JP3872883B2 - High sensitivity BOD sensor and high sensitivity measurement method of BOD using the sensor - Google Patents

High sensitivity BOD sensor and high sensitivity measurement method of BOD using the sensor Download PDF

Info

Publication number
JP3872883B2
JP3872883B2 JP34259497A JP34259497A JP3872883B2 JP 3872883 B2 JP3872883 B2 JP 3872883B2 JP 34259497 A JP34259497 A JP 34259497A JP 34259497 A JP34259497 A JP 34259497A JP 3872883 B2 JP3872883 B2 JP 3872883B2
Authority
JP
Japan
Prior art keywords
bod
sensor
water
high sensitivity
sample water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34259497A
Other languages
Japanese (ja)
Other versions
JPH11174018A (en
Inventor
征夫 軽部
巧 西原
Original Assignee
学校法人片柳学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人片柳学園 filed Critical 学校法人片柳学園
Priority to JP34259497A priority Critical patent/JP3872883B2/en
Publication of JPH11174018A publication Critical patent/JPH11174018A/en
Application granted granted Critical
Publication of JP3872883B2 publication Critical patent/JP3872883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高感度 BOD (Biochemical Oxygen Demand、即ち「生物化学的酸素消 費量」) センサー、殊に好気性微生物を利用する BOD センサー及び該センサー を用いる BOD の高感度測定法に係る。
【0002】
【従来の技術】
BOD は古くから水質汚濁の度合いを判断する有効な指標として汎用されている。この BOD とは試料水中に存在する有機物が好気性微生物により分解、安定 化されるまでに該微生物の呼吸により消費される、試料水中の溶存酸素の量に他ならない。
【0003】
BOD の測定には、一般的には希釈法が採用されており、この方法は充分量の溶存酸素を含有する希釈水を用いて試料水を希釈した後に密封容器中に保ち、20℃において 5 日間放置した場合に消費された溶存酸素の量を ppm 単位で表すものである。尚、溶存酸素の定量法としてはウインクラー-アジ化ナトリウム変法(JIS K0102)、ミラー変法及び隔膜電極法がある。
【0004】
【発明が解決しようとする課題乃至発明の目的】
従来の BOD 測定法は基本的には希釈法であり、この方法は試料水に前処理を 施さなければならない点及び 5 日間の長い培養期間を要する点に課題がある。 尚、希釈水として 5 日間の培養期間中の酸素消費量が 0.2mg O/l 以下のものを用い、又植種希釈水を用いる場合には 5 日間の培養期間中の酸素消費量が 3.5 - 6.2 mg O/l の範囲、(D1 - D2) x 100/D1 = 40 - 70 (%) の範囲の値のものを採用し、BOD を算出する。
上記の式中において、
D1 : 希釈した植種液の培養前の溶存酸素量、
D2 : 希釈した植種液の培養前の溶存酸素量
従って、この希釈法は複雑である点にも課題がある。
【0005】
ウインクラー-アジ化ナトリウム変法はミラー変法よりも感度は良好であるが、試薬としてのチオ硫酸ナトリウムの調製に 2 日間を要する点及び滴定等の 工程が存在するために、高度な熟練技術を要する点に課題がある。
【0006】
一方、隔膜電極法は手技が要求される上記の諸方法の欠陥を克服するものであり、希釈法と比較する場合に極めて簡便であるが、本来、工場排水に関する BOD測定用に開発されたものであり、従って河川水や湖沼水におけるような低濃度のBOD (約 5 ppm 以下) は測定不可能である点に課題がある。これは、河川水や湖沼水中には難分解性有機物質が存在し、所定の測定時間内にこれらの物質を分解できず、従ってこれらの物質に対しては応答できないからである。
【0007】
従って、本発明の目的は BOD 値が低い河川水や湖沼水等に対しても適用可能 であり、前処理等の煩雑さがなく、熟練が要求されず、更に有機溶媒等を必要としないので環境化学的にも優れた BOD の測定法を提供することにあり、又該測 定法の実施を可能にする BOD センサーを提供することにある。
【0008】
【課題を解決しようとする手段】
河川や湖沼の水質汚濁を惹起する有機物質は多種多様であるが、BOD 値の低い河川等の汚濁物質は主として難分解性有機物である。殊に、家庭排水や都市下水には生物学的に分解速度の遅いフミン酸、リグニン、タンニン酸、セルロース(アラビアゴム)、界面活性剤等の成分の含有比率が高い。このような難分解性有機物は下水処理場や浄化処理施設で処理しきれずに河川等に二次処理水として放出される場合が多く、これが水質汚染の原因となっていると考えられる。
【0009】
従って、下水処理場における活性汚泥等から上記の難分解性有機物に対して優れた分解能を有している好気性微生物を探索して単離し、該微生物と酸素電極とを組合わせれば、従来不可能であった BOD 値の低い河川水や湖沼水に関するBOD の測定も可能になる筈である。何故ならば、好気性微生物を固定化した微生物膜を酸素電極の陰極側に配置し、有機物質を含有していない溶存酸素飽和状態の水溶液中に酸素電極を浸漬して通電すれば、水溶液中の酸素が微生物膜に拡散し、その 1 部が微生物の呼吸により消費され、残りの酸素が微生物膜を透過し て酸素電極の陰極上で還元され、この場合に微生物の呼吸活性は一定に近いので電流値は定常状態となる。次いで有機物を含有する試料水を添加すると、有機物の資化により微生物の呼吸活性が増加し、その結果電極に達する酸素の量は減少し、従って電流値は急速に減少する。しかしながら、その後に微生物膜への有機物の拡散が定常状態になるために微生物の呼吸による酸素消費量は定常状態になり、従って電流値も定常状態となる。この定常電流値と試料水中の有機物の量との間には相関関係の存在することが認められており、この原理を利用することにより、試料水の BOD を測定することが可能となるのである。
