JP2006105615A - Electrochemical measuring method and measuring apparatus using it - Google Patents

Electrochemical measuring method and measuring apparatus using it Download PDF

Info

Publication number
JP2006105615A
JP2006105615A JP2004288759A JP2004288759A JP2006105615A JP 2006105615 A JP2006105615 A JP 2006105615A JP 2004288759 A JP2004288759 A JP 2004288759A JP 2004288759 A JP2004288759 A JP 2004288759A JP 2006105615 A JP2006105615 A JP 2006105615A
Authority
JP
Japan
Prior art keywords
electrode
potential
current
hydrogen peroxide
target component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004288759A
Other languages
Japanese (ja)
Inventor
昌生 ▲ルイ▼
Masao Rui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2004288759A priority Critical patent/JP2006105615A/en
Publication of JP2006105615A publication Critical patent/JP2006105615A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical measuring method which enables the simple measurement of a target component by neither providing a permselective membrane for obstructing an inhibition component nor especially measuring the response current due to the inhibition component, and a measuring apparatus using it. <P>SOLUTION: In the electrochemical measuring method for detecting the current signal associated with the electrochemical oxidation or reduction of the target component by applying potential to an acting electrode using an electrode system composed of the acting electrode, a reference electrode and a counter electrode, at least two potentials different in value selected so that the current signals due to the oxidation and reduction of the target component are different and the concentration of the target component contained in a sample is calculated from the difference between at least two obtained response currents different in value. The current signal produced by the oxidation or reduction of a substance other than the target component can be removed by this method. The electrochemical measuring apparatus is also disclosed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、試料の分析に係り、特に複数の成分を含む試料から標的成分を簡単な方法で測定する、電気化学的測定方法および装置に関する。   The present invention relates to sample analysis, and more particularly to an electrochemical measurement method and apparatus for measuring a target component from a sample containing a plurality of components by a simple method.

電極を検出素子として用い、電極界面で起こる反応に基づく電流または電位変化を検知して各種物質を電気化学的に検出し測定する方法が知られている。例えば、白金電極上で起こる過酸化水素の酸化電流を測定して、過酸化水素濃度を電気化学的に求める方法があり、それに基づいた装置(過酸化水素電極)が開発されている。   There has been known a method in which an electrode is used as a detection element, a current or potential change based on a reaction occurring at an electrode interface is detected, and various substances are electrochemically detected and measured. For example, there is a method of electrochemically determining the hydrogen peroxide concentration by measuring the oxidation current of hydrogen peroxide occurring on a platinum electrode, and an apparatus (hydrogen peroxide electrode) based on the method has been developed.

過酸化水素電極は、一般的に作用極、対極及び参照極からなる3極構造を有する。これら3つの電極は、例えばポテンシオスタット回路に接続され、予め参照極と作用極との間に一定の電位(例えばAg/AgCl参照極に対して0.6V)が印加されており、作用極の表面に到達した過酸化水素が、「化1」に示すような反応で酸化され、過酸化水素の2倍のモル数の電子が発生し、電子情報(電流値)に変換される。電子情報は一般的に過酸化水素が作用極表面に接する前(ベース電流)と接した後の電流値の比較で取り出される。   The hydrogen peroxide electrode generally has a triode structure including a working electrode, a counter electrode, and a reference electrode. These three electrodes are connected to, for example, a potentiostat circuit, and a predetermined potential (for example, 0.6 V with respect to the Ag / AgCl reference electrode) is applied between the reference electrode and the working electrode in advance. The hydrogen peroxide that has reached the surface is oxidized by the reaction shown in “Chemical Formula 1”, and electrons having a mole number twice that of hydrogen peroxide are generated and converted into electronic information (current value). Electronic information is generally extracted by comparing the current value before and after contact with the surface of the working electrode (base current).

Figure 2006105615
Figure 2006105615

また、過酸化水素電極と、過酸化水素生成酵素を含む生体触媒とを組み合わせてなるバイオセンサが開発され、その代表例はグルコース酸化酵素と白金電極とを組み合わせたグルコースセンサである。すなわち、グルコースは「化2」により過酸化水素に変換され、変換された過酸化水素を過酸化水素電極で検出する。   In addition, a biosensor comprising a combination of a hydrogen peroxide electrode and a biocatalyst containing a hydrogen peroxide producing enzyme has been developed. A typical example is a glucose sensor comprising a glucose oxidase and a platinum electrode. That is, glucose is converted into hydrogen peroxide by “chemical formula 2”, and the converted hydrogen peroxide is detected by the hydrogen peroxide electrode.

