JPH06258284A - Bod measuring device - Google Patents

Bod measuring device

Info

Publication number
JPH06258284A
JPH06258284A JP5047035A JP4703593A JPH06258284A JP H06258284 A JPH06258284 A JP H06258284A JP 5047035 A JP5047035 A JP 5047035A JP 4703593 A JP4703593 A JP 4703593A JP H06258284 A JPH06258284 A JP H06258284A
Authority
JP
Japan
Prior art keywords
sample water
bod
water
measuring device
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5047035A
Other languages
Japanese (ja)
Inventor
Kensuke Isobe
磯部  健介
Shigeru Hatsumata
繁 初又
Yoshiharu Tanaka
良春 田中
Tateo Ueno
健郎 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5047035A priority Critical patent/JPH06258284A/en
Publication of JPH06258284A publication Critical patent/JPH06258284A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a highly accurate BOD measuring device which is excellent in relativity with an official regulation method by arranging a reaction container to perform decomposition treatment by oxygen reaction or catalytic reaction of semiconductor photocatalyst. CONSTITUTION:A constant quantity of sample water is introduced to a reaction tank 37 by a water sampling pump, and oxygen from an oxygen supply device 38 is sent to the tank 37 whose temperature is controlled by a temperature control device 39, and is agitated and reacted by an agitator 40, and a suspension material is made dissoluble, and is transformed into a low molecular weight together with a dissolved organic substance. After being kept at an oxygen-activated temperature for a constant time by a device 39, treated water of the tank 37 is sent to a BOD measuring device through a valve 11, and is measured. As another method, the sample water is introduced to a reaction container, and is agitated by the agitator together with semiconductor photocatalyst, and light is radiated from inside the reaction container by using a light source to emit light having an absorptive wave length of the semiconductor photocatalyst, and while supplying the oxygen by an air pump, the suspension material is oxidized and decomposed, and is made dissoluble, and is sent to a measuring device after the photocatalyst is removed, and is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水処理場、工場、事
業所などからの排水、および河川、湖沼などの環境水域
における水中のBODを測定する装置、とくにバイオセ
ンサを用いて簡便に精度よく測定可能なBOD測定装置
に関する。
BACKGROUND OF THE INVENTION The present invention is a device for measuring BOD in wastewater from sewage treatment plants, factories, offices, etc., and in water in environmental waters such as rivers and lakes. The present invention relates to a well-measurable BOD measuring device.

【0002】[0002]

【従来の技術】BODは20℃、5日間に好気性微生物
によって消費される水中溶存酸素量をmg/lで表わし
たものであり、最も代表的な水質汚濁指標として極めて
重要である。BODは、通常、日本工業規格(JIS)
に定められた工場排水試験法(JIS K 0102)
により、公定法として測定されているが、この公定法に
は、 (イ)測定結果が得られるまでに5日間という長時間を
要し、排水処理などのプロセスを管理する上で、測定結
果を速やかに活かすことができない。
BOD is the dissolved oxygen content in water consumed by aerobic microorganisms at 20 ° C. for 5 days, expressed in mg / l, and is extremely important as the most representative water pollution index. BOD is usually Japanese Industrial Standard (JIS)
Factory drainage test method specified in JIS (JIS K 0102)
According to the official method, the official method requires (i) a long time of 5 days until the measurement result is obtained, and the measurement result is measured when managing the process such as wastewater treatment. I can't make the most of it quickly.

【0003】(ロ)例えば、試料の希釈倍率の決定、p
H調製や毒物除去などの妨害の除去操作、硝化の抑制、
植種など、測定上の操作が非常に煩雑であり、熟練を要
する。 (ハ)手分析であるから、自動計測を行なうことができ
ない。 などの問題があり、近年、固定化微生物膜を応用したバ
イオセンサ(微生物センサ)を用いたBOD測定法が、
特公昭61−7258号公報などに記載されている。
(B) For example, determination of the dilution ratio of the sample, p
H removal and interference removal operations, nitrification suppression,
Measurement operations such as planting are very complicated and require skill. (C) Since it is a manual analysis, automatic measurement cannot be performed. In recent years, the BOD measurement method using a biosensor (microorganism sensor) that applies an immobilized microbial membrane has been
It is described in Japanese Examined Patent Publication No. 61-7258.

【0004】バイオセンサを用いた上記のBOD測定法
は、排水中のBODを約20〜40分程度で測定するこ
とができ、有効なBOD測定法であり、その装置が平成
2年に、日本工業規格(JIS K 3602:微生物
電極による生物化学的酸素消費量「BOD5 」計測器)
として採用されるに至った。しかし、通常、固定化微生
物膜の細孔は、0.22〜0.45μm程度の小さいも
のであるから、固定化された微生物は、この細孔を通過
する溶解性有機物を直接資化することはできても、細孔
を通過できない懸濁性有機物については資化することが
できない。また、懸濁性有機物は、BOD測定装置の送
液系(ポンプ)や配管系(チューブ)などにおける目詰
まりの原因となり、測定精度やメンテナンスの点で大き
な問題となる。さらに、BODの測定に用いられるこの
種のバイオセンサは、試料水中の溶解性有機物を資化し
たときに生ずる有機酸などにより、固定化微生物膜内部
のpH値が変化して、センサ出力が変動するので、これ
を防ぐために緩衝溶液を用い、試料液を緩衝溶液と混
合,希釈した後、測定を行なうようにしている。したが
って、連続的に試料水中のBODをモニタリングする際
には、緩衝溶液の消費量が多くなるので、測定装置の保
守管理、ランニングコストなどの点にも問題がある。
The above-mentioned BOD measuring method using a biosensor is an effective BOD measuring method capable of measuring BOD in wastewater in about 20 to 40 minutes, and its apparatus was introduced in 1990 in Japan. Industrial standard (JIS K 3602: Biochemical oxygen consumption "BOD 5 " measuring instrument by microbial electrode)
Came to be adopted as. However, since the pores of the immobilized microbial membrane are usually as small as 0.22 to 0.45 μm, the immobilized microorganisms should directly utilize the soluble organic substances that pass through the pores. However, suspended organic substances that cannot pass through the pores cannot be assimilated. In addition, the suspended organic matter causes clogging in the liquid delivery system (pump), the piping system (tube), etc. of the BOD measurement device, which is a serious problem in terms of measurement accuracy and maintenance. Further, this type of biosensor used for BOD measurement changes the pH value inside the immobilized microbial membrane due to the organic acid generated when the soluble organic matter in the sample water is assimilated, and the sensor output fluctuates. Therefore, in order to prevent this, a buffer solution is used, and the sample solution is mixed with the buffer solution and diluted before the measurement. Therefore, when continuously monitoring the BOD in the sample water, the consumption of the buffer solution increases, which causes problems in maintenance and running cost of the measuring device.