【0010】
そこで、本発明者等は難分解性有機物であるフミン酸 25.76 重量%、リグニン14.72 重量%、タンニン酸 25.33 重量%、アラビアゴム 28.48 重量% 及び界面活性剤 5.71 重量% を配合した組成物を酸素含有蒸留水に添加して従来の希釈法による BOD 値が 3.77 ppm である人工下水 (総有機物含有量が 16.485 mg/l となるように上記の組成物を配合) を調製し、下水処理場から供与を受けた各種の活性汚泥から難分解性有機物に対して高い分解能を有する微生物を探索した結果、雑食性が極めて高い微生物を見い出し、斯くて本発明を基本的には完成するに至った。この微生物はシュードモナス・プチーダ 10G (Pseudomonas putida 10G) と命名され、工業技術院生命工学工業技術研究所に寄託された (受託番号 :FERM P-16457)。
【0011】
従って、本発明による高感度 BOD センサーは、好気性微生物であるシュードモナス・プチーダ (Pseudomonas putida) 10G を固定化した担体を酸素電極の陰極側に配置し、該酸素電極からの出力電流の変化量を測定することを特徴としている。
【0013】
一方、本発明による BOD の高感度測定法は、シュードモナス・プチーダ 10G を固定化した微生物膜を酸素電極の陰極側に配置し、該酸素電極からの出力電流の変化量を測定し、予め作成された検量線と照合することを特徴としている。
【0014】
酸素電極としては市販の任意のものを使用することができ、微生物固定用担体の素材としてはニトロセルロース、ポリアクリロニトリル、光硬化性樹脂 (ポリビニルアルコール等)、ポリウレタン、カラギーナン、アルギン酸カルシウム・ ゲルを例示することができる。
【0015】
【発明の実施の形態】
次に、図面を参照しつつ、本発明による BOD センサーを備えた BOD 測定装置について説明し、又標準試料水を用いた予備試験例及び河川水の実測試験例である実施例について説明する。
【0016】
図 1 には BOD 測定装置 10 の概略が示されており、この装置は本発明によるBOD センサー 12 と、試料水 S 及び該試料水に下部が浸漬するように上記のBOD センサーを収容している容器 14 と、電流電圧計を含む記録装置 16 とを備えている。上記の BOD センサー 12 は市販の Clark 型酸素電極と、該酸素電極の陰極側に配置された固定化微生物膜とを具備している。この微生物膜はニトロセルロース製であって、ポアサイズ 0.4μm の多孔性膜の片面に微生物懸濁液を注下して吸引濾過し、次いで微生物層側にも同様の多孔性ニトロセルロース膜を貼付し、微生物層をサンドイッチ状態にすることにより作成されたものである。尚、湿潤重量で 40 mg の微生物を上記のセルロース膜に固定し、試料水は 50ml が使用される。
【0017】
この BOD 測定装置 10 の操作について説明すれば、先ず酸素電極に電解液を 導入し、BOD センサー 12 を容器 14 内にセットし、酸素電極を電源に接続する。次いで、容器 14 内に緩衝液 (0.05M 燐酸緩衝液、pH 9.0) を導入し、記録装置 16 の電圧電流計をモニターしながら電流値が安定するのを待ち、電流値が安定したならば、これを記録する。その後に、有機物質含有する試料水を容器14 内に導入して緩衝液を試料水に置換する。試料水が固定化微生物膜に接触す ると、試料水中の有機物は微生物により資化され、微生物の呼吸活性が増加するので、試料水中の溶存酸素量は減少し、これに伴って電流値が減少する。電流の減少変化量は試料水の BOD 値に依存するので、BOD 値が既知の標準試料水を使 用して検量線を予め作成しておき、測定された電流変化量を検量線に照合すれば、BOD 値が未知の試料水の BOD 値を測定することができる。
【0018】
予備試験例 1
フミン酸 25.76 重量%、リグニン 14.72 重量%、タンニン酸 25.33 重量%、アラビアゴム 28.48 重量% 及び界面活性剤 5.71 重量% を配合した組成物を酸素 含有蒸留水に添加して希釈法による BOD 値が 10 ppm までの各種の人工下水を 調製した (既述のように、総有機物含有量が 16.485 mg/l の場合に、従来の希 釈法による BOD 値が 3.77 ppm となるので、これに基づいて上記の組成物の配 合量を調整)。これらの人工下水と図 1 に示されている通りの装置を使用し且つ該図に関連して説明した通りの態様で電流の変化量を測定した。結果は図 2 に 示されている通りであり、応答値と BOD 値とは極めて良好な相関性の存在する ことが判明した (相関係数 : 0.994)。同一試料水に関して 5 回宛測定が行われたが、回帰式 y = 4.4939e - 2 + 0.14417x であって、再現性も極めて良好であった。従って、図 2 に示されるグラフは検量線として使用することができる。 尚、検出限界は BOD が 0.25 ppm であり、この感度は 3 ppm 以下とされる日本の 1 級河川における河川水の BOD 測定用に適用可能なことを意味しており、測定所要時間は試料水の BOD 値に依存するが 1 - 10 分間であった。
【0019】
予備試験例 2 (塩化物イオンが測定に及ぼす影響)
本発明による BOD の測定法は主として河川水及び湖沼水を対象としており、 殊に河川水の場合には塩分が遡上する流域で採取された試料水も測定対象となる。従って、BOD 値が既知の試料水と、この試料水に種々の量の塩化ナトリウムを添加して塩化物イオン濃度を変化させた試料水とを用いて電流の変化量を測定し、両者の差を比較した結果は図 3 に示されている通りであり、塩化物イオン 濃度が 1000 ppm までは測定に及ぼす影響が殆どないことが判明した。従って、本発明による BOD 測定法は塩分含有水を試料水とする場合にも充分に適用可能 である。
【0020】
予備試験例 3 (重金属イオンが測定に及ぼす影響)
本発明による BOD の測定法が対象としている河川水や湖沼水は重金属を含有 している可能性があるが、重金属は通常微生物の呼吸活性を阻害するものと考えられている。従って、予備試験例 1 に記載されている組成物と酸素含有蒸留水 とを使用して BOD が 1 ppm の人工下水 (コントロール) を調製し、この人工下水と図 1 に示されている装置にて電流の変化量を測定し、一方、上記のコント ロールにクロム、マンガン、鉄、銅又は亜鉛イオンを 1 ppm 宛添加して同様に 電流の変化量を測定し、重金属イオン無添加のコントロールの場合の電流の変化量を 100 とする相対値で重金属イオンが測定に及ぼす影響を調べた。結果は下 記の表 1 に示されている通りでありマンガン、鉄、銅及び亜鉛イオンは測定に 影響を与えず、クロムイオンが与える影響も極めて僅かであった。
【0021】
【表1】

