JPS6057537B2 - Ammonia determination method using microbial electrodes - Google Patents

Ammonia determination method using microbial electrodes

Info

Publication number
JPS6057537B2
JPS6057537B2 JP53146324A JP14632478A JPS6057537B2 JP S6057537 B2 JPS6057537 B2 JP S6057537B2 JP 53146324 A JP53146324 A JP 53146324A JP 14632478 A JP14632478 A JP 14632478A JP S6057537 B2 JPS6057537 B2 JP S6057537B2
Authority
JP
Japan
Prior art keywords
ammonia
microbial
electrode
output current
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53146324A
Other languages
Japanese (ja)
Other versions
JPS5572853A (en
Inventor
基彦 引馬
樹 久保
武夫 安田
征夫 軽部
周一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP53146324A priority Critical patent/JPS6057537B2/en
Publication of JPS5572853A publication Critical patent/JPS5572853A/en
Publication of JPS6057537B2 publication Critical patent/JPS6057537B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は微生物化学的にアンモニアおよびアンモニウ
ムイオンを定量する方法に関し、詳しくはアンモニアお
よびアンモニウムイオンを含有する供試試料を、アンモ
ニアおよびアンモニウムイオンを選択的に亜硝酸、また
は亜硝酸をさらに硝酸に酸化する微生物系、あるいはそ
の両方の微生物の活性菌体に接触せしめることによつて
生ずる亜硝酸化成作用又は亜硝酸化成作用および硝酸化
成作用によつて生する酸素分圧の変化を電気化学的に感
知させ、それによつて該供試試料中のアンモニア量を間
接的に定量する微生物電極によるアンモニアおよびアン
モニウムイオン(爾後、両者を包含して単にアンモニア
と称することあり。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for quantifying ammonia and ammonium ions using microbial chemistry. A microbial system that further oxidizes nitrite to nitric acid, or the oxygen partial pressure produced by the nitrite-forming action or the nitrite-forming action and the nitrifying action, which is caused by contacting the active bacterial cells of microorganisms that further oxidize nitrite to nitric acid, or both microorganisms. Ammonia and ammonium ions (hereinafter, both may be collectively referred to as ammonia) using microbial electrodes that electrochemically sense changes and thereby indirectly quantify the amount of ammonia in the test sample.

)の定量法及びそれに用いる装置に関する。 アンモニ
アは自然界の窒素サイクルの必須形態である反面、最近
環境汚染の原因の一つとされ、湖沼、内湾の環境を破壊
する富栄養化及び水産生物の有害物として、排水中の高
含有量に対し、排水中のアンモニア・モニターの必要性
が求められており、一方、食品工業、化学工業、ガス製
造工業、紡績工業においても、原料・副生物として工程
液中のアンモニアを定量する必要は極めて多い。
) and a device used therefor. While ammonia is an essential form of the nitrogen cycle in nature, it has recently been recognized as one of the causes of environmental pollution, causing eutrophication that destroys the environment of lakes and inner bays, and as a harmful substance to aquatic life. , there is a need to monitor ammonia in wastewater, and on the other hand, there is an extremely large need to quantify ammonia in process liquids as raw materials and by-products in the food industry, chemical industry, gas manufacturing industry, and textile industry. .

これに対して、現状におけるアンモニアの定量法は蒸
溜滴定法(JISK1020)、比色法又はアンモニア
電極法等があるが、蒸溜滴定法はマニュアルで行われ自
動化には適せず、比色法、例えば棟木にサリチル酸発色
試薬、アルカリ性二塩化イソシアヌール酸を作用させた
後、吸光度を測定する方法等の自動化が試みられている
が、棟水中の固形物を完全に除去する必要上、枦過器の
枦紙交換の手間を要し、かつ装置も複雑てあり(安中ら
:りんおよびアンモニア性窒素の連続自動分析、「用水
と廃水」恕、1、48〜54(1978))自動化の方
法としては必ずしも適切ではない。
On the other hand, current methods for quantifying ammonia include distillation titration method (JISK1020), colorimetry method, and ammonia electrode method, but distillation titration method is performed manually and is not suitable for automation. For example, attempts have been made to automate methods such as measuring the absorbance after applying a salicylic acid coloring reagent or alkaline dichloroisocyanuric acid to purlins, but due to the need to completely remove solids from the purlins, It takes time and effort to change the paper, and the equipment is complicated (Annaka et al.: Continuous automatic analysis of phosphorus and ammonia nitrogen, "Water and Wastewater", 1, 48-54 (1978)) Automation method It is not necessarily appropriate.

アンモニア電極法は原理上棟水のPHを11.0以上
にする必要があるので、多量のアルカリの注入を必要と
する上、金属水酸化物等が検出部の感受面に析出して測
定精度を劣化させるので頻繁な膜洗浄を必要とする欠点
がある。
In principle, the ammonia electrode method requires the pH of the water to be 11.0 or higher, which requires the injection of a large amount of alkali, and metal hydroxides deposit on the sensing surface of the detection unit, impairing measurement accuracy. There is a drawback that frequent cleaning of the membrane is required because of deterioration.

