JPH04160354A - Biosensor - Google Patents

Biosensor

Info

Publication number
JPH04160354A
JPH04160354A JP2284173A JP28417390A JPH04160354A JP H04160354 A JPH04160354 A JP H04160354A JP 2284173 A JP2284173 A JP 2284173A JP 28417390 A JP28417390 A JP 28417390A JP H04160354 A JPH04160354 A JP H04160354A
Authority
JP
Japan
Prior art keywords
oxidation
electrode
potential
reduction
biosensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2284173A
Other languages
Japanese (ja)
Inventor
Koichi Okuma
大熊 廣一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2284173A priority Critical patent/JPH04160354A/en
Publication of JPH04160354A publication Critical patent/JPH04160354A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable quick and highly precise determination of a plurality of components by one electrode system by impressing a prescribed pulse voltage so that an oxidation- reduction reaction proceeds sequentially from a produced substance of which an oxidation-reduction potential is low. CONSTITUTION:A plurality of combinations of a plurality of oxido-reductases with electron mediators of different oxidation-reduction potentials being used, changes in the concentration of substances produced on the occasion of reaction of the combinations in a plurality with a plurality of substrates in a sample solution are detected by impressing a prescribed pulse on one electrode system composed of a measuring electrode and an opposite electrode 2 so that the oxidation-reduction reaction proceeds sequentially from the produced substance of which the oxidation-reduction potential is low, and sequential measurement of the concentrations of the substrates in a plurality is enabled. In a construction thus prepared, a prescribed potential is impressed so that the oxidation-reduction reaction of a product proceeds on the electrode. On the occasion, the potential is impressed, beginning with that of the product of which the oxidation-reduction potential is low. According to this constitution, the oxidation-reduction reaction of the produced substance can be made of proceed selectively on the same electrode. The concentration of each substrate can be determined from an oxidation-reduction current value generated at the result.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、食品分析、医療分析、環境分析等の分野で、
液体試料をセンサ部に滴下するだけで微量かつ複数の成
分を、迅速、簡便に定量することができるバイオセンサ
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to the fields of food analysis, medical analysis, environmental analysis, etc.
The present invention relates to a biosensor that can quickly and easily quantify trace amounts of a plurality of components simply by dropping a liquid sample onto a sensor section.

〔従来の技術〕[Conventional technology]

従来、環境中や生体試料中の目的成分を、複雑な前処理
を行なうことなく、高精度に測定するバイオセンサとし
て、第3図に示すような構造のものが提案されている。
BACKGROUND ART Conventionally, a biosensor having a structure as shown in FIG. 3 has been proposed as a biosensor that can measure target components in the environment or biological samples with high precision without performing complicated pretreatment.

(特開昭59−166852.)図において21は測定
極、22は対極、23はリード線、24は酵素固定化多
孔体である。
(JP-A-59-166852.) In the figure, 21 is a measurement electrode, 22 is a counter electrode, 23 is a lead wire, and 24 is an enzyme-immobilized porous body.

このバイオセンサは、絶縁基板にそれぞれリード線23
を有する白金などからなる測定極21と対極22が埋設
され、これらの電極系の上部を覆うように酸化還元酵素
及び電子受容体を担持した多孔体24が取付けられたも
のである。
This biosensor has lead wires 23 on each insulating substrate.
A measuring electrode 21 and a counter electrode 22 made of platinum or the like are buried, and a porous body 24 carrying an oxidoreductase and an electron acceptor is attached to cover the upper part of these electrode systems.

試料液を多孔体24上に滴下すると、試料液に多孔体2
4中の酸化還元酵素と電子受容体が溶解し、試料液中の
基質との間で酵素反応が進行し、電子受容体が還元され
る。この還元された電子受容体を電気化学的に酸化し、
この時得られる酸化電流値から試料中の基質濃度を求め
る。
When the sample liquid is dropped onto the porous body 24, the porous body 2
The oxidoreductase and electron acceptor in 4 are dissolved, an enzymatic reaction proceeds with the substrate in the sample solution, and the electron acceptor is reduced. This reduced electron acceptor is electrochemically oxidized,
The substrate concentration in the sample is determined from the oxidation current value obtained at this time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来の構成では、多孔体に複数の酵素を固
定化しても、これらの酵素系から誘導された一種類の目
的物質の定量か、あるいは、多種類の目的物質の総量の
定量しかできなかった。
In the conventional configuration described above, even if multiple enzymes are immobilized on a porous material, it is only possible to quantify one type of target substance derived from these enzyme systems or the total amount of multiple types of target substances. could not.