Figure 0003872883
【0022】
実施例及び相関試験例 (河川水に関する BOD 値の実測)
実際の河川水を渡良瀬川に関して 1 箇所及び鬼怒川に関して 2 箇所から採取して被検試料水とし、本発明による測定法と従来の希釈法とを利用して BOD を 測定し、又希釈法による BOD 値を 100% とした場合における本発明方法による 測定値の占める割合を調べた。
結果は下記の表 2 に示されている通りであり、両方法による測定値は極めて 近接しており、従って本発明による測定法は実際の測定に適用可能であることが判明した。
【0023】
【表2】
Figure 0003872883
【0024】
【発明の効果】
本発明による BOD の測定法は、従来の測定法と比較した場合に、操作が簡便 で熟練を必要とせず、測定所要時間も従来法の 5 日間程度に対して 1 - 10 分 間であって極めて短く、然も本発明方法は、これを実施するために使用される好気性微生物であるシュードモナス・プチーダ 10G の呼吸活性は塩化物イオンや 重金属イオンの影響を殆ど受けず、検出限界も 0.25 ppm 程度なので塩分が存在する河川水や重金属が存在する河川水・湖沼水等を試料水とすることができ、実用性が極めて高い。
【図面の簡単な説明】
【図1】本発明による BOD 測定装置を示す概略図である。
【図2】 BOD 値と電流の変化量との関係を示すグラフであり、検量線として使用し得るグラフである。
【図3】試料水中の塩化物イオン濃度と電流の変化量との関係を示すグラフである。
【符号の説明】
10 : BOD 測定装置、
12 : BOD センサー、
14 : 試料水収容用の容器、
16 : 記録装置、
S : 試料水。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a highly sensitive BOD (Biochemical Oxygen Demand) sensor, particularly a BOD sensor using an aerobic microorganism, and a highly sensitive measurement method of BOD using the sensor.
[0002]
[Prior art]
BOD has been widely used as an effective index for judging the degree of water pollution since ancient times. This BOD is nothing but the amount of dissolved oxygen in the sample water that is consumed by respiration of the microorganisms until the organic matter present in the sample water is decomposed and stabilized by the aerobic microorganisms.
[0003]
For the measurement of BOD, a dilution method is generally employed. In this method, the sample water is diluted with a dilution water containing a sufficient amount of dissolved oxygen and then kept in a sealed container. The amount of dissolved oxygen consumed when left for a day is expressed in ppm. As a method for determining dissolved oxygen, there are a Winker-sodium azide modified method (JIS K0102), a modified Miller method, and a diaphragm electrode method.
[0004]
[Problem to be Solved by the Invention]
The conventional BOD measurement method is basically a dilution method, and this method has problems in that sample water must be pretreated and a long culture period of 5 days is required. Use diluted water whose oxygen consumption during the 5-day culture period is 0.2 mg O / l or less, and when using diluted plant water, the oxygen consumption during the 5-day culture period is 3.5- Use a value in the range of 6.2 mg O / l, (D1-D2) x 100 / D1 = 40-70 (%), and calculate BOD.
In the above formula,
D1: Dissolved oxygen amount before culture of diluted seed solution
D2: The amount of dissolved oxygen before culturing of the diluted seed solution Therefore, this dilution method has a problem in that it is complicated.
[0005]
The Winker-sodium azide modified method is more sensitive than the Miller modified method. However, it requires two days to prepare sodium thiosulfate as a reagent and there are processes such as titration. There is a problem in that it requires.
[0006]
On the other hand, the diaphragm electrode method overcomes the deficiencies of the above-mentioned methods that require maneuver and is extremely simple when compared with the dilution method, but was originally developed for measuring BOD for industrial wastewater. Therefore, there is a problem that low concentrations of BOD (less than about 5 ppm) such as those in river water and lake water cannot be measured. This is because there are persistent organic substances in river water and lake water, and these substances cannot be decomposed within a predetermined measurement time, and therefore cannot respond to these substances.
[0007]
Therefore, the object of the present invention can be applied to river water and lake water having a low BOD value, there is no complicated pretreatment, no skill is required, and no organic solvent is required. It is to provide a BOD measurement method that is excellent in environmental chemistry, and to provide a BOD sensor that enables the measurement method to be carried out.
[0008]
[Means to solve the problem]
There are a wide variety of organic substances that cause water pollution in rivers and lakes, but pollutants in rivers with low BOD values are mainly persistent organic substances. In particular, domestic wastewater and municipal sewage have a high content ratio of components such as humic acid, lignin, tannic acid, cellulose (gum arabic), and surfactant, which are biologically slow to decompose. Such persistent organic substances cannot be treated at sewage treatment plants or purification facilities and are often discharged into rivers as secondary treated water, which is thought to cause water pollution.
[0009]
Therefore, if an aerobic microorganism having an excellent resolution with respect to the above-mentioned hardly decomposable organic matter is searched and isolated from activated sludge etc. in a sewage treatment plant, and the microorganism and the oxygen electrode are combined, the conventional method is not possible. It should be possible to measure BOD for river water and lake water with low BOD values. This is because a microorganism membrane in which aerobic microorganisms are immobilized is arranged on the cathode side of the oxygen electrode, and the oxygen electrode is immersed in a dissolved oxygen-saturated aqueous solution that does not contain organic substances. Oxygen diffuses into the microbial membrane, part of which is consumed by microbial respiration, and the remaining oxygen permeates through the microbial membrane and is