(安中ら:同上)本発明者らは、簡便で安定性と信頼性
が高く、かつ連続法のオンライン管理に適した測定法に
ついて鋭意研究の結果、アンモニアのみを選択的に酸化
して亜硝酸または硝酸に酸化する微生物系、あるいはそ
の両方の微生物活性菌体層を該菌体を通過させない微細
孔を有する薄膜で固定化した微生物電極、あるいは既知
の方法で固定した該細菌の活性菌体を固定化した微生物
膜を取りつけた微生物電極を用いることにより、簡単で
安定性と信頼性の高いアンモニア定量法となし得ること
を発見し、それに基づいて本発明を完成するにいたつた
。すなわち本発明は亜硝酸生成細菌又は亜硝酸生成細菌
および硝酸生成細菌の活性菌体層を、該菌体を通過させ
ない微細孔を有する薄膜で固定化した微生物電極、ある
いは該細菌の活性菌体を固定化した微生物膜を取りつけ
た微生物電極を、アンモニアおよびアンモニウムイオン
を含有する被検液に浸漬、接触させ、該被検液のアンモ
ニア濃度に対応して起る被検液中の溶存酸素の減少を、
上記微生物電極の出力電流の減少量あるいは出力電流の
減少速度として感知させて、間接的にアンモニア濃度を
定量することを特徴とする、微生物電極によるアンモニ
アおよびアンモニウムイオンの定量法及び之に用いる装
置を要旨とする発明である。
(Annaka et al.: Same as above) As a result of intensive research into a measurement method that is simple, stable, reliable, and suitable for online management of continuous methods, the present inventors have discovered that only ammonia can be selectively oxidized. A microbial electrode in which a layer of active microbial cells of nitric acid or a microbial system that oxidizes to nitric acid, or both, is immobilized with a thin film having micropores that do not allow the microbial cells to pass through, or active bacterial cells of the bacterium immobilized by a known method. We have discovered that a simple, stable, and reliable method for quantifying ammonia can be achieved by using a microbial electrode equipped with a microbial membrane immobilized with ammonia, and based on this discovery, we have completed the present invention. That is, the present invention provides a microbial electrode in which a layer of active bacterial cells of nitrite-producing bacteria or nitrite-producing bacteria and nitrate-producing bacteria is immobilized with a thin film having micropores that do not allow the bacterial cells to pass through, or A microbial electrode equipped with an immobilized microbial membrane is immersed in and brought into contact with a test solution containing ammonia and ammonium ions, and the amount of dissolved oxygen in the test solution is reduced in response to the ammonia concentration in the test solution. of,
A method for quantifying ammonia and ammonium ions using a microbial electrode, characterized in that the ammonia concentration is indirectly determined by sensing the amount of decrease in the output current of the microbial electrode or the rate of decrease in the output current, and an apparatus used therefor. This is the gist of the invention.

本発明において使用する微生物は硝化細菌と呼ばれるも
ので、アンモニアを酸化して亜硝酸とする亜硝酸生成細
菌、例えばニトロソモナス・ヨーロパエア(NitrO
sOmOnaseurOpaea)ATCCl97l&
あるいは亜硝酸をさらに酸化する硝酸生成細菌、例えば
ニトロバークター・アジリス(NitrObacter
agills)ATCCl4l23等が用いられ、硝酸
生成細菌類を亜硝酸生成細菌類と混合して使用する方が
中間生成物てある亜硝酸の阻害が少ないので好ましく用
いられる。
The microorganisms used in the present invention are called nitrifying bacteria, and are nitrite-producing bacteria that oxidize ammonia to nitrite, such as Nitrosomonas europaea (NitrO
sOmOnaseurOpaea) ATCCl97l&
Alternatively, nitrate-producing bacteria that further oxidize nitrite, such as NitrObacter
It is preferable to use nitrate-producing bacteria in combination with nitrite-producing bacteria because the inhibition of nitrite, which is an intermediate product, is less.

以上の他に亜硝酸生成細菌類としては、例えばニトロソ
モナス●モノセラ(NitrOsOmOnasmOnO
cella),ニトロソコッカス●ニトロサス(Nit
rOsOcOccusnitrOsus),ニトロソス
ピラ●ブリエンシス(NitrOsOspjrabri
ensis),ニトロソスピラ アンタークテイカ(N
itrOsOspiraantarctica),ニト
ロソシステイス●ジヤバネンシス(NitrOsOcy
stisjavarlensis),ニトロソシステイ
ス コツコイデス(NitrOsOcystiscOc
cOides)、ニトロソグロエア●メリスモイデス(
NitrOsOgIOeamerismOides)、
ニトロソグロエア シゾバクテロイデス(NitrOs
OglOeashizObacterOides)、ニ
トロソグロエア●メンブラナセエア(NitrOsOg
lOea●Membranacea)等があり、硝酸生
成細菌類としては、例えは、ニトロパクター●ウイノグ
ラスキー(NitrObacterwinOgrads
ki)、ニトロシステイス●ザルチノイデス(Nitr
OcystissarcirK)Ides)、ニトロシ
ステイス ミクロバンクテート(NitrOcysti
smicrOpurlctate)等がある。
In addition to the above, examples of nitrite-producing bacteria include Nitrosomonas Monocera (NitrOsOmOnO
cella), Nitrosococcus●Nitrosus (Nit
rOsOcOccusnitrOsus), Nitrosospira briensis (NitrOsOspjrabri
Nitrosospira antarctica (N. ensis), Nitrosospira antarctica (N.
itrOsOspiraantartica), Nitrosocystei jabanensis (NitrOsOcy
stisjavarlensis), Nitrosocystis coccoides (NitrOsOcystiscOc)
cOides), Nitrosogloea Melismoides (
NitrOsOgIOeamerismOides),
Nitrosogloea Schizobacteroides (NitrOs)
OglOeashizObacterOides), Nitrosogloea Membranaceaea (NitrOsOg
Examples of nitrate-producing bacteria include Nitropacter and NitrObacterwinograds.
ki), Nitrocystis sarchinoides (Nitr
Ocystissarcir K) Ides), Nitrocystis microbanktate (NitrOcysti
smicrOpurlctate), etc.

これらの微生物は炭酸塩及び重炭酸塩を唯一の炭素源と
して利用し、増殖に要するエネルギーはアンモニアまた
は亜硝酸を酸化することによつて獲得する、いわゆる自
家栄養細菌(AutOtrOphicbacteria
)として知られ、アンモニアまたは亜硝酸のみを酸化し
て酸素を消費し、共存する有機化合物には活性を示さな
いので最も本発明の目的に適したものである。すなわち
、亜硝酸生成細菌は、 硝酸生成細菌は、 によつてエネルギーを発生し、この際の反応エネルギー
によつて菌が増殖する。
These microorganisms utilize carbonate and bicarbonate as their sole carbon source and obtain the energy needed for growth by oxidizing ammonia or nitrite, so-called autotrophic bacteria.
), which oxidizes only ammonia or nitrous acid and consumes oxygen, and does not show any activity against coexisting organic compounds, so it is most suitable for the purpose of the present invention. That is, nitrite-producing bacteria generate energy through the following steps, and the reaction energy at this time causes the bacteria to proliferate.