そして、複数の目的物質の濃度を検出するには、目的物
質の数に応したセンサを用意しなければならなかった。
In order to detect the concentrations of multiple target substances, it is necessary to prepare sensors corresponding to the number of target substances.

本発明は上記の問題を解消するためになされたもので、
一つの電極系で複数成分を迅速かつ高精度に定量できる
ものを提供することを目的とする。
The present invention was made to solve the above problems.
The purpose of the present invention is to provide a system that can quickly and accurately quantify multiple components using one electrode system.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のバイオセンサは、複数の酸化還元酵素と酸化還
元電位の異なる電子メディエータとの複数の組合せを用
い、該複数の組合せと試料溶液中の複数の基質との反応
に際して生成した物質濃度変化を、測定極と対極とから
なる一つの電極系に、生成物質の酸化還元電位の低い方
から順次酸化還元反応が進むよう所定のパルスを印加し
て検出し、複数の基質の濃度を逐次的に計測できるよう
に構成したものである。
The biosensor of the present invention uses a plurality of combinations of a plurality of oxidoreductases and an electron mediator having different redox potentials, and detects changes in substance concentration generated when the plurality of combinations react with a plurality of substrates in a sample solution. , a predetermined pulse is applied to one electrode system consisting of a measurement electrode and a counter electrode so that the redox reaction proceeds sequentially from the one with the lowest redox potential of the product substance, and the concentration of multiple substrates is sequentially detected. It is configured so that it can be measured.

〔作 用] 上記のような構成にすると、反応によって特定の酸化還
元電位を有する物質が生成する。
[Function] With the above configuration, a substance having a specific redox potential is produced by reaction.

電極上で生成物の酸化還元反応が進行するよう所定の電
位を印加するが、この場合、酸化還元電位の低い生成物
の電位から印加してゆく。こうすると、同一電極上で選
択的に生成物質の酸化還元反応を進行させることができ
る。この結果生じた酸化還元電流値より各基質の濃度を
求めることができる。
A predetermined potential is applied so that the redox reaction of the product proceeds on the electrode, but in this case, the voltage is applied starting from the potential of the product having the lowest redox potential. This allows the redox reaction of the product to proceed selectively on the same electrode. The concentration of each substrate can be determined from the resulting redox current value.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す。 FIG. 1 shows an embodiment of the invention.

図において1は測定極、2は対極、3はリード線、4は
テフロン隔膜、5a、5bはpF17.Oのりん酸緩衝
液を含有した吸水性高分子物質、6a。
In the figure, 1 is a measurement electrode, 2 is a counter electrode, 3 is a lead wire, 4 is a Teflon diaphragm, 5a and 5b are pF17. Water-absorbing polymeric material containing O phosphate buffer, 6a.

6b、6cは電子メディエータ層で6aはフェナジンメ
トサルフェート、6bはフェリシアン化カリウム、6c
はp−ベンゾキノンである。7a。
6b and 6c are electron mediator layers, 6a is phenazine methosulfate, 6b is potassium ferricyanide, 6c
is p-benzoquinone. 7a.

7b、7cは酵素層で、7aはグルコースオキシダーゼ
、7bは乳酸オキシダーゼ、7cはピルビン酸オキシダ
ーゼである。
7b and 7c are enzyme layers, 7a is glucose oxidase, 7b is lactate oxidase, and 7c is pyruvate oxidase.

グルコース、乳酸、ピルビン酸を含有する試料液を作用
させると、試料液は吸水性高分子物質5aに吸収され、
さらに、電子メディエータ層6a、6b、6cを通過し
てメディエータとともに酵素層7a、7b、7cに到達
する。
When a sample solution containing glucose, lactic acid, and pyruvic acid is applied, the sample solution is absorbed by the water-absorbing polymer substance 5a,
Furthermore, the electrons pass through the electron mediator layers 6a, 6b, and 6c and reach the enzyme layers 7a, 7b, and 7c together with the mediator.

