pollution Research p. 75-76 ( s March 1988) by Watanabe et al. in "Characteristics of BOD sensor". Moreover, recently, a microbial sensor was established in JIS as "a biochemical oxygen consumption measuring instrument using a microbial electrode" (JIS K3602, September 1, 1990). It is necessary to measure both organic and organic substances, and this standard does not permit the management of water quality specified by the Water Pollution Control Act.

【0011】このような状況下にあって、微生物センサ
を用いた本発明者らの出願中のBOD測定装置は、多く
の利点を有するものであるが、なお次の点を解決しなけ
ればならない。それは、懸濁物質処理装置の超音波ホモ
ジナイザ等で、懸濁性有機物を物理的に破砕するだけで
は、なお不十分であり、溶解性有機物の中でも高分子量
の有機物も測定可能としなければならないからである。
Under these circumstances, the BOD measuring device applied by the inventors of the present invention using a microorganism sensor has many advantages, but the following points must be solved. .. It is still insufficient to physically disrupt the suspending organic matter with an ultrasonic homogenizer of a suspension substance treatment device, etc., and it is necessary to be able to measure even high-molecular weight organic matter among soluble organic matter. Is.

【0012】本発明は上述の点に鑑みてなされたもので
あり、その目的は、懸濁性有機物由来のBODに加え
て,溶解性有機物のうちの高分子量のBODも低分子量
として、公定法のBOD5 値との相関性がよく、精度の
高いBOD測定装置を提供することにある。
The present invention has been made in view of the above-mentioned points, and an object of the invention is to determine, in addition to BOD derived from a suspending organic substance, a high molecular weight BOD of a soluble organic substance as a low molecular weight. The object of the present invention is to provide a highly accurate BOD measuring device having a good correlation with the BOD 5 value of

【0013】[0013]

【課題を解決するための手段】本発明のBOD測定装置
は、上記の課題を解決するために、前述した本発明者ら
が出願中の特開平2−31153号公報に記載のBOD
測定装置に用いている懸濁物質処理装置の代わりに、採
水した試料水をオゾンを用いて酸化処理する前処理装置
を装置系内に設けたものである。
In order to solve the above-mentioned problems, the BOD measuring device of the present invention discloses a BOD disclosed in Japanese Patent Application Laid-Open No. 2-31153 filed by the present inventors.
In place of the suspended substance treatment device used in the measuring device, a pretreatment device for oxidizing the sampled water sampled with ozone is provided in the system.

【0014】[0014]

【作用】本発明のBOD測定装置は、上記のように構成
したために、前処理装置を通る排水等の試料水中の懸濁
物質をオゾン酸化により破砕して可溶化し、また、破
砕、可溶化された懸濁物質由来の有機物および高分子量
の溶存有機物をさらにオゾン酸化して、親水性で低分子
量の有機物に分解して、固定化微生物膜内の微生物が資
化しやすい性状に変化させることにより、懸濁性有機物
由来のBODに加えて,溶解性有機物のうちの高分子量
のものも測定可能となり、公定法のBOD5 値との相関
性がよく、測定精度も高い。
Since the BOD measuring device of the present invention is configured as described above, it suspends and solubilizes suspended substances in sample water such as wastewater passing through the pretreatment device by ozone oxidation, and also crushes and solubilizes them. By subjecting the suspended solid-derived organic matter and high-molecular-weight dissolved organic matter to ozone oxidation to decompose them into hydrophilic low-molecular-weight organic matter, the microorganisms in the immobilized microbial membrane are changed to a property that is easily assimilated. In addition to the BOD derived from the suspending organic substance, it is possible to measure the high molecular weight of the soluble organic substance, which has a good correlation with the BOD 5 value of the official method and has a high measurement accuracy.

【0015】[0015]

【実施例】以下、本発明を実施例に基づき説明する。図
1は本発明によるBOD測定装置の構成と試料水の流れ
系統を示す模式図であり、図5と共通部分に同一符号を
用いてある。本発明による図1の装置の基本的な構成は
図5と同じであり、異なる点は、図1では図5の懸濁物
質処理装置の代わりに、前処理装置2aを用いたこと
だけであるから、前処理装置2aに関すること以外は説
明を省略する。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is a schematic diagram showing a configuration of a BOD measuring device according to the present invention and a flow system of sample water, and the same reference numerals are used in common with FIG. The basic configuration of the apparatus of FIG. 1 according to the present invention is the same as that of FIG. 5, except that in FIG. 1, a pretreatment apparatus 2a is used instead of the suspended substance treatment apparatus 2 of FIG. Therefore, the description is omitted except for the pretreatment device 2a .