両者はそれぞれ特異的で上記の反応を替つて行なうこと
はできない。これらの微生物は共に土壌、活性汚泥(特
に長期間滞留させた汚泥)に存在しているので、通常こ
れらから分離して使用する。
Both are specific and cannot be performed interchangeably with the above reactions. Since both of these microorganisms exist in soil and activated sludge (particularly sludge that has been retained for a long period of time), they are usually separated from these for use.

分離、培養の培地としてはレーニス氏液、ステフエンソ
ン氏液等の培地を用いて培養分離すればよい。この方法
によれば通常両微生物類の混合物を用いることになる。
このような亜硝酸生成細菌類又は亜硝酸生成細菌類およ
び硝酸生成細菌類を用いて製作した微生物電極は、アン
モニアに対する応答に較べて有機化合物、例えばグルコ
ースに対する応答は同一濃度で1/1000以下であつ
てそれによる誤差は実用上無視できる。
As a medium for separation and culture, a medium such as Lenis's solution or Stephenson's solution may be used for culture and separation. According to this method, a mixture of both types of microorganisms is usually used.
Microbial electrodes manufactured using such nitrite-producing bacteria or nitrite-producing bacteria and nitrate-producing bacteria have a response to organic compounds such as glucose that is less than 1/1000 times the response to ammonia at the same concentration. The error caused by this can be ignored in practical terms.

土壌、汚泥等から微生物源を得る上記の方法とは別に、
純粋の硝化細菌、例えばニトロソモナス属の細菌である
ニトロソモナス●ヨウロパエアATCCl97l8およ
び/またはニトロパクター属の細菌であるニトロパクタ
ー●アジリスATCCl4l23を種菌として、例えば
硫安およびりん酸などの栄養塩を含む培地て培養したも
のを用いて実施することができる。
Apart from the above methods of obtaining microbial sources from soil, sludge, etc.
Pure nitrifying bacteria, such as Nitrosomonas europaea ATCCl97l8, which is a bacterium of the genus Nitrosomonas, and/or Nitropacter agilis ATCCl4l23, which is a bacterium of the genus Nitropacter, was used as a seed and cultured in a medium containing nutrients such as ammonium sulfate and phosphoric acid. It can be carried out using

これらの何れかの方法による硝化細菌を前述の方法で数
ケ月培養した後、培養液中に担体として加えた炭酸カル
シウム(場合により炭酸マグネシウムまたは珪酸ゲル等
も用いられる。
After culturing the nitrifying bacteria produced by any of these methods for several months using the method described above, calcium carbonate (magnesium carbonate or silicate gel may also be used in some cases) is added as a carrier to the culture solution.

これらを菌体担持体と云う)。に付着して分散している
硝化細菌の活性菌体をろ過または遠心分離等の方法によ
つて分離採取して使用する。本発明に使用される酸素電
極は、ポーラロ型またはガルバニツク型のいずれでも良
く、一般的に市販されているものを使用することができ
る。
These are called bacterial carriers). The active cells of the nitrifying bacteria that are attached and dispersed are separated and collected by a method such as filtration or centrifugation and used. The oxygen electrode used in the present invention may be either a polaro type or a galvanic type, and commonly available commercially available ones can be used.

本発明で用いる微生物電極の1例を第1図に示す。第1
図はガルバニツク・タイプの酸素電極を用いた微生物電
極の正面断面図てある。使用する活性菌体は上記のよう
にして分離採取した活性菌体または炭酸カルシウム上に
付着した菌体のペーストを薄層として、要すればこれを
ナイロン網で支持し、これを後述する微細孔を有する薄
膜で固定し輪ゴム等で固定することによつて第1図の微
生物電極11が得られる。図中1は微生物の菌体層、2
はこれらを掩い、支持する支持体、例えばナイロン網、
3は多孔質膜、透析膜、またはガス透過膜等の微細孔を
有する薄膜、4は酸素電極の隔膜、5は白金カソード、
6はアルミニウム・アノード、7は塩化カリウム電解液
、8及び8″は固定のための輪ゴムである。ここに微生
物の菌体層1を掩い支持する微細孔を有する薄膜として
は、本発明で用いる微生物の菌体を通過せず、アンモニ
ア、アンモニウムイオン、酸素等を自由に通過させる薄
膜であれば何でも良く、例えばミリボアフィルター等の
多孔性膜、例えば、セロファン、動物性半透膜等の透析
膜、例えば、ポリフッ化エチレン系樹脂膜、シリコーン
膜等のガス透過膜等の上記の条件を満足するものであれ
ばすべて使用することができる。
An example of the microbial electrode used in the present invention is shown in FIG. 1st
The figure shows a front sectional view of a microbial electrode using a galvanic type oxygen electrode. The active bacterial cells used are the active bacterial cells isolated and collected as described above, or a paste of the bacterial cells adhered to calcium carbonate, which is made into a thin layer, supported by a nylon net if necessary, and then covered with micropores as described below. The microorganism electrode 11 shown in FIG. 1 can be obtained by fixing with a thin film having a rubber band or the like. In the figure, 1 is the microbial cell layer, 2
A support that covers and supports these, such as a nylon net,
3 is a thin film having micropores such as a porous membrane, dialysis membrane, or gas permeable membrane; 4 is a diaphragm of an oxygen electrode; 5 is a platinum cathode;
6 is an aluminum anode, 7 is a potassium chloride electrolyte, and 8 and 8'' are rubber bands for fixation.The thin film having micropores that covers and supports the microbial cell layer 1 is the thin film according to the present invention. Any thin film that does not pass through the cells of the microorganisms used but allows ammonia, ammonium ions, oxygen, etc. to freely pass through may be used, such as porous membranes such as millibore filters, cellophane, animal semipermeable membranes, etc. Any membrane that satisfies the above conditions can be used, such as a dialysis membrane, such as a gas permeable membrane such as a polyfluoroethylene resin membrane or a silicone membrane.