reduced on the cathode of the oxygen electrode, where the microbial respiratory activity is nearly constant. Therefore, the current value is in a steady state. Subsequently, when sample water containing organic matter is added, the respiration activity of the microorganism increases due to utilization of the organic matter, and as a result, the amount of oxygen reaching the electrode decreases, and thus the current value decreases rapidly. However, since the diffusion of the organic matter to the microbial membrane thereafter becomes a steady state, the oxygen consumption amount due to the respiration of the microorganism becomes a steady state, and thus the current value also becomes a steady state. It is recognized that there is a correlation between the steady-state current value and the amount of organic matter in the sample water. By using this principle, the BOD of the sample water can be measured. .
[0010]
Accordingly, the present inventors have included an oxygen-containing composition containing 25.76% by weight of humic acid, 14.72% by weight of lignin, 25.33% by weight of tannic acid, 28.48% by weight of gum arabic, and 5.71% by weight of a surfactant, which are persistent organic substances. Prepare artificial sewage (added the above composition so that the total organic matter content is 16.485 mg / l) by adding to distilled water and having a BOD value of 3.77 ppm according to the conventional dilution method, and supply it from the sewage treatment plant As a result of searching for microorganisms having a high resolution with respect to hardly decomposable organic substances from various activated sludges that have been subjected to the above, microorganisms with extremely high omnivorous properties were found, and thus the present invention was basically completed. This microorganism was named Pseudomonas putida 10G ( Pseudomonas putida 10G) and deposited with the Institute of Biotechnology, Institute of Industrial Science and Technology (Accession Number: FERM P-16457).
[0011]
Therefore, the high-sensitivity BOD sensor according to the present invention has a support on which the aerobic microorganism Pseudomonas putida 10G is immobilized arranged on the cathode side of the oxygen electrode, and the amount of change in the output current from the oxygen electrode is measured. It is characterized by measuring .
[0013]
On the other hand, the highly sensitive measurement method for BOD according to the present invention is prepared in advance by placing a microbial membrane on which Pseudomonas putida 10G is immobilized on the cathode side of an oxygen electrode and measuring the amount of change in the output current from the oxygen electrode. It is characterized by matching with a standard curve.
[0014]
Any commercially available oxygen electrode can be used, and examples of the carrier material for microbial fixation include nitrocellulose, polyacrylonitrile, photocurable resins (polyvinyl alcohol, etc.), polyurethane, carrageenan, calcium alginate gel can do.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, a BOD measuring apparatus equipped with a BOD sensor according to the present invention will be described with reference to the drawings, and examples of preliminary test examples using standard sample water and actual test examples of river water will be described.
[0016]
FIG. 1 shows an outline of a BOD measuring apparatus 10, which contains the BOD sensor 12 according to the present invention, the sample water S, and the above BOD sensor so that the lower part is immersed in the sample water. A container 14 and a recording device 16 containing an ammeter are provided. The BOD sensor 12 includes a commercially available Clark-type oxygen electrode and an immobilized microbial membrane disposed on the cathode side of the oxygen electrode. This microbial membrane is made of nitrocellulose. The microbial suspension is poured onto one side of a porous membrane with a pore size of 0.4 μm and suction filtered, and then the same porous nitrocellulose membrane is also applied to the microbial layer side. It was created by putting the microbial layer in a sandwich state. In addition, 40 mg of microorganisms in wet weight are fixed to the above cellulose membrane, and 50 ml of sample water is used.
[0017]
The operation of the BOD measuring apparatus 10 will be described. First, an electrolytic solution is introduced into the oxygen electrode, the BOD sensor 12 is set in the container 14, and the oxygen electrode is connected to a power source. Next, a buffer solution (0.05M phosphate buffer, pH 9.0) is introduced into the container 14, and the current value is stabilized while monitoring the voltage ammeter of the recording device 16, and if the current value is stabilized, Record this. Thereafter, sample water containing an organic substance is introduced into the container 14 to replace the buffer solution with the sample water. When the sample water comes into contact with the immobilized microbial membrane, the organic matter in the sample water is assimilated by the microorganisms, and the respiratory activity of the microorganisms increases, so the amount of dissolved oxygen in the sample water decreases and the current value increases accordingly. Decrease. Since the amount of decrease in current depends on the BOD value of the sample water, a calibration curve should be created in advance using a standard sample water with a known BOD value, and the measured current variation should be verified against the calibration curve. For example, the BOD value of sample water whose BOD value is unknown can be measured.