酵素層7aではグルコースオキシダーゼとグルコースが
反応し、これにともないメディエータの酸化型フェナジ
ンメトサルフェートが還元型フェナジンメトサルフェー
トとなる。
In the enzyme layer 7a, glucose oxidase and glucose react, and as a result, the mediator, oxidized phenazine methosulfate, becomes reduced phenazine methosulfate.

同様に、酵素層7bでは乳酸オキシダーゼと乳酸が反応
し、これにともないメディエータの酸化型フェリシアン
化カリウムが還元型フェリシアン化カリウムとなり、酵
素JW7Cではピルビン酸オキシダーゼとピルビン酸が
反応し、これにともないメディエータの酸化型p−ベン
ゾキノンが還元型p−ベンゾキノンとなる。
Similarly, in the enzyme layer 7b, lactate oxidase and lactic acid react, and as a result, the mediator oxidized potassium ferricyanide becomes reduced potassium ferricyanide.In the enzyme JW7C, pyruvate oxidase and pyruvate react, and as a result, the mediator oxidizes. Type p-benzoquinone becomes reduced type p-benzoquinone.

このようにして生成されたそれぞれの還元型メディエー
タが電極上部の吸水性高分子物質5bに到達する。
Each of the reduced mediators thus generated reaches the water-absorbing polymer substance 5b above the electrode.

電極に還元型フェナジンメトサルフェートを酸化する電
位+〇、 05 Vをパルスで印加し、その時の酸化電
流値からグルコースを定量する。次に、還元型フェリシ
アン化カリウムを酸化する電位+0.30Vをパルスで
印加する。この際還元型フェナジンメトサルフェートも
酸化されるため、この時生ずる酸化電流値は、グルコー
スと乳酸の総量を示す。さらに、還元型p−ベンゾキノ
ンを酸化する電位+〇、 50 Vをパルスで印加する
。この際還元型フェナジンメトサルフェート還元型p−
ベンゾキノンも同時に酸化されるため、この時生ずる酸
化電流値は、グルコース、乳酸、ピルビン酸の総量を示
す。これらの電流値の差からそれぞれグルコース、乳酸
、ピルビン酸の量が計測できる。
A potential of +0.05 V for oxidizing reduced phenazine methosulfate is applied in pulses to the electrode, and glucose is quantified from the oxidation current value at that time. Next, a potential of +0.30 V that oxidizes the reduced potassium ferricyanide is applied in a pulse manner. Since the reduced phenazine methosulfate is also oxidized at this time, the oxidation current value generated at this time indicates the total amount of glucose and lactic acid. Furthermore, a potential of 50 V, which oxidizes the reduced p-benzoquinone, is applied in pulses. At this time, reduced phenazine methosulfate and reduced p-
Since benzoquinone is also oxidized at the same time, the oxidation current value generated at this time indicates the total amount of glucose, lactic acid, and pyruvic acid. The amounts of glucose, lactic acid, and pyruvic acid can be measured from the difference in these current values.

第2図は本発明の他の実施例を示す。FIG. 2 shows another embodiment of the invention.

図において11は測定極、12は対極、13はリード線
、14はpH7,0りん酸緩衝液を含有する吸水性高分
子物質、15はグルコースオキシダーゼ分子内に電子メ
ディエータのフェナジンメトサルフェートを固定化した
グルコースオキシダーゼ、16は乳酸オキシダーゼ分子
内に電子メディエータのp−ベンゾキノンを固定化した
乳酸オキシダーゼである。
In the figure, 11 is a measurement electrode, 12 is a counter electrode, 13 is a lead wire, 14 is a water-absorbing polymer material containing a pH 7.0 phosphate buffer, and 15 is an electron mediator phenazine methosulfate immobilized within a glucose oxidase molecule. Glucose oxidase 16 is a lactate oxidase in which p-benzoquinone, an electron mediator, is immobilized within the lactate oxidase molecule.

固定化方法は、尿素3.6g、シアノアミド2mg、イ
オン交換水10mj2に酵素とメディエータを熔解し、
固定化する。この後、透析膜により不要の尿素を取り除
く。上記のようにして分子内にメディエータを固定化し
た酵素を測定極表面上に配置する。
The immobilization method was to dissolve the enzyme and mediator in 3.6 g of urea, 2 mg of cyanoamide, and 10 mj2 of ion-exchanged water.
to be fixed. After this, unnecessary urea is removed using a dialysis membrane. The enzyme having the mediator immobilized in its molecule as described above is placed on the surface of the measurement electrode.