第1図中の1の微生物層の代りに固定化微生物膜を用い
てもよく、微生物をコラーゲンまたはポリアクリル・ア
ミドゲル等で通常の酵素の包括固定法に準じて固定化し
て固定化微生物膜をつくりこれを適当な大きさに切断し
て封入する等、適当な方法で電極に取りつけて用いるこ
ともできる。活性微生物菌体層を用いても、固定化微生
物膜を用いても活性や機能は殆んど変らないので、特に
固定化微生物膜を用いて行なう必要はない。本発明の微
生物電極を用いてアンモニアを定量するには、微生物電
極11をアンモニアを含有する被検液に浸漬、接触せし
めると被検液のアンモニアその他の成分および酸素が微
細孔を有する多孔質膜3を透して微生物層1に拡散して
くる。
An immobilized microbial membrane may be used in place of the microbial layer 1 in Figure 1, and the immobilized microbial membrane is formed by immobilizing microorganisms with collagen or polyacrylamide gel, etc. in accordance with the usual enzyme entrapment immobilization method. It can also be used by attaching it to an electrode by an appropriate method, such as making it, cutting it to an appropriate size, and encapsulating it. Since there is almost no difference in activity or function whether an active microbial cell layer or an immobilized microbial membrane is used, there is no particular need to use an immobilized microbial membrane. In order to quantify ammonia using the microbial electrode of the present invention, when the microbial electrode 11 is immersed in and brought into contact with a test solution containing ammonia, ammonia and other components of the test solution and oxygen are transferred to a porous membrane having micropores. 3 and diffuses into the microbial layer 1.

微生物は、このうちのアンモニアのみを酸化することに
よつて酸素を消費するから、それに比例して酸素電極隔
膜4に近い部分の溶存酸素が減少し、その結果該微生物
電極の出力電流が減少する。微生物のアンモニア酸化能
力が多孔質膜3を通してのアンモニア拡散量に比べて十
分大きく、すなわち拡散律速条件のときは、微生物電極
の出力電流の減少値あるいはその減少速度と、微生物電
極に接触する被検液のアンモニア濃度との間には比例関
係が成立する。従つて、出力電流の減少量又は減少速度
を測定することにより、被検液中のアンモニア濃度を求
めることが出来る。このような比例関係を得るためには
微生物量を十分に塗布すると共に、その活性を保持する
ために被検液のPHを7〜9に保持することが望ましく
、例えば炭酸ソーダおよびりん酸第一カリウムをそれぞ
れ0.05M01′e程度添加すればよい。本発明のア
ンモニア測定を連続操作として実施するには、例えば第
2図のシステム組立図に示すような装置を用いればよい
。図中11は本発明の微生物電極、12はゴムバッキン
グ、13はフローセル(内容積2〜10m1)、14は
マグネチツク・スターラー、15は攪拌器、16はレコ
ーダー、17は空気流入口、18は緩衝液(キャリヤー
液)注入口、19はサンプル注入口をそれぞれ示す。第
2図によつて本発明の方法を連続的に行なう・場合を説
明する。
Since microorganisms consume oxygen by oxidizing only ammonia, dissolved oxygen in the area near the oxygen electrode membrane 4 decreases in proportion to this, and as a result, the output current of the microorganism electrode decreases. . When the ammonia oxidation ability of microorganisms is sufficiently large compared to the amount of ammonia diffused through the porous membrane 3, that is, under diffusion-limited conditions, the decrease value or rate of decrease in the output current of the microbial electrode and the rate of decrease in the output current of the microbial electrode A proportional relationship is established between the ammonia concentration of the liquid and the ammonia concentration. Therefore, by measuring the amount or rate of decrease in the output current, the ammonia concentration in the test liquid can be determined. In order to obtain such a proportional relationship, it is desirable to apply a sufficient amount of microorganisms and to maintain the pH of the test solution at 7 to 9 in order to maintain its activity. Potassium may be added in an amount of about 0.05M01'e. To carry out the ammonia measurement of the present invention as a continuous operation, an apparatus such as that shown in the system assembly diagram of FIG. 2 may be used, for example. In the figure, 11 is the microbial electrode of the present invention, 12 is a rubber backing, 13 is a flow cell (inner volume 2 to 10 m1), 14 is a magnetic stirrer, 15 is a stirrer, 16 is a recorder, 17 is an air inlet, and 18 is a buffer Reference numeral 19 indicates a liquid (carrier liquid) injection port and a sample injection port. A case in which the method of the present invention is carried out continuously will be explained with reference to FIG.