【0016】その前処理装置2aの構成を図2に示す。
図2において、点線で囲った部分の前処理装置2aは、
採水ポンプ3(図1)により一定量採取された試料水を
反応管31に導入し、 酸素濃縮器32からの濃縮酸素
をオゾナイザ33によりオゾン化して、反応管31内に
送り込み試料水と反応させることにより、懸濁物質を溶
解性にし溶存有機物とともに低分子量とするものであ
る。反応管31で処理された試料水をバルブ34を通し
て、リザーバ35に一時貯留し、エアポンプ36を用い
て余剰のオゾンをパージして、試料水をバルブ11に送
る。懸濁物質はオゾンと反応させることにより可溶化さ
れ、溶解性有機物は化学的に高分子量の結合を切り、分
子量を小さくすることができる。
The structure of the pretreatment device 2a is shown in FIG.
In FIG. 2, the pretreatment device 2a surrounded by a dotted line is
A certain amount of sample water sampled by the water sampling pump 3 (FIG. 1) is introduced into the reaction tube 31, the concentrated oxygen from the oxygen concentrator 32 is ozonized by the ozonizer 33, and is sent into the reaction tube 31 to react with the sample water. By so doing, the suspended substance is made soluble and has a low molecular weight together with the dissolved organic matter. The sample water treated in the reaction tube 31 is temporarily stored in the reservoir 35 through the valve 34, excess ozone is purged using the air pump 36, and the sample water is sent to the valve 11. The suspended substance is solubilized by reacting with ozone, and the soluble organic substance can chemically break the high molecular weight bond to reduce the molecular weight.

【0017】図3は本発明のBOD測定装置を用いて、
下水2次処理水について得られた測定結果を示す線図で
ある。図3に示した各特性線、BOD5 は公定法(JI
S)によるBOD測定値、BODS は本発明の装置によ
るBOD測定値、DOCは溶存有機態炭素濃度(mg−C/
l )、SSは懸濁物質濃度を表わす。図3において、前
処理装置2aにより、前処理(オゾン酸化処理)した試
料水中のSS濃度は減少し、これに伴い溶存有機物濃度
(BODS )は増加する。処理前後のBOD5 値は殆ど
変化していない。前処理なしの場合には、微生物センサ
の出力は小さく、BOD5 値の約12%程度の値しか得
ることができないが、本発明の装置を用いて、試料水を
前処理装置2aを20〜40分通すことにより、微生物
センサの出力(BODS )は増加し、BOD5 値の約8
7〜92%程度の値を得ることができる。このようにB
ODS 値の増加率は、SS濃度の減少やDOCの増加で
は説明し切れず、量的な変化だけではなく、溶解性有機
物の低分子量化や微生物の資化されやすい物質への変化
等、質的な変化も同時に進行していることを示すもので
ある。
FIG. 3 shows the use of the BOD measuring device of the present invention.
It is a diagram which shows the measurement result obtained about sewage secondary treated water. The characteristic lines and BOD 5 shown in FIG. 3 are the official method (JI
S) BOD measurement value, BOD S is the BOD measurement value by the apparatus of the present invention, DOC is the dissolved organic carbon concentration (mg-C /
l), SS represents the concentration of suspended matter. In FIG. 3, the pretreatment device 2a decreases the SS concentration in the sample water that has been pretreated (ozone oxidation treatment), and the dissolved organic matter concentration (BOD S ) increases accordingly. The BOD 5 value before and after the treatment hardly changed. If no pre-treatment, the output of the microorganism sensor is small, but it is only possible to obtain about 12% of the value of BOD 5 values, using the apparatus of the present invention, 20 to the pre-processing unit 2a a sample water After passing 40 minutes, the output of the microbial sensor (BOD S ) increases and the BOD 5 value is about 8
A value of about 7 to 92% can be obtained. B like this
The rate of increase in the OD S value cannot be explained by a decrease in SS concentration or an increase in DOC. Not only quantitative changes, but also changes in the molecular weight of soluble organic substances and changes in substances that are easily assimilated by microorganisms, etc. It shows that qualitative changes are also proceeding at the same time.

【0018】図4は公定法(JIS)による測定値(B
OD5 )と本発明の装置による測定値(BODS )との
相関関係を示す線図である。図4から両者が良好な相関
性を持つことがわかる。
FIG. 4 shows measured values (B) according to the official method (JIS).
FIG. 3 is a diagram showing a correlation between OD 5 ) and a measurement value (BOD S ) measured by the device of the present invention. It can be seen from FIG. 4 that both have a good correlation.