[0018]
Preliminary test example 1
A composition containing 25.76% by weight of humic acid, 14.72% by weight of lignin, 25.33% by weight of tannic acid, 28.48% by weight of gum arabic and 5.71% by weight of surfactant was added to distilled water containing oxygen to give a BOD value of 10 by the dilution method. Various types of artificial sewage were prepared up to ppm (as described above, when the total organic matter content is 16.485 mg / l, the BOD value by the conventional dilution method is 3.77 ppm. (Adjust the amount of composition in the above). Using these artificial sewage and the apparatus as shown in FIG. 1, the amount of change in current was measured in the manner described in connection with the figure. The results are as shown in Fig. 2. It was found that there was a very good correlation between the response value and the BOD value (correlation coefficient: 0.994). The measurement was performed five times for the same sample water, but the regression equation was y = 4.4939e-2 + 0.14417x, and the reproducibility was very good. Therefore, the graph shown in Figure 2 can be used as a calibration curve. The detection limit is 0.25 ppm for BOD, and this sensitivity means that it can be used for BOD measurement of river water in Japanese first-class rivers that are 3 ppm or less. 1-10 minutes, depending on the BOD value.
[0019]
Preliminary test example 2 (effect of chloride ion on measurement)
The BOD measurement method according to the present invention is mainly intended for river water and lake water. In particular, in the case of river water, sample water collected in a catchment where salinity goes up is also measured. Therefore, the amount of change in current was measured using sample water with a known BOD value and sample water in which various amounts of sodium chloride were added to this sample water to change the chloride ion concentration. The results of comparing the results are shown in Fig. 3. It was found that there was almost no effect on the measurement until the chloride ion concentration reached 1000 ppm. Therefore, the BOD measurement method according to the present invention is sufficiently applicable even when the salt-containing water is used as the sample water.
[0020]
Preliminary test example 3 (effect of heavy metal ions on measurement)
Although river water and lake water targeted by the BOD measurement method according to the present invention may contain heavy metals, heavy metals are generally considered to inhibit the respiratory activity of microorganisms. Therefore, using the composition described in Preliminary Test Example 1 and oxygen-containing distilled water, artificial sewage (control) with a BOD of 1 ppm was prepared, and this artificial sewage was added to the device shown in Fig. 1. On the other hand, chromium, manganese, iron, copper, or zinc ions were added to the above control to 1 ppm, and the current change was measured in the same manner. The effect of heavy metal ions on the measurement was examined using a relative value where the amount of change in current was 100. The results are shown in Table 1 below. Manganese, iron, copper and zinc ions did not affect the measurement, and the effects of chromium ions were very slight.
[0021]
[Table 1]
Figure 0003872883
[0022]
Examples and correlation test examples (measurement of BOD values for river water)
Actual river water was collected from one location on the Watarase River and two locations on the Kinugawa River as test sample water, and BOD was measured using the measurement method according to the present invention and the conventional dilution method. When the value was 100%, the ratio of the measured value according to the method of the present invention was examined.
The results are as shown in Table 2 below, and the measured values obtained by both methods are very close to each other. Therefore, it was found that the measuring method according to the present invention is applicable to actual measurement.
[0023]
[Table 2]
Figure 0003872883
[0024]
【The invention's effect】
The BOD measurement method according to the present invention is simple and does not require skill when compared with the conventional measurement method, and the measurement time is 1 to 10 minutes compared to the conventional method of about 5 days. The respiration activity of Pseudomonas putida 10G, an aerobic microorganism used for carrying out this, is extremely short, and is hardly affected by chloride ions or heavy metal ions, and the detection limit is 0.25 ppm. Therefore, sample water can be used as sample water, such as river water with salt and river water with heavy metals.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a BOD measuring apparatus according to the present invention.
FIG. 2 is a graph showing the relationship between the BOD value and the amount of change in current, and can be used as a calibration curve.
FIG. 3 is a graph showing the relationship between the chloride ion concentration in the sample water and the amount of change in current.
[Explanation of symbols]
10: BOD measuring device,
12: BOD sensor,
14: Container for holding sample water,
16: recording device,
S: Sample water.