まず、酸素で飽和した緩衝液(キャリヤー液)18をポ
ンプで測定セル(フローセル)13内を通して置き、被
検液をサンプラーで1〜1紛間づつ、一定間隔(例えば
10〜加分間)で注入口19から注入すると、被検液は
ギヤリヤー液で適度に希釈され(アンモニア濃度として
数Ppm)て、フローセル13内に入り、微生物電極1
1と接触すると、被検液内のアンモニアが微生物層によ
つて酸化され、それに応じて酸素が消費され、酸素電極
膜に近い部分の溶存酸素濃度が減少し、酸素電極の出力
電流が減少し、レコーダー16に記録される。被検液の
アンモニア濃度と電流の減少値(記録紙上のピークの高
さに相当)との関係を既知標準アンモニア濃度液につい
て求めて置けば、ピークの高さから被検液中のアンモニ
ア濃度を簡単に求めることができる。バッチ式でアンモ
ニア濃度を定量する場合には、微生物電極を被検液に浸
漬、接触させ、一定時間例えば1〜1紛間の範囲内の一
定時間における出力電流の減少量を求めるか、あるいは
測定中に被検液に通気することによつて被検液の溶存酸
素濃度を一定に保つと、定量時間が長くなると出力電流
値は一定になり平衡状態に達する、この平衡時の出力電
流値または出力電流の減少速度を求めると、これらの値
は被検液中のアンモニア濃度に比例するので、その濃度
を求めることができる。定量の場合の条件は、使用する
微生物の菌種に応じて活性の強い範囲の条件で行なうこ
とが望ましく、通常温度は25〜35℃で、PHは7〜
9の範囲が好ましい。
First, a buffer solution (carrier solution) 18 saturated with oxygen is passed through the measurement cell (flow cell) 13 using a pump, and the test solution is injected one to one drop at a time using a sampler at regular intervals (for example, from 10 to 10 minutes). When injected from the inlet 19, the test liquid is appropriately diluted with the gearier liquid (ammonia concentration of several ppm), enters the flow cell 13, and enters the microbial electrode 1.
1, the ammonia in the test liquid is oxidized by the microbial layer, oxygen is consumed accordingly, the dissolved oxygen concentration near the oxygen electrode membrane decreases, and the output current of the oxygen electrode decreases. , are recorded on the recorder 16. If the relationship between the ammonia concentration in the test solution and the current reduction value (corresponding to the height of the peak on the recording paper) is determined for a known standard ammonia concentration solution, the ammonia concentration in the test solution can be determined from the peak height. can be easily found. When quantifying ammonia concentration in a batch method, the microbial electrode is immersed in and brought into contact with the test liquid, and the amount of decrease in output current over a certain period of time, for example within the range of 1 to 1 particle, is determined or measured. If the dissolved oxygen concentration of the test solution is kept constant by aerating the test solution, the output current value will become constant as the quantification time increases and an equilibrium state will be reached.The output current value at this equilibrium or When the rate of decrease of the output current is determined, since these values are proportional to the ammonia concentration in the test liquid, the concentration can be determined. In the case of quantitative determination, it is desirable to carry out the conditions in a highly active range depending on the type of microorganism used, and the temperature is usually 25 to 35°C and the pH is 7 to 7.
A range of 9 is preferred.

微生物電極と被検液の接触時間は微生物の反応が早いた
め、0.5〜10分間で十分である。このように被検液
と微生物電極との接触時間が短かいことは定量時間を短
縮できるのみならず、微生物電極の汚染程度も少なくて
済むので本.装置の長期間の使用を可能ならしめる。な
お、微生物層には、硝化細菌以外に、有機化合物を資化
、酸化する微生物が、僅かに混入し、それによつて被検
液中に含まれる有機化合物にも僅かに応答することにな
るが、先に述べたように.硝化菌を数ケ月培養すること
により好ましくない硝化細菌以外の微生物は淘汰され、
実用上、差し支えない程度に共存する有機化合物に対す
る応答を減少させることができる。
Since the reaction of microorganisms is fast, a contact time of 0.5 to 10 minutes between the microorganism electrode and the test liquid is sufficient. This short contact time between the test liquid and the microbial electrode not only shortens the quantification time, but also reduces the degree of contamination of the microbial electrode. Enable long-term use of the device. In addition, in addition to nitrifying bacteria, the microbial layer contains a small amount of microorganisms that assimilate and oxidize organic compounds, which causes a slight response to the organic compounds contained in the test liquid. , as mentioned earlier. By culturing nitrifying bacteria for several months, undesirable microorganisms other than nitrifying bacteria are eliminated.
For practical purposes, the response to coexisting organic compounds can be reduced to an acceptable extent.

(アンモニアに対して1/1000以下)さらに、完全
に有機化合物に対する感度をなくすためには多孔質膜3
の膜として多孔質テフロン(登録商標名)膜、シリコー
ン膜などのアンモニア、酸素などのガスのみを選択的に
透過する膜を用いればよい、この場合には被検液中のア
ンモニウムイオンをガス化するために被検液のPHは9
以上に保持することが好ましい。
(1/1000 or less compared to ammonia) Furthermore, in order to completely eliminate sensitivity to organic compounds, porous membrane 3
A membrane that selectively permeates only gases such as ammonia and oxygen, such as a porous Teflon (registered trademark) membrane or a silicone membrane, can be used as the membrane. In this case, ammonium ions in the test liquid can be gasified. In order to do this, the pH of the test solution is 9.
It is preferable to maintain the temperature at or above.

上記に述べたように、本発明のアンモニアの定量法は、
他の有機物質が共存している工場排水や、発酵液中など
のアンモニア濃度を選択的に、簡便かつ迅速に測定する
ことを可能ならしめ工業的に極めて優れたアンモニア定
量法及びその装置を提供するものである。
As stated above, the method for quantifying ammonia of the present invention is as follows:
Provides an industrially superior method and device for quantifying ammonia that enables selective, simple, and rapid measurement of ammonia concentration in factory wastewater and fermentation liquids in which other organic substances coexist. It is something to do.

以下実施例を示す。な・お、特記なき限り%は重量%を
示す。実施例1 容積5eの曝気槽に表1の培地Aを2.5e張込み粉末
炭酸カルシウム15yを加えたのち、1Nの炭酸ソーダ
でPHを8.0に調整しこれに硝化細菌を含む活性汚泥
200m1(MLSS5OOOppm)を加え散気管に
て1/3〜1/2■VMで空気を吹きこみ好気的に培養
した。
Examples are shown below. Note that unless otherwise specified, % indicates weight %. Example 1 After filling 2.5 e of the medium A shown in Table 1 into an aeration tank with a volume of 5 e and adding 15 y of powdered calcium carbonate, the pH was adjusted to 8.0 with 1N soda carbonate, and activated sludge containing nitrifying bacteria was added to this. 200 ml (MLSS5OOOppm) was added, and air was blown in at 1/3 to 1/2 VM using an aeration pipe for aerobic cultivation.

硝化細菌が活動を開始するとアンモニアの酸化によつて
硝酸が生成し、PHが低下したので、1Nの炭酸ソーダ
を加えて、常にPHを8.0に保つた。
When the nitrifying bacteria started to act, nitric acid was produced by oxidation of ammonia, and the pH decreased, so 1N soda carbonate was added to keep the pH at 8.0.