【0005】これに対して本発明者らは、前処理装置に
より試料水中の懸濁物質を可溶化処理し、これまでのバ
イオセンサ法では不可能であった懸濁性有機物由来のB
OD測定装置を計測可能とし、緩衝溶液も節約される実
用的なBOD測定装置を、同一出願人から特願平3−2
05324号により出願中である。以下にその概要を述
べる。
On the other hand, the present inventors solubilized suspended substances in sample water with a pretreatment device, and B derived from a suspending organic substance, which was impossible with the conventional biosensor methods.
A practical BOD measuring device that can measure the OD measuring device and saves the buffer solution is provided by the same applicant as Japanese Patent Application No. 3-2.
No. 05324 is pending. The outline is described below.

【0006】図4は上記の本発明者らが出願中のBOD
測定装置の構成について、試料水の流れ方向を矢印で示
した模式図である。図4において、採水装置は排水を
採取する原水ポンプ1aと、オーバーフローにより採水
された試料水の貯留槽1bと配管類からなる。前処理装
は、採水ポンプ3により一定量採取された試料水中
の懸濁物質を破砕し、可溶化処理するものであり、オゾ
ナイザを用いて構成される。測定装置は、上記採水装置
と、前処理装置と、恒温槽4中に設けたバイオセン
と、標準溶液槽6,希釈水槽7,バルブ8,9,1
0,11,ポンプ12と配管とからなる送液装置と、緩
衝溶液槽13,ポンプ14と配管とからなる緩衝溶液循
環装置15と、バイオセンサの出力信号の演算処理と
本測定装置の運転を制御する演算・制御回路16から構
成される。緩衝溶液としては、0.05〜0.1M,p
H7.0のりん酸緩衝溶液を用いる。標準溶液は、グル
コース・グルタミン酸の等量混合溶液を用い、バイオセ
ンサの検量線の作成に使用する。希釈水はBOD0m
g/lの標準溶液で、配管経路の洗浄、試料水の希釈の
ために測定の都度用いる。
FIG. 4 is a BOD filed by the inventors of the present invention.
It is a schematic diagram which showed the flow direction of the sample water with the arrow about the structure of a measuring device. In FIG. 4, the water sampling device 1 includes a raw water pump 1a for sampling waste water, a sample water storage tank 1b sampled by overflow, and pipes. The pretreatment device 2 crushes suspended substances in a sample water sampled by the water sampling pump 3 and solubilizes them, and is configured using an ozonizer. The measuring device is the above water sampling device.
1 , a pretreatment device 2 , a biosensor 5 provided in a constant temperature bath 4, a standard solution bath 6, a dilution water bath 7, valves 8, 9, 1
0, 11, a liquid sending device including a pump 12 and a pipe, a buffer solution circulating device 15 including a buffer solution tank 13, a pump 14 and a pipe, a calculation process of an output signal of the biosensor 5 , and an operation of the measurement device. It is composed of an arithmetic / control circuit 16 for controlling the. As a buffer solution, 0.05 to 0.1 M, p
A phosphate buffer solution of H7.0 is used. The standard solution is a mixed solution of glucose and glutamic acid in the same amount, and is used for preparing the calibration curve of the biosensor 5 . Dilution water is BOD 0m
It is a standard solution of g / l and is used each time for measurement in order to wash the piping line and dilute the sample water.

【0007】図5はバイオセンサの構成を示す模式断
面図である。以下、図4と図5の両図を併用して説明す
る。図5において、バイオセンサは、固定化微生物膜
17を取り付けたフローセル18と、溶存酸素検出器1
9とにより構成してあり、図4に示す恒温槽4に収納し
て測定温度に保つことができる。なお、試料水および緩
衝溶液も恒温槽4の内部で熱交換器20,21を通過さ
せることにより、測定温度に保っている。バイオセンサ
は、固定化微生物膜17の中に固定化された微生物に
よって、溶解性有機物が資化される際に消費される溶存
酸素の減少量を、溶存酸素検出器19により電流値信号
として出力する。この溶存酸素の減少量は、試料水中に
溶存する溶解性有機物の濃度に比例するので、出力信号
電流値から演算・制御回路16で演算され、溶解性BO
Dの値を求めることができる。
FIG. 5 is a schematic sectional view showing the structure of the biosensor 5 . Hereinafter, description will be given by using both FIGS. 4 and 5 together. In FIG. 5, a biosensor 5 includes a flow cell 18 having an immobilized microbial membrane 17, and a dissolved oxygen detector 1
9 and can be stored in the constant temperature bath 4 shown in FIG. 4 to maintain the measured temperature. The sample water and the buffer solution are also kept at the measurement temperature by passing through the heat exchangers 20 and 21 inside the constant temperature bath 4. Biosensor
5, the immobilized microorganism in the immobilized microbial film 17, soluble organic substances outputs a reduced amount of dissolved oxygen consumed when it is assimilated by the dissolved oxygen detector 19 as a current value signal . This decrease amount of dissolved oxygen is proportional to the concentration of the soluble organic matter dissolved in the sample water, and therefore is calculated by the calculation / control circuit 16 from the output signal current value to obtain the soluble BO.
The value of D can be obtained.