Claims (2)

好気性微生物であるシュードモナス・プチーダ(Pseudomonas putida) 10G を固定化した担体を酸素電極の陰極側に配置し、該酸素電極からの出力電流の変化量を測定することを特徴とする、高感度 BOD センサー。A highly sensitive BOD, characterized in that a carrier on which 10 g of aerobic microorganism Pseudomonas putida 10G is immobilized is arranged on the cathode side of the oxygen electrode and the amount of change in the output current from the oxygen electrode is measured. sensor. シュードモナス・プチーダ 10G を固定化した微生物膜を酸素電極の陰極側に配置し、該酸素電極からの出力電流の変化量を測定し、予め作成された検量線と照合することを特徴とする、BOD の高感度測定法。  BOD characterized by placing a microorganism membrane on which Pseudomonas putida 10G is immobilized on the cathode side of the oxygen electrode, measuring the amount of change in the output current from the oxygen electrode, and comparing it with a calibration curve prepared in advance. Sensitive measurement method.
JP34259497A 1997-12-12 1997-12-12 High sensitivity BOD sensor and high sensitivity measurement method of BOD using the sensor Expired - Lifetime JP3872883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34259497A JP3872883B2 (en) 1997-12-12 1997-12-12 High sensitivity BOD sensor and high sensitivity measurement method of BOD using the sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34259497A JP3872883B2 (en) 1997-12-12 1997-12-12 High sensitivity BOD sensor and high sensitivity measurement method of BOD using the sensor