この状態で培地Bを200m1ID連続的に供給し、室
温(20〜30℃)て培養した。なお、曝気槽中の培養
液は常に2.511treになるようオーバフロー口を
設けた。4ケ月間培養後、培養液5m1を径47醜のミ
リボアフィルターでp過して、その表面に微生物を付着
させた。
In this state, 200 ml ID of medium B was continuously supplied and cultured at room temperature (20 to 30°C). An overflow port was provided so that the culture solution in the aeration tank was always at 2.511 tre. After culturing for 4 months, 5 ml of the culture solution was filtered through a millibore filter with a diameter of 47 mm to allow microorganisms to adhere to the surface.

この膜をガルバニツク・タイプの酸素電極の隔膜上に微
生物層が内側に挾まれるように貼り、その上をナイロン
ネットで覆つて輪ゴムで酸素電極本体に固定して微生物
電極を作製し、この微生物電極を用いて第2図に示す連
続測定システムを組立て以下の実験を行なつた。まず、
キャリヤー液として0.05M′eの炭酸ソーダと0.
05MIeのりん酸一カリウムの等量混合液(PH8.
8)を調製し、これに空気を吹込んで溶存酸素を飽和さ
せたのちに、フローセルに流量3.9mtIminで連
続的に供給する。
This membrane is pasted on the diaphragm of a galvanic-type oxygen electrode so that the microbial layer is sandwiched inside, the top is covered with a nylon net, and it is fixed to the oxygen electrode body with a rubber band to create a microbial electrode. The continuous measurement system shown in Figure 2 was assembled using electrodes and the following experiments were conducted. first,
0.05 M'e of soda and 0.05 M'e as carrier liquid.
A mixture of equal volumes of monopotassium phosphate (pH 8.05MIe)
8) is prepared, air is blown into it to saturate it with dissolved oxygen, and then it is continuously supplied to the flow cell at a flow rate of 3.9 mtImin.

別に空気を流量3.9m1Iminで送り込んだ。なお
、このとき測定セルは保温ジャケット(第2図には示さ
れていない)内に設置し温度を30℃に保つた。こうし
ておいて微生物電極の出力電流をレコーダーに記録させ
(ベースライン)その値が安定したのちに被検液を流量
0.8m1Iminでフローセルに送り微生物電極の出
力電流の変化を記録した。出力電流が平衡に達したとき
被検液の供給を中止し出力電流が始めの値に回復するの
を確認した。このような試験を硫安を10,20,30
Tn9をそれぞれイオン交換水に溶かし111treと
した被検液について行なつた。
Separately, air was sent in at a flow rate of 3.9 ml/min. At this time, the measurement cell was placed inside a heat insulation jacket (not shown in FIG. 2) and the temperature was maintained at 30°C. In this way, the output current of the microbial electrode was recorded on a recorder (baseline), and after the value became stable, the test liquid was sent to the flow cell at a flow rate of 0.8 ml/min, and the change in the output current of the microbial electrode was recorded. When the output current reached equilibrium, the supply of the test liquid was stopped and the output current was confirmed to recover to its initial value. Such a test was carried out using ammonium sulfate at 10, 20, 30
The test was conducted using a test solution in which Tn9 was dissolved in ion-exchanged water to prepare 111tre.

その結果を第3図に縦軸は出力電流をμAで示し、横軸
に時間を分単位で示す。
The results are shown in FIG. 3, where the vertical axis shows the output current in μA, and the horizontal axis shows time in minutes.

図中カーブ1,2及び3はそれぞれ、硫安の10,20
及び30m9を1eのイオン交換処理水に溶解した液の
出力電流の経時変化を示す。4はイオン交換処理水の出
力電流値を示す。
Curves 1, 2 and 3 in the figure are 10 and 20 of ammonium sulfate, respectively.
and 30m9 dissolved in ion-exchange treated water of 1e. 4 indicates the output current value of the ion exchange treated water.

また、微生物電極の平衡電流値を被検液のアンモニア濃
度に対してプロットして第4図を作成した。縦軸を出力
電流(μA)、横軸をアンモニア濃度(Ppm)で示す
。なお、硫安10,20,30ppm溶液の被検液はア
ンモニア濃度に換算するとそれぞれ2.58,5.15
,7.72ppmとなる。図中1,2,3はそれぞれ上
記の順の硫安液の出力電流のプロットであり、4はイオ
ン交換水の電流プロット、第3図から解るように、本微
生物電極は10分間以内の短時間に平衡電流が得られ、
また、第4図に示されるように平衡電流値はアンモニア
濃度に対して良好な直線関係を示すことが判つた。なお
、被検液はキャリヤー液によつて5倍程度希しやくされ
るので測定セル内のアンモニア濃度は0.5ないし1.
5ppmとなり本微生物電極が極めて高い感度を有する
ことが示された。次に有機物の影響を調べるためにグル
コース1000ppm含有する被検液を測定したところ
、その応答は硫安10ppm(アンモニア換算2.58
ppm)の被検液の1/5であつた。すなわち、この微
生物電極は同一濃度で比較してグルコースに対してアン
モニアは2×103倍程度の感度を示し実用上十分な選
択性を示した。本測定システムは10日間以上連続作動
させたところ安定に作動し、アンモニアに対する応答特
性は不変であつた。
In addition, Figure 4 was created by plotting the equilibrium current value of the microbial electrode against the ammonia concentration of the test liquid. The vertical axis shows the output current (μA), and the horizontal axis shows the ammonia concentration (Ppm). In addition, the test solutions of ammonium sulfate 10, 20, and 30 ppm solutions have ammonia concentrations of 2.58 and 5.15, respectively.
, 7.72 ppm. In the figure, 1, 2, and 3 are the plots of the output current of the ammonium sulfate solution in the above order, and 4 is the current plot of the ion-exchanged water. An equilibrium current is obtained,
Furthermore, as shown in FIG. 4, it was found that the equilibrium current value showed a good linear relationship with the ammonia concentration. Note that since the test liquid is diluted by about 5 times with the carrier liquid, the ammonia concentration in the measurement cell is between 0.5 and 1.
5 ppm, indicating that this microbial electrode has extremely high sensitivity. Next, in order to investigate the influence of organic substances, we measured a sample solution containing 1000 ppm of glucose, and the response was 10 ppm of ammonium sulfate (2.58 ppm in terms of ammonia).
ppm) of the test solution. That is, this microbial electrode showed a sensitivity of about 2×10 3 times as much for ammonia as for glucose, and showed sufficient selectivity for practical use. When this measurement system was operated continuously for more than 10 days, it operated stably and the response characteristics to ammonia remained unchanged.