【0008】バイオセンサによるBOD測定は、試料
水がフローセル18内に供給されてから、5〜15分程
度のあらかじめ設定した時間が経過したときの出力信号
の電流値について行なう。バイオセンサからの出力信
号は、演算・制御回路16のA/D変換器22でデジタ
ル化されて演算装置23に送られ、所定の演算式に従っ
て検量線の式、試料水のBOD値を演算し記録する。出
力装置24からは、算出されたBOD値を出力し、もし
くはあらかじめ設定した順序、時間に従い、バルブ8,
9,10,11の切り換えや、採水ポンプ3,前処理装
の動作制御信号を出力する。緩衝溶液は、バイオセ
ンサ内を図5に示したように、緩衝溶液入口27から
流入して緩衝溶液出口28から流出し、常に4〜6ml
/minで緩衝溶液循環装置15によって移送され、熱
交換器21を通過して測定温度に保たれて循環する。緩
衝溶液には、前述の如く0.05〜0.1M,pH7.
0のりん酸緩衝溶液を用い、またこれに微量栄養分を添
加したものも用いることができる。
The BOD measurement by the biosensor 5 is carried out for the current value of the output signal when a preset time of about 5 to 15 minutes has passed since the sample water was supplied into the flow cell 18. The output signal from the biosensor 5 is digitized by the A / D converter 22 of the calculation / control circuit 16 and sent to the calculation device 23, and the calibration curve formula and the BOD value of the sample water are calculated according to a predetermined calculation formula. And record. The calculated BOD value is output from the output device 24, or the valve 8 is output in accordance with a preset order and time.
Switching of 9, 10, and 11 and output of operation control signals for the water sampling pump 3 and the pretreatment device 2 . Buffer solution, as showed in the biosensor 5 in FIG. 5, flows out from the buffer solution flows from the inlet 27 buffer solution outlet 28, always 4~6ml
/ Min, the solution is transferred by the buffer solution circulation device 15 , passes through the heat exchanger 21, and is circulated while being maintained at the measurement temperature. The buffer solution contains 0.05 to 0.1 M, pH 7.
It is also possible to use a phosphate buffer solution of 0 and to which micronutrients are added.

【0009】最初に出力装置24の切り換え指令に従っ
て、希釈水槽7内の希釈水のみがバルブ10を経て、ポ
ンプ12により熱交換器20を通過して測定温度に保た
れて、液入口29から流入しバイオセンサ内に送ら
れ、液出口30から系外に排出される。バイオセンサ
の出力信号が安定した後、あらかじめ設定した順序に従
って、順次バルブ8,9.10を切り換えて、BOD標
準溶液により検量線を作成し、メモリ25にBOD演算
式を記憶させる。次に、バイオセンサの校正時に、同
時に採水ポンプ3により採水し、前処理装置で可溶化
処理された試料水が、バルブ11を通してポンプ12に
より熱交換器20を通過して測定温度に保たれて、バイ
オセンサへ送られBOD値が測定される。バイオセン
の校正は1日に数回行なわれ、試料水のBOD測定
を一定時間の間隔で繰り返し行なうことができる。
First, in accordance with the switching command of the output device 24, only the dilution water in the dilution water tank 7 passes through the valve 10 and the heat exchanger 20 by the pump 12 to be kept at the measurement temperature and flow from the liquid inlet 29. Then, it is sent into the biosensor 5 and discharged from the liquid outlet 30 to the outside of the system. Biosensor 5
After the output signal of is stabilized, the valves 8 and 9.10 are sequentially switched according to a preset order, a calibration curve is created by the BOD standard solution, and the BOD calculation formula is stored in the memory 25. Next, at the time of calibration of the biosensor 5 , the sample water sampled at the same time by the water sampling pump 3 and solubilized by the pretreatment device 2 passes through the heat exchanger 20 by the pump 12 through the valve 11 and the measured temperature. And the BOD value is measured by being sent to the biosensor 5 . The biosensor 5 is calibrated several times a day, and the BOD measurement of the sample water can be repeated at regular time intervals.

【0010】図6は図4における前処理装置の構成を
示す模式図である。図6において、点線で囲った部分の
前処理装置は、採水ポンプ3により一定量採取された
試料水を反応管31に導入し、酸素濃縮器32からの濃
縮酸素をオゾナイザ33によりオゾン化して、反応管3
1に送り込み試料水と反応させることにより、懸濁物質
を溶解性にし溶存有機物とともに低分子量とするもので
ある。反応管31で処理された試料水をバルブ34を通
して、リザーバ35に一時貯留し、エアポンプ36を用
いて余剰のオゾンをパージして、試料水をバルブ11
(図4と共通)に送る。懸濁物質はオゾンと反応させる
ことにより可溶化され、溶解性有機物は化学的に高分子
量の結合を切り、分子量を小さくすることができる。
FIG. 6 is a schematic diagram showing the structure of the pretreatment apparatus 2 in FIG. In FIG. 6, the pretreatment device 2 surrounded by a dotted line introduces a sample water sampled by the water sampling pump 3 into the reaction tube 31, and the concentrated oxygen from the oxygen concentrator 32 is ozonized by the ozonizer 33. And reaction tube 3
It is sent to 1 and made to react with sample water to make the suspended matter soluble and to have a low molecular weight together with dissolved organic matter. The sample water treated in the reaction tube 31 is temporarily stored in the reservoir 35 through the valve 34, the excess ozone is purged using the air pump 36, and the sample water is stored in the valve 11
(Same as FIG. 4). The suspended substance is solubilized by reacting with ozone, and the soluble organic substance can chemically break the high molecular weight bond to reduce the molecular weight.