【0019】[0019]

【発明の効果】水質汚濁防止法では、懸濁性有機物と溶
解性有機物のBODの両方を測定することが要求されて
いるが、これに対応するためには、微生物センサを用い
たBOD測定装置の懸濁物質処理装置により、懸濁性有
機物を物理的に破砕するだけでは、なお不十分である。
これに対して本発明によれば、実施例で述べた如く、装
置系に懸濁物質処理装置の代わりに、試料水にオゾンを
吹き込む前処理装置を用いることにより、試料水中の懸
濁物質を可溶化処理するとともに、高分子量の溶存有機
物が低分子量に変わり、微生物センサの微生物に資化さ
れやすくすることができるので、懸濁性有機物由来のB
ODの計測とともに、これまで微生物センサでは、公定
法のBOD5 値より低く計測されていた溶存態の高分子
量の有機物も、BOD5 値と近似した値として測定さ
れ、公定法との相関性および測定精度が向上し、実用性
の高いBOD測定装置を得ることができる。
EFFECTS OF THE INVENTION In the water pollution control method, it is required to measure both BOD of suspended organic matter and soluble organic matter. To meet this requirement, a BOD measuring device using a microbial sensor is required. It is still inadequate to merely physically disrupt the suspending organic matter by the suspended substance treatment device of.
On the other hand, according to the present invention, as described in the embodiment, by using a pretreatment device for blowing ozone into the sample water instead of the suspended substance treatment device in the device system, the suspended substance in the sample water can be removed. With the solubilization treatment, the high-molecular-weight dissolved organic matter is changed to a low-molecular weight, and it can be easily assimilated by the microorganism of the microorganism sensor.
Along with the measurement of OD, the high molecular weight organic matter in the dissolved state, which has been measured by the microbial sensor so far lower than the BOD 5 value of the official method, is also measured as a value close to the BOD 5 value, and the correlation with the official method and It is possible to obtain a highly practical BOD measurement device with improved measurement accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のBOD測定装置の構成を示す模式図FIG. 1 is a schematic diagram showing a configuration of a BOD measuring device of the present invention.

【図2】本発明のBOD測定装置に用いる前処理装置の
構成を示す模式図
FIG. 2 is a schematic diagram showing the configuration of a pretreatment device used in the BOD measurement device of the present invention.

【図3】本発明のBOD測定装置に於ける測定結果を示
す線図
FIG. 3 is a diagram showing a measurement result in the BOD measuring device of the present invention.

【図4】公定法測定値と本発明の装置による測定値との
相関関係を示す線図
FIG. 4 is a diagram showing the correlation between the officially measured value and the measured value by the device of the present invention.

【図5】従来のBOD測定装置の構成を示す模式図FIG. 5 is a schematic diagram showing a configuration of a conventional BOD measuring device.

【図6】微生物センサの構成を示す模式断面図FIG. 6 is a schematic cross-sectional view showing the structure of a microorganism sensor.

【符号の説明】[Explanation of symbols]

1 採水装置 懸濁物質処理装置2a 前処理装置 4 恒温槽 微生物センサ 13 緩衝溶液槽 14 ポンプ15 緩衝溶液循環装置16 演算・制御回路 17 固定化微生物膜 18 フローセル 19 溶存酸素検出器 31 反応管 32 酸素濃縮器 33 オゾナイザ 35 リザーバ 36 エアポンプ1 Water sampling device 2 Suspended substance treatment device 2a Pretreatment device 4 Constant temperature bath 5 Microorganism sensor 13 Buffer solution bath 14 Pump 15 Buffer solution circulation device 16 Calculation / control circuit 17 Immobilized microbial membrane 18 Flow cell 19 Dissolved oxygen detector 31 Reaction Pipe 32 Oxygen Concentrator 33 Ozonizer 35 Reservoir 36 Air Pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 泉田 明男 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Akio Izumida 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】試料水中の有機物を生物化学的に分解する
微生物を保持した固定化微生物膜と試料水中の溶存酸素
量を測定する溶存酸素検出器とを組み合わせた微生物セ
ンサにより試料水中のBODを測定する装置において、
試料水を採取し貯留する採水装置と、この試料水を導入
しオゾンを用いて試料水を酸化処理する前処理装置と、
微生物センサの固定化微生物膜の溶存酸素検出器側の面
に常に緩衝溶液を循環させる緩衝溶液循環装置と、微生
物センサの出力信号の演算処理と本測定装置の運転を制
御する演算・制御回路とを備えることを特徴とするBO
D測定装置。
1. A BOD in a sample water is detected by a microbial sensor in which an immobilized microbial membrane holding microorganisms that biochemically decompose organic matter in the sample water and a dissolved oxygen detector for measuring the amount of dissolved oxygen in the sample water are combined. In the measuring device,
A water sampling device that collects and stores sample water, and a pretreatment device that introduces this sample water and oxidizes the sample water using ozone,
Microbial sensor Immobilization Microbial membrane buffer solution circulation device that constantly circulates a buffer solution on the surface of the dissolved oxygen detector side of the microorganism membrane, arithmetic processing of the output signal of the microbiological sensor and arithmetic and control circuit that controls the operation of this measurement device BO characterized by comprising
D measuring device.
【請求項2】請求項1記載のBOD測定装置において、
前処理装置は濃縮酸素を収納する酸素濃縮器,この濃縮
酸素をオゾン化するオゾナイザ,一定量の試料水を導入
しオゾンと反応させる反応管,オゾン酸化された試料水
を一時貯留するリザーバ,余剰のオゾンをパージする空
気を供給するエアポンプを備えることを特徴とするBO
D測定装置。
2. The BOD measuring device according to claim 1,
The pretreatment device is an oxygen concentrator that stores concentrated oxygen, an ozonizer that ozone-converts this concentrated oxygen, a reaction tube that introduces a fixed amount of sample water and reacts with ozone, a reservoir that temporarily stores ozone-oxidized sample water, and a surplus. BO comprising an air pump for supplying air for purging ozone of
D measuring device.
JP3205324A 1991-08-16 1991-08-16 BOD measuring device Expired - Lifetime JP3030955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3205324A JP3030955B2 (en) 1991-08-16 1991-08-16 BOD measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3205324A JP3030955B2 (en) 1991-08-16 1991-08-16 BOD measuring device