しかし、前述のグルコースを含む被検液に対するアンモ
ニアの感度比は1×1σ倍となりややアンモニアに対す
る選択性は低下したが、なお実用上は十分であつた。実
施例2 実施例1と同じ方法で作製した微生物電極および定量装
置を同様な条件で作動させ実際の排水中のアンモニア測
定を行なつた。
However, the sensitivity ratio of ammonia to the above-mentioned glucose-containing test solution was 1×1σ times, and although the selectivity for ammonia was slightly lowered, it was still sufficient for practical use. Example 2 A microbial electrode and a quantitative device prepared in the same manner as in Example 1 were operated under the same conditions to actually measure ammonia in waste water.

排水としては表2に表すような発酵工場排水をイオン交
換水で希しやくしたもの4種類について定量した。
As wastewater, four types of fermentation factory wastewater as shown in Table 2 were diluted with ion-exchanged water and quantified.

表中の遊離アンモニア濃度は、JISKOlO2(日本
工業標準調査会:工場排水試験方法K.OlO2,P3
6)による蒸溜適定法で、BODは同じくJISK.O
lO2(同上試験法KOlO2,P33)に定める方法
でそれぞれ測定した。
The free ammonia concentration in the table is JISKOlO2 (Japanese Industrial Standards Committee: Factory wastewater test method K.OlO2, P3
6), the BOD is also JISK. O
Each was measured by the method specified in 1O2 (Test method KO1O2, P33).

別に標準物質として、実施例1と同様に硫安溶液を用い
アンモニア濃度換算で、2.58,5.15,7.72
ppmの標準溶液を調製した。
Separately, as a standard substance, ammonium sulfate solution was used as in Example 1, and the ammonia concentration was 2.58, 5.15, 7.72.
A ppm standard solution was prepared.

以上の試験液を3紛間隔で順次1紛間つつ測定セルに流
量0.877!11Minで注入した。
The above test liquid was injected into the measuring cell at a flow rate of 0.877!11 Min, one drop at a time every three drops.

結果を第5図(縦軸に出力電流(μA)、横軸にアンモ
ニア濃度(Ppm))に示す。図中の白丸1,2,3は
標準溶液のアンモニア濃度と電極の出力電流値の関係を
プロットしたもので、両者の間には図に示すような直線
関係が存在する。次に被検液についても同様に、蒸溜滴
定法によつて求めたアンモニア濃度と同液を微生物電極
で.測定したときの出力電流の関係をプロットしたとこ
ろ第5図の黒丸5〜8の如くになつた。これらの黒丸5
〜8はいずれも標準溶液直線の近傍に位置している。こ
のことは微生物電極で測定した濃度と蒸溜滴定法で求め
た濃度がよく一致しているノことを示す。実施例3 表3に示す培地を2000m1容の三角フラスコに移し
、炭酸カリウム50%溶液でPHを8.2〜8.4に調
整後120℃で3紛間殺菌した。
The results are shown in FIG. 5 (output current (μA) on the vertical axis and ammonia concentration (Ppm) on the horizontal axis). White circles 1, 2, and 3 in the figure are plots of the relationship between the ammonia concentration of the standard solution and the output current value of the electrode, and there exists a linear relationship between the two as shown in the figure. Next, the ammonia concentration of the test liquid was similarly determined using the distillation titration method, and the same liquid was measured using a microbial electrode. When the relationship between the measured output currents was plotted, the results were as shown by black circles 5 to 8 in FIG. These black circles 5
-8 are all located near the standard solution straight line. This shows that the concentration measured with the microbial electrode and the concentration determined by distillation titration are in good agreement. Example 3 The culture medium shown in Table 3 was transferred to a 2000 ml Erlenmeyer flask, and after adjusting the pH to 8.2 to 8.4 with a 50% potassium carbonate solution, it was sterilized at 120° C. for three times.

ただし、硫酸マグネシウムと塩化カルシウムは沈澱生成
を防止するため、上記と同一条件で別殺菌し、それぞれ
放冷後に混合した。
However, in order to prevent the formation of precipitates, magnesium sulfate and calcium chloride were separately sterilized under the same conditions as above, and then mixed after being allowed to cool.

このような倍地にニトロソモナス・ヨウロパエア(Ni
tr′0s0m0naseur0paea)Aπ℃19
718の培養液5m1を接種、室温(30℃前後)で2
5日間静置培養した。
Nitrosomonas europaea (Ni
tr′0s0m0naseur0paea)Aπ℃19
718 culture solution was inoculated and incubated at room temperature (around 30℃) for 2 hours.
It was statically cultured for 5 days.

培養中にPHが低下して指示薬クレゾール・レッドの色
が赤から黄に変化したときは、殺菌した50%炭酸カリ
ウム溶液を指示薬がもとの色にもどるまて滴下してPH
を一定に保つた。
If the pH of the indicator cresol red changes from red to yellow during culturing, drop a sterilized 50% potassium carbonate solution until the indicator returns to its original color.
was kept constant.

このようにして得た培養液を全量、径47TfI!nの
ミリボアフィルターで沖過し、その表面に微生物を付着
させた膜を用いて実施例1と同様に微生物電極を組立て
同様な条件、方法で作動させた。
The total volume of the culture solution thus obtained was 47TfI in diameter! A microbial electrode was assembled in the same manner as in Example 1 using a membrane on which microorganisms were attached to the surface of the membrane filtered through a millibore filter, and operated under the same conditions and method.