Figure 2006105615
Figure 2006105615

電流測定型トランスデューサの一種である過酸化水素電極は、過酸化水素の他に、尿酸やアスコルビン酸などの還元性物質(以下、妨害成分という)に対しても応答し電流が発生する。したがって、これらの妨害成分が多く存在する生体関連試料を始めとする試料中の成分を測定する場合、酵素電極の測定精度を確保するために、妨害成分の影響を除去することが課題である。   A hydrogen peroxide electrode, which is a type of current measuring transducer, responds to a reducing substance (hereinafter referred to as an interfering component) such as uric acid or ascorbic acid in addition to hydrogen peroxide, and generates a current. Therefore, when measuring components in a sample including a living body-related sample in which many of these interfering components are present, it is a problem to remove the influence of the interfering components in order to ensure the measurement accuracy of the enzyme electrode.

上記課題を解決するために取られた最も一般的な手段は電極表面又はその近辺に共存妨害物質を排除し過酸化水素を選択的に或いは優先的に透過させる選択透過膜を設けることである。   The most common means taken to solve the above problems is to provide a permselective membrane that selectively or preferentially permeates hydrogen peroxide by eliminating coexisting substances on or near the electrode surface.

図11にこのタイプのバイオセンサの基本構造を示す。すなわち、電極と酵素膜の間に過酸化水素選択透過膜を設ける。その原理を簡単に説明すると、センサを被測定媒体に接触させると、標的成分、例えばグルコースが酵素膜の中へ拡散し、酵素膜に含まれる酵素、例えばグルコースオキシダーゼにより酸化され過酸化水素が生成される。生成された過酸化水素が過酸化水素選択透過膜を通り越して過酸化水素電極に達する。   FIG. 11 shows the basic structure of this type of biosensor. That is, a hydrogen peroxide selective permeable membrane is provided between the electrode and the enzyme membrane. Briefly explaining the principle, when the sensor is brought into contact with the medium to be measured, the target component, for example glucose, diffuses into the enzyme membrane and is oxidized by the enzyme contained in the enzyme membrane, for example glucose oxidase, to produce hydrogen peroxide. Is done. The generated hydrogen peroxide passes through the hydrogen peroxide selective permeable membrane and reaches the hydrogen peroxide electrode.

一方、共存妨害成分がグルコースと同様に酵素膜まで拡散するが、酵素膜と過酸化水素電極との間に設けられている選択透過膜により排除され、大半は電極表面に到達できない。これにより出力電流が標的成分に由来するものであることを保証し、測定精度が確保される。   On the other hand, the coexistence disturbing component diffuses to the enzyme membrane like glucose, but is excluded by the permselective membrane provided between the enzyme membrane and the hydrogen peroxide electrode, and most cannot reach the electrode surface. This ensures that the output current is derived from the target component and ensures measurement accuracy.

このタイプのバイオセンサの性能を決めるもっとも重要な指標の一つに妨害成分に対する選択率がある。ここで妨害成分に対する選択率とは、同濃度の妨害成分に対する応答電流と標的成分に対する応答電流の比として定義する。以下単に選択率ともいう。例えば、グルコースセンサの場合、妨害成分であるアスコルビン酸(ASA)に対する選択率は(ASA/GLC選択率)、単位濃度のアスコルビン酸に対する応答電流(IA)と同グルコース(GLC)に対する応答電流(IG)の比率で決める:   One of the most important indicators that determine the performance of this type of biosensor is its selectivity for interfering components. Here, the selectivity for the disturbing component is defined as the ratio of the response current to the disturbing component of the same concentration and the response current to the target component. Hereinafter, it is also simply referred to as selectivity. For example, in the case of a glucose sensor, the selectivity for ascorbic acid (ASA), which is an interfering component (ASA / GLC selectivity), is the response current (IA) for unit concentration of ascorbic acid (IA) and the response current for the same glucose (GLC) (IG ) Ratio:

ASA/GLC選択率(%)= IA/IG*100 1)       ASA / GLC selection rate (%) = IA / IG * 100 1)