グルコースと乳酸を含有する試料を作用させると、試料
が吸水性高分子物質14に吸収されて、測定極11表面
上の酵素層に到達し、試料中のグルコースはグルコース
オキシダーゼと、乳酸は乳酸オキシダーゼと反応する。
When a sample containing glucose and lactic acid is reacted, the sample is absorbed by the water-absorbing polymer substance 14 and reaches the enzyme layer on the surface of the measuring electrode 11, and the glucose in the sample is converted into glucose oxidase and the lactic acid is converted into lactate oxidase. reacts.

この反応の結果それぞれの酵素内に固定化したメディエ
ータが酸化型から還元型に変化する。これを測定極11
表面上で酸化電位を印加して酸化する。
As a result of this reaction, the mediator immobilized within each enzyme changes from an oxidized form to a reduced form. Measure this at pole 11
Oxidation occurs by applying an oxidizing potential on the surface.

グルコースオキシダーゼ内に固定化されたフェナジンメ
トサルフェートに対しては+〇、 05 Vのパルス電
位を印加する。この時流れた酸化電流値からグルコース
量を求める。
A pulse potential of +0.05 V is applied to phenazine methosulfate immobilized within glucose oxidase. The amount of glucose is determined from the value of the oxidation current flowing at this time.

次に、乳酸オキシダーゼ内に固定化されたp −ベンゾ
キノンに対しては、+ 0.5 Vのパルス電位を印加
する。この時グルコースオキシダーゼ内の還元型フェナ
ジンメトサルフェートも同時に酸化される。
Next, a pulse potential of +0.5 V is applied to p-benzoquinone immobilized within lactate oxidase. At this time, reduced phenazine methosulfate within glucose oxidase is also oxidized at the same time.

この時流れた酸化電流値と+〇、 05 Vのパルス電
位を印加したときの酸化電流値の差から乳酸量を求める
The amount of lactic acid is determined from the difference between the oxidation current value flowing at this time and the oxidation current value when a pulse potential of +0.05 V is applied.

〔発明の効果] 以上説明したように、本発明によれば、−組の電極上で
選択的に生成物質の酸化還元反応を進行させて、複数の
基質を逐次的に同一センサで計測することができ、作業
能率の向上に寄与する効果が大である。
[Effects of the Invention] As explained above, according to the present invention, a plurality of substrates can be sequentially measured with the same sensor by selectively allowing the redox reaction of the product to proceed on the - set of electrodes. This has a great effect on improving work efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す説明図、第2図は本発
明の他の実施例を示す説明図、第3図は従来のバイオセ
ンサ;の−例を示す説明図である。 1・・・測定極、2・・・対極、3・・・リード線、4
・・・テフロン隔膜、5a、5b・・・吸水性高分子物
質、6a、6b、6cm・・電子メディエータ層、7a
。 7b、7c・・・酵素層、11・・・測定極、12・・
・対極、13・・・リード線、14・・・吸水性高分子
物質、15・・・グルコースオキシダーゼ、16・・・
オキシダーゼ。 特許出願人 新日本無線株式会社 第1図 第2図 第3図
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, FIG. 2 is an explanatory diagram showing another embodiment of the present invention, and FIG. 3 is an explanatory diagram showing an example of a conventional biosensor. 1...Measurement electrode, 2...Counter electrode, 3...Lead wire, 4
...Teflon diaphragm, 5a, 5b...Water-absorbing polymer material, 6a, 6b, 6cm...Electron mediator layer, 7a
. 7b, 7c... Enzyme layer, 11... Measuring electrode, 12...
- Counter electrode, 13... Lead wire, 14... Water-absorbing polymeric substance, 15... Glucose oxidase, 16...
oxidase. Patent applicant New Japan Radio Co., Ltd. Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)複数の酸化還元酵素と酸化還元電位の異なる電子
メディエータとの複数の組合せを用い、該複数の組合せ
と試料溶液中の複数の基質との反応に際して生成した物
質濃度変化を、測定極と対極とからなる電極系で電気化
学的に検知し、試料中の基質濃度を測定するバイオセン
サで、生成物質の酸化還元電位の低い方から順次酸化還
元反応が進むよう所定のパルス電圧を印加し、複数の基
質の濃度を逐次的に計測できるように構成したことを特
徴とするバイオセンサ。
(1) Using multiple combinations of multiple oxidoreductases and electron mediators with different redox potentials, changes in substance concentration generated during the reaction between the multiple combinations and multiple substrates in the sample solution are measured using a measurement electrode. This is a biosensor that electrochemically detects the substrate concentration in a sample with an electrode system consisting of a counter electrode and a counter electrode.A predetermined pulse voltage is applied so that the redox reaction proceeds in order from the one with the lowest redox potential of the product substance. , a biosensor characterized in that it is configured to be able to sequentially measure the concentrations of multiple substrates.
(2)複数の酸化還元酵素にそれぞれ酸化還元電位の異
なる電子メディエータを固定化したものを用いることを
特徴とする請求項第1項記載のバイオセンサ。
(2) The biosensor according to claim 1, characterized in that a plurality of oxidoreductases each having immobilized electron mediators having different redox potentials are used.
JP2284173A 1990-10-24 1990-10-24 Biosensor Pending JPH04160354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2284173A JPH04160354A (en) 1990-10-24 1990-10-24 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2284173A JPH04160354A (en) 1990-10-24 1990-10-24 Biosensor