その結果、表4に示すようにアンモニア濃度に−比例し
た値の出力電流の減少値が得らた。なお、硫安100,
200,400ppm溶液はアンモニア濃度に換算する
と、それぞれ25.8,51.5,77.2ppmとな
る。
As a result, as shown in Table 4, the output current decreased in proportion to the ammonia concentration. In addition, ammonium sulfate 100,
The 200 and 400 ppm solutions are converted into ammonia concentrations of 25.8, 51.5 and 77.2 ppm, respectively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の微生物電極の構造正面縦断説明図。 図中1菌体層、2支持体、3多孔質膜、4酸素電極の隔
膜、5カソード、6アノード、7塩化カリウム電解液、
8,8″は輪コム、第2図は本発明の微生物電極を用い
た連続定量装置システムの組立説明図。 図中11微生物電極、12ゴムバッキング、13フロー
セル、14マグネチツク●スターラー、15攪拌器、1
6レコーダー、17空気流入口、18キャリヤー注入口
、19サンプル注入口。
FIG. 1 is a front longitudinal sectional view of the structure of the microbial electrode of the present invention. In the figure: 1 bacterial cell layer, 2 support, 3 porous membrane, 4 oxygen electrode diaphragm, 5 cathode, 6 anode, 7 potassium chloride electrolyte,
8 and 8" are ring combs, and Figure 2 is an explanatory diagram of the assembly of a continuous quantitative device system using the microbial electrode of the present invention. In the figure, 11 microbial electrode, 12 rubber backing, 13 flow cell, 14 magnetic stirrer, and 15 stirrer. ,1
6 recorders, 17 air inlets, 18 carrier inlets, 19 sample inlets.

Claims (1)

【特許請求の範囲】[Claims] 1 酸素電極に亜硝酸生成細菌又は亜硝酸生成細菌およ
び硝酸生成細菌の活性菌体層を、該菌体を通過させない
微細孔を有する薄膜で固定化した微生物電極、あるいは
該細菌の活性菌体を固定化した微生物膜を取りつけた微
生物電極をアンモニアおよびアンモニウムイオンを含有
する被検液に浸漬、接触させ、該被検液のアンモニア濃
度に対応しておこる被検液中の溶存酸素の減少を、上記
微生物電極の出力電流の減少量あるいは出力電流の減少
速度として感知させて、間接的にアンモニア濃度を定量
することを特徴とする、微生物電極によるアンモニアお
よびアンモニウムイオンの定量法。
1. A microbial electrode in which a layer of active bacterial cells of nitrite-producing bacteria or nitrite-producing bacteria and nitrate-producing bacteria is immobilized on an oxygen electrode with a thin film having micropores that do not allow the bacteria to pass through, or A microbial electrode equipped with an immobilized microbial membrane is immersed in and brought into contact with a test solution containing ammonia and ammonium ions, and a decrease in dissolved oxygen in the test solution that occurs in response to the ammonia concentration of the test solution is detected. A method for quantifying ammonia and ammonium ions using a microbial electrode, characterized in that the ammonia concentration is indirectly determined by sensing the amount of decrease in the output current or the rate of decrease in the output current of the microbial electrode.
JP53146324A 1978-11-27 1978-11-27 Ammonia determination method using microbial electrodes Expired JPS6057537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53146324A JPS6057537B2 (en) 1978-11-27 1978-11-27 Ammonia determination method using microbial electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53146324A JPS6057537B2 (en) 1978-11-27 1978-11-27 Ammonia determination method using microbial electrodes

Publications (2)

Publication Number Publication Date
JPS5572853A JPS5572853A (en) 1980-06-02
JPS6057537B2 true JPS6057537B2 (en) 1985-12-16

Family

ID=15405088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53146324A Expired JPS6057537B2 (en) 1978-11-27 1978-11-27 Ammonia determination method using microbial electrodes

Country Status (1)

Country Link
JP (1) JPS6057537B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0182151U (en) * 1987-11-20 1989-06-01

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189158U (en) * 1984-11-16 1986-06-10
JPH07122628B2 (en) * 1985-06-27 1995-12-25 株式会社東芝 Biochemical device
JP2553409B2 (en) * 1990-09-28 1996-11-13 ハイモ株式会社 Preparation method of microbial membrane for biosensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0182151U (en) * 1987-11-20 1989-06-01

Also Published As

Publication number Publication date
JPS5572853A (en) 1980-06-02

Similar Documents

Publication Publication Date Title
US4297173A (en) Method for determining ammonia and sensor therefor
Devol Bacterial oxygen uptake kinetics as related to biological processes in oxygen deficient zones of the oceans
US5177012A (en) Biosensor containing immobilized Zymomonas mobilis cells for measuring glucose, fructose and sucrose
Riedel et al. Microbial sensors: fundamentals and application for process control
Ponomareva et al. Microbial biosensors for detection of biological oxygen demand (a Review)
Strand et al. Rapid BOD measurement for municipal wastewater samples using a biofilm electrode
EP0053865B1 (en) Method for measuring biomass viability
JPH06500258A (en) Method for reacting reducing or oxidizing substances in aqueous solution and potentiometric cell
De Beer et al. Gradients in immobilized biological systems
Kubo et al. Amperometric determination of creatinine with a biosensor based on immobilized creatininase and nitrifying bacteria
Sofer et al. Biodegradation of 2-chlorophenol using immobilized activated sludge
Okada et al. NO2 sensor which uses immobilized nitrite oxidizing bacteria
Kobos Microbe-based electrochemical sensing systems
Kittsteiner-Eberle et al. Biosensing devices for the semi-automated control of dehydrogenase substrates in fermentations
JPS6057537B2 (en) Ammonia determination method using microbial electrodes
Matsunaga et al. Photomicrobial sensors for selective determination of phosphate
Okada et al. Ammonium ion sensor based on immobilized nitrifying bacteria and a cation-exchange membrane
van der Pol et al. On-line monitoring of an animal cell culture with multi-channel flow injection analysis
An et al. A new biosensor for rapid oxygen demand measurement
Jørgensen Determination of the enzyme activity of activated sludge by methylene blue reduction
Geppert et al. Automatic on-line measurement of substrates in fermentation liquids with enzyme electrodes
Ciucu et al. Biocatalytical membrane electrode for phenol
JPH09155388A (en) Denitrification device using biological catalyst
JPH04337453A (en) Method for quickly measuring bod and microorganism electrode to be used therefor
JP3077461B2 (en) How to monitor hazardous substances in water