【0011】以上のように、本発明者らが出願中の特願
平3−205324号に記載のBOD測定装置は、試料
水中の懸濁物質をオゾン酸化により可溶化処理すると同
時に、高分子量の溶存有機物を低分子量の有機物に分解
し、バイオセンサの微生物が資化しやすい性状に変化さ
せることにより、懸濁性有機物由来のBODの計測とと
もに、溶存態の高分子量の有機物も測定され、公定法と
の相関性がよく、実用性の高いものである。
As described above, the BOD measuring device described in Japanese Patent Application No. 3-205324, which is filed by the present inventors, has a solubilization treatment of a suspended substance in sample water by ozone oxidation, and at the same time, a BOD measuring device By decomposing dissolved organic matter into low molecular weight organic matter and changing it to a property that biosensor microorganisms can easily assimilate, BOD derived from suspended organic matter is measured, and dissolved high molecular weight organic matter is also measured. It has good correlation with and is highly practical.

【0012】[0012]

【発明が解決しようとする課題】最近の研究によれば、
溶解性の有機物であっても、分子量の大きい物質の場合
は、公定法であるJIS K 0102(工場排水試験
法)のBOD値と比較して、バイオセンサによる測定値
は低い値となり、例えば、澱粉はJISでは、BOD5
値73.4mg/lであるのに対して、バイオセンサに
よる測定値は、2.9mg/lとなることが、日本水質
汚濁研究会発行の第22回水質汚濁学会講演集p.75
−76(昭和63年3月)に、渡辺らにより「BODセ
ンサの諸特性」に記載されている。また、バイオセンサ
は1990年9月に、JIS K3602に微生物電極
による生物化学的酸素消費量計測器として制定された
が、水質汚濁防止法では、懸濁性有機物と溶解性有機物
を合わせて測定する必要がせあり、バイオセンサによる
測定で水質汚濁防止法で定める水質の管理を行なうこと
を認めていない。
According to recent research,
Even if it is a soluble organic substance, in the case of a substance having a large molecular weight, the measured value by the biosensor becomes a lower value compared with the BOD value of JIS K 0102 (Factory wastewater test method) which is an official method, and for example, According to JIS, starch is BOD 5
The value measured by the biosensor is 2.9 mg / l, while the value is 73.4 mg / l. The 22nd Lecture Meeting on Water Pollution, published by Japan Society for Water Pollution Research, p. 75
-76 (March 1988), "Wide characteristics of BOD sensor" by Watanabe et al. In addition, the biosensor was established in September 1990 as a biochemical oxygen consumption measuring device using a microbial electrode in JIS K3602, but the Water Pollution Control Act measures both suspended organic substances and soluble organic substances. It is necessary, and it is not permitted to manage the water quality specified by the Water Pollution Control Act by measurement with a biosensor.

【0013】このような状況下にあって、バイオセンサ
を用いた前述の本発明者らが出願中の特願平3−205
324号の明細書に記載のBOD測定装置は、懸濁性有
機物の酸化分解、および溶解性有機物で高分子量のもの
を低分子量化する前処理装置を備えており、多くの利点
を有するものであるが、本発明者らのその後の研究によ
り、懸濁物質を処理する前処理装置に、オゾナイザを用
いる代わりに、 酵素による分解 半導体光触媒による光分解 という手段を用いることによっても、同様の効果が得ら
れることが明らかになり、これらの懸濁物質処理方法を
測定試料によって適宜応用することにより、懸濁性有機
物のうちの高分子量のBODも低分子量として、公定法
のBOD測定値との相関性がよく、高精度のBOD測定
が可能であることがわかった。
Under these circumstances, the above-mentioned Japanese Patent Application No. 3-205 filed by the present inventors using a biosensor.
The BOD measuring device described in the specification of No. 324 has many advantages because it is equipped with a oxidative decomposition of a suspending organic substance and a pretreatment device for reducing a soluble organic substance having a high molecular weight. However, according to the subsequent research conducted by the present inventors, the same effect can be obtained by using a method of enzymatic decomposition and photolysis by a semiconductor photocatalyst instead of using an ozonizer in a pretreatment device for treating a suspended substance. It was clarified that the method of treating suspended solids was appropriately applied to the measurement sample, and the high molecular weight BOD of the suspending organic matter was also determined to be a low molecular weight and correlated with the BOD measurement value of the official method. It has been found that it is possible to perform BOD measurement with high accuracy and high accuracy.

【0014】本発明は上述の点に鑑みてなされたもので
あり、その目的は、懸濁性有機物由来のBODに加え
て、溶解性有機物由来の高分子量のBODも低分子量と
して、公定法のBOD測定値との相関性がよく、精度の
高いBOD測定装置を提供することにある。
The present invention has been made in view of the above-mentioned points, and an object thereof is a BOD derived from a suspending organic substance and a high molecular weight BOD derived from a soluble organic substance as a low molecular weight. An object of the present invention is to provide a highly accurate BOD measurement device that has good correlation with the BOD measurement value.

【0015】[0015]

【課題を解決するための手段】本発明のBOD測定装置
は、上記の課題を解決するために、前述した本発明者ら
が出願中の特願平3−205324号の明細書に記載の
BOD測定装置の前処理装置に用いるオゾンによる酸化
装置の代わりに、採取した試料水を、 酵素反応により分解処理する反応槽、または、 半導体光触媒の触媒反応により分解処理する反応容
器を装置系内に設けたものである。
In order to solve the above-mentioned problems, the BOD measuring device of the present invention is the BOD described in the specification of Japanese Patent Application No. 3-205324 filed by the present inventors. In place of the ozone oxidation device used in the pretreatment device of the measuring device, a reaction tank for decomposing the sample water by enzymatic reaction or a reaction container for decomposing by catalytic reaction of semiconductor photocatalyst is provided in the system. It is a thing.

【0016】即ち、本発明のBOD測定装置は、試料水
を採取し貯留する採水装置と、試料水を導入し酵素また
は半導体光触媒を用いて試料水を酸化分解する前処理装
置と、標準溶液,希釈水をバイオセンサの固定化微生物
膜の溶存酸素検出器へ送る送液装置と、溶存酸素検出器
に緩衝溶液を循環させる緩衝溶液循環装置と、バイオセ
ンサの出力信号の演算処理と本測定装置の運転を制御す
る演算・制御回路とを備えるものである。
That is, the BOD measuring device of the present invention comprises a water sampling device for sampling and storing sample water, a pretreatment device for introducing sample water and oxidatively decomposing the sample water by using an enzyme or a semiconductor photocatalyst, and a standard solution. , Delivery device that sends diluted water to the dissolved oxygen detector of immobilized microbial membrane of biosensor, buffer solution circulation device that circulates buffer solution to dissolved oxygen detector, arithmetic processing of biosensor output signal and main measurement And a calculation / control circuit for controlling the operation of the apparatus.