選択率を決める最大の要因はいうまでもなく選択透過膜の妨害成分に対する透過阻止性能である。選択透過膜の性能を評価するパラメーターとして、単位濃度の妨害成分例えばアスコルビン酸に対する応答電流(IA)と同過酸化水素(HPO)に対する応答電流(IH)の比率(ASA/HPO選択率)がある:   Needless to say, the greatest factor that determines the selectivity is the permeation blocking performance of the permselective membrane against the disturbing components. A parameter that evaluates the performance of the permselective membrane is the ratio of the response current (IA) to ascorbic acid (IA) and the response current (IH) to hydrogen peroxide (HPO) (ASA / HPO selectivity). :

ASA/HPO選択率(%)= IA/IH*100 2)       ASA / HPO selection rate (%) = IA / IH * 100 2)

センサ表面に接するグルコースが酵素膜に入って膜内に含まれる酵素によって過酸化水素に変換されるが、多くの場合変更がその一部分である。また、変換された過酸化水素は拡散によって選択透過膜を通り越して電極表面に到達する部分よりも、酵素膜に接する外部(沖合い)に拡散しロスする部分が多いのである。グルコースの過酸化水素への有効変換率をを示す指標として、GLC/HPO変換率がある:   Glucose in contact with the sensor surface enters the enzyme membrane and is converted to hydrogen peroxide by the enzyme contained within the membrane, in many cases the change is part of it. In addition, the converted hydrogen peroxide has a portion that diffuses and is lost to the outside (offshore) in contact with the enzyme membrane, rather than the portion that passes through the permselective membrane by diffusion and reaches the electrode surface. An indicator of the effective conversion rate of glucose to hydrogen peroxide is the GLC / HPO conversion rate:

GLC/HPO変換率(%)= IG/IH*100 3)       GLC / HPO conversion rate (%) = IG / IH * 100 3)

したがって、センサの選択率はASA/HPO選択率とGLC/HPO変換率の積によって決める。   Therefore, the sensor selectivity is determined by the product of the ASA / HPO selectivity and the GLC / HPO conversion rate.

妨害成分も過酸化水素と同様な低分子である場合が多いので、選択透過膜によって過酸化水素の透過も阻止してしまうことが多く、これを達成するためには最適な膜材料と製法を確立することがもちろん、一定性能を確保するためにはある程度膜を緻密または厚くする必要があり、結果的に過酸化水素に対する出力を低下させ、センサの性能を示すもう一つの指標であるセンサ感度を低下させる。また、選択透過膜が厚くなるほど、過酸化水素の電極表面へ拡散する抵抗が大きくなり、有効変換率を低下させることによってセンサ感度と選択率を同時に悪化させる影響がある。   Interfering components are often small molecules similar to hydrogen peroxide, so permselective membranes often block the permeation of hydrogen peroxide. To achieve this, the optimum membrane material and manufacturing method should be used. Of course, in order to ensure a certain level of performance, it is necessary to make the membrane dense or thick to some extent, resulting in a decrease in the output against hydrogen peroxide, which is another indicator of sensor performance. Reduce. Further, the thicker the permselective membrane, the greater the resistance of hydrogen peroxide to diffuse to the electrode surface, which has the effect of simultaneously degrading sensor sensitivity and selectivity by reducing the effective conversion rate.

このような背景から、本原理に基づくセンサに対して、特に選択透過膜を中心に多く研究されてきた(非特許文献1参照)にも関わらず、実用的に成功できたものが数少ない。また、選択率を確保するためには高度で困難な量産技術を確立する必要があり、結果的にセンサの製造コストが高くなる。   Against this background, there have been few sensors that have been practically successful despite the fact that much research has been conducted on sensors based on the present principle, particularly on permselective membranes (see Non-Patent Document 1). In addition, in order to ensure the selectivity, it is necessary to establish a sophisticated and difficult mass production technique, resulting in an increase in the manufacturing cost of the sensor.

コストが高いので、このタイプのセンサは繰り返して使用することが普通である。しかし、使用中に選択率が上昇するなど、安定性に難点があり、使用寿命が短いというもう一つの課題がある。一般的に、酵素などの生体触媒を利用したバイセンサの安定性は酵素の安定性に依存すると考えがちだが、グルコースオキシダーゼなど、安定性の高い酵素が自然界に存在し、さらにバイオ技術の進歩でより安定性の高い生体触媒を製造することが可能になった今、選択透過膜の安定性がセンサ寿命を決定する障害要因になっている。   Due to the high cost, this type of sensor is usually used repeatedly. However, there is another problem that stability is difficult, such as an increase in selectivity during use, and the service life is short. In general, the stability of bisensors using biocatalysts such as enzymes tends to depend on the stability of the enzyme. However, highly stable enzymes such as glucose oxidase exist in nature, and further advances in biotechnology Now that it has become possible to produce highly stable biocatalysts, the stability of the permselective membrane has become an impediment to determining sensor life.