Publications (2)

Publication Number Publication Date
JPH0545352A true JPH0545352A (en) 1993-02-23
JP3030955B2 JP3030955B2 (en) 2000-04-10

Family

ID=16505053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3205324A Expired - Lifetime JP3030955B2 (en) 1991-08-16 1991-08-16 BOD measuring device

Country Status (1)

Country Link
JP (1) JP3030955B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828157A1 (en) * 1996-09-10 1998-03-11 Yukong Limited Continuous quick measurement of biochemical oxygen demand and apparatus therefor
JP2006029942A (en) * 2004-07-15 2006-02-02 Toshiba Corp Harmful substance detecting method and device
JP2009222667A (en) * 2008-03-18 2009-10-01 Metawater Co Ltd Toxic substance detecting method and toxic substance detector
CN111896699A (en) * 2020-07-01 2020-11-06 武汉新烽光电股份有限公司 BOD online monitoring device and method based on composite strain putting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828157A1 (en) * 1996-09-10 1998-03-11 Yukong Limited Continuous quick measurement of biochemical oxygen demand and apparatus therefor
JP2006029942A (en) * 2004-07-15 2006-02-02 Toshiba Corp Harmful substance detecting method and device
JP4537788B2 (en) * 2004-07-15 2010-09-08 株式会社東芝 Hazardous substance detection method and apparatus
JP2009222667A (en) * 2008-03-18 2009-10-01 Metawater Co Ltd Toxic substance detecting method and toxic substance detector
CN111896699A (en) * 2020-07-01 2020-11-06 武汉新烽光电股份有限公司 BOD online monitoring device and method based on composite strain putting

Also Published As

Publication number Publication date
JP3030955B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
US5160604A (en) Toxic substance-detecting system with fixed microorganism membrane for water quality-monitoring
Vanrolleghem et al. On-line monitoring equipment for wastewater treatment processes: state of the art
Marty et al. Measurement of BOD: correlation between 5-day BOD and commercial BOD biosensor values
JP3030955B2 (en) BOD measuring device
Beaubien et al. Applications of flow microcalorimetry to process control in biological treatment of industrial wastewater
JP3289522B2 (en) BOD measuring device
JP4355560B2 (en) How to monitor hazardous substances
JPH06258284A (en) Bod measuring device
JPH0735741A (en) Bod measuring equipment
JPH0989839A (en) Water quality meter applied with biosensor
EP0537210B1 (en) Continuous rbcod measurement
JP3077461B2 (en) How to monitor hazardous substances in water
JPS5999353A (en) Method and apparatus for measuring bod
JP3505559B2 (en) Pollution load meter
EP0757017B1 (en) Method to monitor in liquids the concentration of substances which are degraded by acidifying or alkalizing microorganisms
JP2001228110A (en) Biosensor-applied water quality meter
TWI773233B (en) Method and apparatus for real-time monitoring activity of nitrifying bacteria
Hikuma et al. Use of microbial electrodes for observation of microbiological nitrogen elimination process
JP3872883B2 (en) High sensitivity BOD sensor and high sensitivity measurement method of BOD using the sensor
JPH0656378B2 (en) BOD measuring device
JP3413157B2 (en) Moldy odor substance detection device
Tanaka et al. Development of the ammonia biosensor monitoring system
JP3522512B2 (en) Biosensor-based water quality meter
JP2003169697A (en) Method of measurement for phosphoric acid in water and equipment for the same
Tanaka et al. BIOSENSORMONITORING SYSTEM