【0017】[0017]

【作用】本発明のBOD測定装置は上記のように構成し
たために、前処理装置を通過した排水などの試料水中の
懸濁物質を、酵素による分解反応、または、半導体光触
媒の触媒反応により破砕して可溶化し、また、破砕、可
溶化された懸濁物質由来の有機物および高分子量の溶存
有機物を分解し、固定化微生物膜内の微生物が資化しや
すい性状に変化させることにより、懸濁性有機物由来の
BODに加えて、溶解性有機物のうちの高分子量のもの
も測定可能となり、公定法のBOD測定値との相関性が
よく、測定精度も高い。
Since the BOD measuring device of the present invention is configured as described above, suspended substances in the sample water such as wastewater that has passed through the pretreatment device are crushed by an enzymatic decomposition reaction or a semiconductor photocatalytic catalytic reaction. Solubilization and crushing and solubilization to decompose suspended organic matter derived from suspended solids and dissolved organic matter of high molecular weight, and change the property of the microorganisms in the immobilized microbial membrane to assimilate In addition to BOD derived from organic substances, high molecular weight substances among soluble organic substances can be measured, which has a good correlation with the BOD measurement value of the official method and has high measurement accuracy.

【0018】[0018]

【実施例】以下、本発明を実施例に基づき説明する。本
発明によるBOD測定装置の基本的な構成は、図5に示
したものと同じでり、異なる点は前処理装置のみである
から、ここでは、BOD測定装置全体の説明は省略し、
前処理装置のみを図示して説明する。
EXAMPLES The present invention will be described below based on examples. The basic configuration of the BOD measuring device according to the present invention is the same as that shown in FIG. 5, and the only difference is the pre-processing device, and therefore the description of the entire BOD measuring device is omitted here.
Only the pretreatment device will be illustrated and described.

【0019】図1は本発明のBOD測定装置に用いる前
処理装置の要部構成を示す模式図であり、オゾナイザに
よる分解反応の代わりに、酵素反応を用いる場合であ
る。図1において、点線で囲った前処理装置2aは、図
示してない採水ポンプ3(図5と共通)により、一定量
採取された試料水を反応槽37に導入し、酵素供給装置
38から供給される酵素を、温度制御装置39を用いて
温度制御した反応槽37に送り込み、攪拌器40により
攪拌しながら酵素を試料水と反応させることにより、懸
濁物質を溶解性にして、溶存有機物とともに低分子量と
するものである。反応槽37で処理された試料水は、温
度制御装置装置39により、酵素が失活する温度に一定
時間保った後、バルブ11(図5と共通)を介してBO
D測定装置に送り、測定を行なうことができる。
FIG. 1 is a schematic diagram showing the structure of the main part of a pretreatment device used in the BOD measuring device of the present invention, in the case where an enzymatic reaction is used instead of the decomposition reaction by the ozonizer. In FIG. 1, the pretreatment apparatus 2a surrounded by a dotted line introduces a sample water sampled in a fixed amount into a reaction tank 37 by a water sampling pump 3 (common to FIG. 5) (not shown), and from the enzyme supply device 38. The supplied enzyme is sent to the reaction tank 37 whose temperature is controlled by the temperature control device 39, and the enzyme is reacted with the sample water while being stirred by the stirrer 40 to make the suspended substance soluble and to dissolve the dissolved organic matter. And low molecular weight. The sample water treated in the reaction tank 37 is kept at a temperature at which the enzyme is deactivated by the temperature control device 39 for a certain period of time, and then the BO is passed through the valve 11 (common to FIG. 5).
D can be sent to the measuring device to perform the measurement.

【0020】図2は同様に本発明のBOD測定装置に用
いる前処理装置の要部構成を示す模式図であり、オゾナ
イザによる分解反応の代わりに、半導体光触媒を用いる
場合である。図2において、点線で囲った前処理装置
は、図示してない採水ポンプ3(図5と共通)によ
り、一定量採取された試料水を反応容器41に導入し、
半導体光触媒供給装置42から供給される半導体光触媒
とともに、攪拌器43により攪拌し、光源冷却器44で
冷却されている半導体光触媒の吸収波長の光を発する光
源45を用いて反応容器41内部から光照射を行ない、
エアポンプ46により酸素を散気管47から供給しなが
ら、試料水中の懸濁物質の酸化分解を行なって溶解性に
し、溶存有機物とともに低分子量とするものである。反
応容器41で処理された試料水は、フィルター48を通
して懸濁している半導体光触媒を除去した後、バルブ1
1(図5と共通)を介してここには図示を省略したBO
D測定装置に送り、測定を行なうことができる。太い矢
印は冷却水49の流通方向を表わし、50は光源45に
付属する点灯装置である。
FIG. 2 is also a schematic view showing the main structure of the pretreatment device used in the BOD measuring device of the present invention, in which a semiconductor photocatalyst is used instead of the decomposition reaction by the ozonizer. In FIG. 2, the pretreatment device 2 surrounded by a dotted line
In b , a sample water sampled in a fixed amount is introduced into the reaction container 41 by a water sampling pump 3 (not shown) (common to FIG. 5),
With the semiconductor photocatalyst supplied from the semiconductor photocatalyst supply device 42, light is irradiated from the inside of the reaction vessel 41 by using a light source 45 which is agitated by an agitator 43 and emits light having an absorption wavelength of the semiconductor photocatalyst cooled by a light source cooler 44. The
While the oxygen is supplied from the air diffuser 47 by the air pump 46, the suspended matter in the sample water is oxidatively decomposed to make it soluble, thereby reducing the molecular weight together with the dissolved organic matter. The sample water treated in the reaction vessel 41 is filtered through the filter 48 to remove the suspended semiconductor photocatalyst, and then the valve 1
1 (common to FIG. 5) through a BO not shown here.
D can be sent to the measuring device to perform the measurement. Thick arrows indicate the circulation direction of the cooling water 49, and 50 is a lighting device attached to the light source 45.