妨害成分の影響を除去する別の方法として、酵素を固定化していない別の電極を同時に設けて、両電極の出力差から補正する方法が考えられるが、電極間の応答性と動作環境を一致させ、且つ安定させることが困難なので、誤差が大きくなり、さらに、システムが複雑になることも課題である。   As another method to remove the influence of interfering components, another electrode that does not immobilize the enzyme can be provided at the same time, and correction can be made from the output difference between the two electrodes. Since it is difficult to stabilize and stabilize the system, the error becomes large and the system becomes complicated.

また、特許文献2では、金からなる作用極を使用し、過酸化水素とアスコルビン酸がともに反応する(1.1V)、おとびアスコルビン酸が反応するが、過酸化水素が反応しないもう一つの電位(0.3V)を交互に印加して測定し、0.3Vでの結果からアスコルビン酸の濃度を算出し、それをもって1.1Vでのアスコルビン酸の応答電流を求めて補正する方法が提案されている。これに似た手法はダイヤモンド電極を利用した測定でも提案されている(特許文献3)。しかし、これらの方法では、妨害成分に対してのみ反応する電位の存在が必要な上、大きく離れる二つの電位を印加する必要があるので、使用できる電極材料が限られている。例えば過酸化水素電極として最適とされる白金電極はこれらの方法では辛うじてアスコルビン酸の影響を除去することは可能でだが、電位を大きく切り替えると電極自身の酸化還元により非常に高い暗電流が流れるので、使用できない。また、他の妨害成分、例えば尿酸による影響の補正ができない。さらに、これらの方法では、標的成分に対してだけではなく、妨害成分に対しても最低2つの検量線を作成する必要があるので、合わせて最低3つの検量線を測定する前に作成する必要がある。また測定精度を維持するために校正を行う必要がある場合、その都度複数の校正動作を行うことになるので、測定システムが煩雑になる。
ACS Symposium Series, Vol.487, p125-132(1992) 特開平7−103939 特開平11−83799
In Patent Document 2, using a working electrode made of gold, hydrogen peroxide and ascorbic acid react together (1.1V), and ascorbic acid reacts, but hydrogen peroxide does not react. A method has been proposed in which (0.3 V) is alternately applied and measured, the concentration of ascorbic acid is calculated from the result at 0.3 V, and the response current of ascorbic acid at 1.1 V is obtained and corrected. A method similar to this is also proposed for measurement using a diamond electrode (Patent Document 3). However, these methods require the presence of a potential that reacts only with interfering components, and it is necessary to apply two potentials that are far away from each other, so that electrode materials that can be used are limited. For example, platinum electrodes, which are best suited as hydrogen peroxide electrodes, can barely eliminate the effects of ascorbic acid with these methods, but if the potential is switched greatly, a very high dark current flows due to the oxidation and reduction of the electrodes themselves. ,I can not use it. In addition, the influence of other interfering components such as uric acid cannot be corrected. Furthermore, in these methods, it is necessary to create at least two calibration curves not only for the target component but also for the interfering component, so it is necessary to create a total of at least three calibration curves before measurement. There is. Further, when calibration is required to maintain the measurement accuracy, a plurality of calibration operations are performed each time, so that the measurement system becomes complicated.
ACS Symposium Series, Vol.487, p125-132 (1992) JP-A-7-103939 JP-A-11-83799

本発明は、上記問題を解決するためになされたもので、本発明の課題は、妨害成分を阻止する選択透過膜を設けることなく、さらに妨害成分による応答電流を特に測定することなく、標的成分を簡単に測定することを可能にする電気化学的測定方法および装置を提供することである。   The present invention has been made to solve the above problems, and the object of the present invention is to provide a target component without providing a permselective membrane for blocking the disturbing component, and without specifically measuring the response current due to the disturbing component. It is an object to provide an electrochemical measurement method and apparatus that makes it possible to easily measure the above.