Publications (1)

Publication Number Publication Date
JPH04160354A true JPH04160354A (en) 1992-06-03

Family

ID=17675128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2284173A Pending JPH04160354A (en) 1990-10-24 1990-10-24 Biosensor

Country Status (1)

Country Link
JP (1) JPH04160354A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009042631A3 (en) * 2007-09-24 2009-05-22 Bayer Healthcare Llc Multi-electrode test sensors
JP2010054379A (en) * 2008-08-28 2010-03-11 Tanita Corp Biosensor, method of manufacturing the same, and method of using the same
WO2023054231A1 (en) * 2021-09-29 2023-04-06 日東電工株式会社 Mixed reagent for electrochemical measurement

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009042631A3 (en) * 2007-09-24 2009-05-22 Bayer Healthcare Llc Multi-electrode test sensors
CN101849180A (en) * 2007-09-24 2010-09-29 拜尔健康护理有限责任公司 Multi-region and potential test sensors, methods, and systems
JP2010540934A (en) * 2007-09-24 2010-12-24 バイエル・ヘルスケア・エルエルシー Multi-region / multi-potential test sensor, method and system
JP2014122911A (en) * 2007-09-24 2014-07-03 Bayer Healthcare Llc Analyte testing sensor, method, and system in multi-region analysis
US9846136B2 (en) 2007-09-24 2017-12-19 Ascensia Diabetes Care Holdings Ag Multi-region and potential test sensors, methods and systems
US10895550B2 (en) 2007-09-24 2021-01-19 Ascensia Diabetes Care Holdings Ag Multi-region and potential test sensors, methods, and systems
JP2010054379A (en) * 2008-08-28 2010-03-11 Tanita Corp Biosensor, method of manufacturing the same, and method of using the same
WO2023054231A1 (en) * 2021-09-29 2023-04-06 日東電工株式会社 Mixed reagent for electrochemical measurement

Similar Documents

Publication Publication Date Title
US10895550B2 (en) Multi-region and potential test sensors, methods, and systems
Sprules et al. Evaluation of a new disposable screen‐printed sensor strip for the measurement of NADH and its modification to produce a lactate biosensor employing microliter volumes
EP0048090A2 (en) Substrate specific galactose oxidase enzyme electrodes
JPH04340453A (en) Biosensor and separation and quantification method using the same
WO1995021934A1 (en) Hexacyanoferrate modified electrodes
Kalaycı et al. Preparation and application of a new glucose sensor based on iodide ion selective electrode
US11255834B2 (en) Physical characteristic determination of a biological sample
JPH04160354A (en) Biosensor
KR101109857B1 (en) Electrochemical Biosensor Using Double Pulse Excitation
JP2977258B2 (en) Biosensor
JPS62235557A (en) Enzyme electrode
Dong Recent aspects of amperometric glucose sensor
Pfeiffer et al. 17.1 OVERVIEW OF DESIGN AND FUNCTION