【0021】図3は本発明のBOD測定装置を用いて、
下水2次処理水について得られた測定結果を示す棒線図
である。図3の各特性棒線は、公定法BOD,BOD測
定装置,DOCに分けて示してあるが、公定法BOD
は、JIS K 0102に基づく公定法によるBOD
測定値、BOD測定装置は本発明の装置を用いたときの
BOD測定値、DOCは溶存有機体炭素濃度(mg−C
/L)を表わすものである。図3において、前処理装置
2aまたは2bにより、酵素分解反応または半導体光触
媒反応させる前処理した試料水中の溶存有機物濃度は未
処理の場合に比べて増加し、公定法のBOD測定値は殆
ど変わっていない。前処理をしない場合は、バイオセン
サの出力は小さく、公定法による測定値の約63%程度
の値しか得ることができないが、本発明による前処理装
2aまたは2bを用いて、試料水を30分反応させる
ことにより、バイオセンサの出力(BOD測定値)は増
加し、酵素による反応では公定法測定値の80%、半導
体光触媒による反応では公定法測定値の約87%程度の
値を得ることができた。このように、本発明のBOD測
定装置による測定値の増加率は、DOCの増加では説明
しきれず、量的な変化だけでなく、溶解性有機物の低分
子量化や、微生物に資化されやすい物質への変化など、
質的な変化も同時に進行していることを示すものであ
る。
FIG. 3 shows the use of the BOD measuring device of the present invention.
It is a bar chart which shows the measurement result obtained about sewage secondary treated water. The characteristic bars in FIG. 3 are shown separately for the official method BOD, the BOD measuring device, and the DOC.
Is a BOD based on the official method based on JIS K 0102.
The measured value, the BOD measuring device is the BOD measured value when the device of the present invention is used, and the DOC is the dissolved organic carbon concentration (mg-C
/ L). 3, the pretreatment device
By 2a or 2b , the concentration of dissolved organic matter in the sample water pretreated for the enzymatic decomposition reaction or semiconductor photocatalytic reaction is increased as compared with the case where it is not treated, and the BOD measurement value by the official method is almost unchanged. When the pretreatment is not carried out, the output of the biosensor is small and only about 63% of the value measured by the official method can be obtained. However, 30% of sample water is obtained by using the pretreatment device 2a or 2b according to the present invention. The output of the biosensor (BOD measurement value) is increased by performing the partial reaction, and 80% of the official measurement value is obtained by the enzyme reaction, and about 87% of the official measurement value is obtained by the semiconductor photocatalyst reaction. I was able to. As described above, the rate of increase of the measured value by the BOD measuring device of the present invention cannot be explained by the increase of DOC, and not only the quantitative change but also the lowering of the molecular weight of the soluble organic substance and the substance easily assimilated by microorganisms Change to
It shows that qualitative changes are also proceeding at the same time.

【0022】[0022]

【発明の効果】下水処理場、工場、事業所などからの排
水、および河川や湖沼などの環境水域における水中のB
ODを、バイオセンサを用いたBOD測定装置によって
測定する場合、試料水中の懸濁性有機物を可溶化し、さ
らに高分子量の溶解性有機物を低分子量にしなければな
らないが、その測定装置として、本発明では実施例で述
べた如く、本発明者らが出願中の特願平3−20532
4号の明細書に記載のBOD測定装置のようなオゾンに
よる酸化処理のほかに、酵素反応による分解処理や、半
導体光触媒の触媒反応による分解処理を利用した前処理
装置を構成することによって、懸濁性有機物由来のBO
Dの計測とともに、これまでバイオセンサでは、公定法
のBOD測定値より低く計測されていた溶存態の高分子
量の有機物も、公定法による測定値と近似した値として
測定され、公定法との相関性および測定精度が向上し、
実用性の高いBOD測定装置を得ることができる。
[Effects of the Invention] B in water in wastewater from sewage treatment plants, factories, business establishments, and in environmental waters such as rivers and lakes.
When OD is measured by a BOD measuring device using a biosensor, it is necessary to solubilize suspended organic matter in sample water and further reduce high molecular weight soluble organic matter to a low molecular weight. In the invention, as described in the embodiments, Japanese Patent Application No. 3-20532 filed by the present inventors.
In addition to the oxidation treatment by ozone such as the BOD measurement device described in the specification of No. 4, a pretreatment device utilizing decomposition treatment by enzymatic reaction or decomposition treatment by catalytic reaction of semiconductor photocatalyst is used to construct a suspension system. BO derived from turbid organic matter
Along with the measurement of D, the high molecular weight organic matter in the dissolved state, which had been measured by the biosensor so far lower than the BOD measurement value by the official method, was also measured as a value close to the measured value by the official method and correlated with the official method. And improved measurement accuracy
It is possible to obtain a highly practical BOD measurement device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のBOD測定装置における酵素を用いた
前処理装置の構成を示す模式図
FIG. 1 is a schematic diagram showing the configuration of a pretreatment device using an enzyme in a BOD measuring device of the present invention.

【図2】本発明のBOD測定装置における半導体光触媒
を用いた前処理装置の構成を示す模式図
FIG. 2 is a schematic diagram showing the configuration of a pretreatment device using a semiconductor photocatalyst in the BOD measurement device of the present invention.

【図3】本発明のBOD測定装置における測定結果を他
の測定法との比較で示した棒線図
FIG. 3 is a bar chart showing the measurement results of the BOD measurement device of the present invention in comparison with other measurement methods.

【図4】本発明者らが出願中のBOD測定装置の構成を
示す模式図
FIG. 4 is a schematic diagram showing the configuration of a BOD measuring device that the present inventors have applied for.