Publications (2)

Publication Number Publication Date
JPH11174018A JPH11174018A (en) 1999-07-02
JP3872883B2 true JP3872883B2 (en) 2007-01-24

Family

ID=18354984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34259497A Expired - Lifetime JP3872883B2 (en) 1997-12-12 1997-12-12 High sensitivity BOD sensor and high sensitivity measurement method of BOD using the sensor

Country Status (1)

Country Link
JP (1) JP3872883B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005880A (en) * 2000-06-22 2002-01-09 Koshu Ike Bod-measuring apparatus

Also Published As

Publication number Publication date
JPH11174018A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
Riedel et al. A microbial sensor for BOD
Hikuma et al. Ammonia electrode with immobilized nitrifying bacteria
Gaudy Jr et al. A study of the biodegradability of residual COD
US4297173A (en) Method for determining ammonia and sensor therefor
Strand et al. Rapid BOD measurement for municipal wastewater samples using a biofilm electrode
Karube et al. Amperometric determination of ammonia gas with immobilized nitrifying bacteria
Revsbech et al. Denitrification in a trickling filter biofilm studied by a microsensor for oxygen and nitrous oxide
US4620930A (en) Process for rapidly determining biological toxicity of wastewater
Marty et al. Measurement of BOD: correlation between 5-day BOD and commercial BOD biosensor values
WO2007105040A2 (en) A bacterium consortium, bio-electrochemical device and a process for quick and rapid estimation of biological oxygen demand
Sakai et al. BOD sensor using magnetic activated sludge
LeBlanc Review of rapid BOD test methods
JP3872883B2 (en) High sensitivity BOD sensor and high sensitivity measurement method of BOD using the sensor
JPS5830537B2 (en) Biochemical oxygen demand measurement method
Block et al. Ecotoxicity testing using aquatic bacteria
CN108408896B (en) Control method for stable operation of industrial and urban mixed sewage
An et al. A new biosensor for rapid oxygen demand measurement
Okochi et al. Development of an automated water toxicity biosensor using Thiobacillus ferrooxidans for monitoring cyanides in natural water for a water filtering plant
Im Lee et al. Development of a biosensor for gaseous cyanide in solution
CN111855947A (en) Toxicity detection method based on BOD difference value before and after degradation of activated sludge
KR100555840B1 (en) A biosensor for detecting inhibitors of ammonia oxidation
JP3030955B2 (en) BOD measuring device
JP3077461B2 (en) How to monitor hazardous substances in water
Tanaka et al. Development of the ammonia biosensor monitoring system
Kale et al. Rapid determination of biochemical oxygen demand

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term