【図5】本発明者らが出願中のBOD測定装置に用いる
前処理装置の構成を示す模式図
FIG. 5 is a schematic diagram showing the configuration of a pretreatment device used in the BOD measurement device that the present inventors have applied for.

【図6】本発明者らが出願中のBOD測定装置に用いる
バイオセンサの構成を示す模式図
FIG. 6 is a schematic diagram showing the configuration of a biosensor used in the BOD measurement device that the present inventors have applied for.

【符号の説明】 採水装置 1a 原水ポンプ 1b 貯留槽 前処理装置2a 前処理装置2b 前処理装置 3 採水ポンプ 4 恒温槽 バイオセンサ 6 標準溶液槽 7 希釈水槽 8 バルブ 9 バルブ 10 バルブ 11 バルブ 12 ポンプ 13 緩衝溶液槽 14 ポンプ 15 緩衝溶液循環装置16 演算・制御回路 17 固定化微生物膜 18 フローセル 19 溶存酸素検出器 20 熱交換器 21 熱交換器 22 A/D変換器 23 演算装置 24 出力装置 25 メモリ 27 緩衝溶液入口 28 緩衝溶液出口 29 液入口 30 液出口 31 反応管 32 酸素濃縮器 33 オゾナイザ 34 バルブ 35 リザーバ 36 エアポンプ 37 反応槽 38 酵素供給装置 39 温度制御装置 40 攪拌器 41 反応容器41 42 半導体光触媒供給装置 43 攪拌器 44 光源冷却器 45 光源 46 エアポンプ 47 散気管 48 フィルター 49 冷却水 50 点灯装置[Explanation of Codes] 1 water sampling device 1a raw water pump 1b storage tank 2 pretreatment device 2a pretreatment device 2b pretreatment device 3 water sampling pump 4 thermostatic bath 5 biosensor 6 standard solution tank 7 dilution water tank 8 valve 9 valve 10 valve 11 valve 12 pump 13 buffer solution tank 14 pump 15 buffer solution circulation device 16 arithmetic / control circuit 17 immobilized microbial membrane 18 flow cell 19 dissolved oxygen detector 20 heat exchanger 21 heat exchanger 22 A / D converter 23 arithmetic device 24 Output device 25 Memory 27 Buffer solution inlet 28 Buffer solution outlet 29 Liquid inlet 30 Liquid outlet 31 Reaction tube 32 Oxygen concentrator 33 Ozonizer 34 Valve 35 Reservoir 36 Air pump 37 Reaction tank 38 Enzyme supply device 39 Temperature controller 40 Stirrer 41 Reaction vessel 41 42 Semiconductor Photocatalyst Supply Device 43 Stirrer 44 Light Cooler 45 light source 46 pump 47 aeration tube 48 filter 49 cooling water 50 lighting device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G01N 33/18 105 7055−2J 7363−2J G01N 27/46 ZAB (72)発明者 上野 健郎 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location G01N 33/18 105 7055-2J 7363-2J G01N 27/46 ZAB (72) Inventor Kenro Ueno Kanagawa 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi Fuji Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】試料水中の有機物を生物化学的に分解する
微生物を保持した固定化微生物膜と試料水中の溶存酸素
量を測定する溶存酸素検出器とを組み合わせたバイオセ
ンサにより試料水中のBOD(生物化学的酸素要求量)
を測定する装置であって、試料水を採取し貯留する採水
装置と、試料水を導入し酵素を用いて試料水の酸化分解
を行なう前処理装置と、試薬、洗浄水、試料水を溶存酸
素検出器へ送る送液装置と、溶存酸素検出器に緩衝溶液
を循環させる緩衝溶液循環装置と、バイオセンサの出力
信号の演算処理と本測定装置の運転を制御する演算・制
御回路とを備えたことを特徴とするBOD測定装置。
1. A biosensor combining an immobilized microbial membrane carrying microorganisms that biochemically decompose organic matter in sample water and a dissolved oxygen detector for measuring the amount of dissolved oxygen in the sample water. Biochemical oxygen demand)
A device for measuring water, a water sampling device that collects and stores sample water, a pretreatment device that introduces sample water and oxidizes and decomposes the sample water, and dissolves reagents, wash water, and sample water. Equipped with a liquid sending device to send to the oxygen detector, a buffer solution circulating device to circulate the buffer solution to the dissolved oxygen detector, and a calculation / control circuit for calculating the output signal of the biosensor and controlling the operation of the measurement device. A BOD measuring device characterized in that
【請求項2】請求項1記載のBOD測定装置において、
前処理装置は反応槽内に導入した試料水中の懸濁物質を
酵素反応により分解させる酵素の供給装置と、反応槽の
温度制御を行なう温度制御装置と、試料水を攪拌する攪
拌器とを有することを特徴とするBOD測定装置。
2. The BOD measuring device according to claim 1,
The pretreatment device has an enzyme supply device for decomposing suspended matter in the sample water introduced into the reaction tank by an enzymatic reaction, a temperature control device for controlling the temperature of the reaction tank, and a stirrer for stirring the sample water. A BOD measuring device characterized in that
【請求項3】試料水中の有機物を生物化学的に分解する
微生物を保持した固定化微生物膜と試料水中の溶存酸素
量を測定する溶存酸素検出器とを組み合わせたバイオセ
ンサにより試料水中のBOD(生物化学的酸素要求量)
を測定する装置であって、試料水を採取し貯留する採水
装置と、試料水を導入し半導体光触媒を用いて試料水の
酸化分解を行なう前処理装置と、試薬、洗浄水、試料水
を溶存酸素検出器へ送る送液装置と、溶存酸素検出器に
緩衝溶液を循環させる緩衝溶液循環装置と、バイオセン
サの出力信号の演算処理と本測定装置の運転を制御する
演算・制御回路とを備えたことを特徴とするBOD測定
装置。
3. A BOD in a sample water by a biosensor in which an immobilized microbial membrane holding microorganisms that biochemically decompose organic matter in the sample water and a dissolved oxygen detector for measuring the dissolved oxygen amount in the sample water are combined. Biochemical oxygen demand)
Which is a device for measuring and collecting sample water, a pretreatment device for introducing sample water and performing oxidative decomposition of the sample water using a semiconductor photocatalyst, a reagent, washing water, and sample water. A solution sending device for sending to the dissolved oxygen detector, a buffer solution circulating device for circulating a buffer solution in the dissolved oxygen detector, and a calculation / control circuit for calculating the output signal of the biosensor and controlling the operation of the measurement device. A BOD measuring device characterized by being provided.
【請求項4】請求項3記載のBOD測定装置において、
前処理装置は反応容器に導入した試料水中の懸濁物質を
触媒反応により分解させる半導体光触媒の供給装置と、
反応容器中にあって半導体光触媒に光を照射する光源
と、試料水に酸素を吹き込むエアポンプと散気管、およ
び試料水を攪拌する攪拌器を有することを特徴とするB
OD測定装置。
4. The BOD measuring device according to claim 3,
The pretreatment device is a semiconductor photocatalyst supply device for decomposing suspended matter in the sample water introduced into the reaction vessel by a catalytic reaction,
A light source for irradiating the semiconductor photocatalyst with light in the reaction vessel, an air pump for blowing oxygen into the sample water and an air diffuser, and a stirrer for stirring the sample water.
OD measuring device.
JP5047035A 1993-03-09 1993-03-09 Bod measuring device Pending JPH06258284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5047035A JPH06258284A (en) 1993-03-09 1993-03-09 Bod measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5047035A JPH06258284A (en) 1993-03-09 1993-03-09 Bod measuring device

Publications (1)

Publication Number Publication Date
JPH06258284A true JPH06258284A (en) 1994-09-16

Family

ID=12763921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5047035A Pending JPH06258284A (en) 1993-03-09 1993-03-09 Bod measuring device

Country Status (1)

Country Link
JP (1) JPH06258284A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005880A (en) * 2000-06-22 2002-01-09 Koshu Ike Bod-measuring apparatus
JP2006017627A (en) * 2004-07-02 2006-01-19 Furukawa Electric Co Ltd:The Physical quantity detecting sensor and sensing device
JP2009222667A (en) * 2008-03-18 2009-10-01 Metawater Co Ltd Toxic substance detecting method and toxic substance detector
CN101642695A (en) * 2009-09-08 2010-02-10 北京师范大学 Device for studying compound reaction of photocatalysis and enzyme catalysis
CN101785985A (en) * 2010-03-29 2010-07-28 北京师范大学 Device used for combination reaction study of photo catalysis and enzyme catalysis
WO2013100101A1 (en) * 2011-12-27 2013-07-04 学校法人東京理科大学 Electrochemical measurement method and measurement device for measuring chemical oxygen demand or total organic carbon
CN111896699A (en) * 2020-07-01 2020-11-06 武汉新烽光电股份有限公司 BOD online monitoring device and method based on composite strain putting

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005880A (en) * 2000-06-22 2002-01-09 Koshu Ike Bod-measuring apparatus
JP2006017627A (en) * 2004-07-02 2006-01-19 Furukawa Electric Co Ltd:The Physical quantity detecting sensor and sensing device
JP2009222667A (en) * 2008-03-18 2009-10-01 Metawater Co Ltd Toxic substance detecting method and toxic substance detector
CN101642695A (en) * 2009-09-08 2010-02-10 北京师范大学 Device for studying compound reaction of photocatalysis and enzyme catalysis
CN101785985A (en) * 2010-03-29 2010-07-28 北京师范大学 Device used for combination reaction study of photo catalysis and enzyme catalysis
WO2013100101A1 (en) * 2011-12-27 2013-07-04 学校法人東京理科大学 Electrochemical measurement method and measurement device for measuring chemical oxygen demand or total organic carbon
CN111896699A (en) * 2020-07-01 2020-11-06 武汉新烽光电股份有限公司 BOD online monitoring device and method based on composite strain putting

Similar Documents

Publication Publication Date Title
US5290451A (en) Method and apparatus for processing manure
US5700370A (en) Biological treatment plant controlled by fluorescence sensors
Vanrolleghem et al. On-line monitoring equipment for wastewater treatment processes: state of the art
JP2020116578A (en) Wastewater treatment method
US6133021A (en) Bioreactor system and method for probing toxic materials
KR100443563B1 (en) Method and apparatus for continuously measuring biochemical oxygen demand(bod) using microorganism with short measurement cycle
JPH06258284A (en) Bod measuring device
US5702951A (en) Continuous RBCOD measurement
Beaubien et al. Applications of flow microcalorimetry to process control in biological treatment of industrial wastewater
JP3030955B2 (en) BOD measuring device
JP4355560B2 (en) How to monitor hazardous substances
JPH0735741A (en) Bod measuring equipment
JP6841365B1 (en) Aerobic wastewater treatment system and wastewater treatment method
Subramani et al. Evaluation of the efficiency of surface aerator in the activated sludge process treatment of food processing effluent
CA2085374C (en) Continuous rbcod measurement
JP2009214073A (en) Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor
JPH0938683A (en) Biological water treating device
Mines et al. Biological enhancement of oxygen transfer in the activated sludge process
Muzio et al. BOD5 estimation for pulp and paper mill effluent using UV absorbance
KR100450521B1 (en) The on-line measuring device of sludge retention time(SRT) of WWTPS and toxic effect of waste using biological respiration rate
Isaacs et al. Automatic monitoring of denitrification rates and capacities in activated sludge processes using fluorescence or redox potential
EP0757017B1 (en) Method to monitor in liquids the concentration of substances which are degraded by acidifying or alkalizing microorganisms
TWI773233B (en) Method and apparatus for real-time monitoring activity of nitrifying bacteria
JP3077461B2 (en) How to monitor hazardous substances in water
JP2002136990A (en) Wastewater treatment apparatus and control method