上記目的を達成するために請求項1記載の発明の電気化学的測定方法によれば、作用極、参照極および対極からなる電極系を用い、作用極に電位を印加して標的成分の電気化学的酸化または還元に伴う電流信号を検出する電気化学的測定方法において、標的成分の酸化または還元による電流信号が異なるように選択される、値の異なる少なくとも2つの電位を印加し、得られた値の異なる少なくとも2つの応答電流の差から、試料中に含まれる一つまたは複数の標的成分の濃度を求めることを特徴とする、電気化学的測定方法が提供される。この方法によって標的成分以外の物質の酸化または還元によって生じる電流信号を除去することが可能になり、複数の酸化還元活性を持つ共存妨害物質が含まれる試料に対しても、標的成分を正確に測定することができる。   In order to achieve the above object, according to the electrochemical measurement method of the first aspect of the present invention, an electrode system comprising a working electrode, a reference electrode, and a counter electrode is used, and a potential is applied to the working electrode to perform electrochemical analysis of the target component. In an electrochemical measurement method for detecting a current signal associated with chemical oxidation or reduction, a value obtained by applying at least two potentials having different values selected such that the current signal due to oxidation or reduction of a target component is different There is provided an electrochemical measurement method characterized in that the concentration of one or more target components contained in a sample is determined from the difference between at least two different response currents. This method makes it possible to eliminate current signals generated by oxidation or reduction of substances other than the target component, and accurately measure target components even for samples containing coexisting interfering substances with multiple redox activities. can do.

上記目的を達成するために請求項2記載の発明の電気化学的測定方法によれば、作用極、参照極および対極からなる電極系と、過酸化水素生成酵素を含む生体触媒とを組み合わせてなる測定系をを用い、作用極に電位を印加して過酸化水素の電極酸化に伴う電流信号を検出して試料に含まれる前記過酸化水素生成酵素の基質となる物質を測定する電気化学的測定方法において、過酸化水素の酸化による電流信号が異なるように選択される、値の異なる少なくとも2つの電位を印加し、得られた少なくとも2つの応答電流の差から、試料中に含まれる過酸化水素生成酵素の基質となる物質の濃度を求めることを特徴とする、電気化学的測定方法が提供される。この方法によって過酸化水素以外の還元性物質の酸化または還元によって生じる電流信号を除去することが可能になり、還元活性を持つ共存物質が含まれる試料に対しても、使用されるセンサや電極に妨害成分対策を特に設けることなく標的成分を正確に測定することができる。   In order to achieve the above object, according to the electrochemical measurement method of the invention described in claim 2, an electrode system comprising a working electrode, a reference electrode and a counter electrode is combined with a biocatalyst containing a hydrogen peroxide-producing enzyme. An electrochemical measurement that uses a measurement system to apply a potential to the working electrode and detect a current signal that accompanies the electrode oxidation of hydrogen peroxide to measure a substance that is a substrate for the hydrogen peroxide-producing enzyme contained in the sample. In the method, at least two potentials having different values, which are selected so that current signals due to oxidation of hydrogen peroxide are different, are applied, and hydrogen peroxide contained in the sample is obtained from the difference between the obtained at least two response currents. There is provided an electrochemical measurement method characterized by determining the concentration of a substance that is a substrate for a produced enzyme. This method makes it possible to eliminate current signals generated by oxidation or reduction of reducing substances other than hydrogen peroxide, and even for samples containing coexisting substances with reducing activity, It is possible to accurately measure the target component without providing a countermeasure against the disturbing component.

請求項3記載の電気化学的測定方法は、請求項1または請求項2において、前記作用極の材料は白金を主成分とすることを特徴とする。白金電極は安定性に優れ、広い電位窓を持っているので、本発明による測定方法に使用される電極材料としてもっとも好ましい。   The electrochemical measurement method according to claim 3 is characterized in that, in claim 1 or claim 2, the material of the working electrode is mainly composed of platinum. A platinum electrode is most preferable as an electrode material used in the measuring method according to the present invention because it is excellent in stability and has a wide potential window.

また、請求項4記載の電気化学的測定方法は請求項1または請求項2において、前記値の異なる2つの印加電位の差が0.1から0.4Vの範囲にあることを特徴とする。電位変更に伴って、標的成分などの物質による電気化学的反応による電流の他に、電気二重層や電極自身の変化による電流が一時的に発生するが、2つの印加電位の差がこの範囲にあれば、このような一次的な電流を最小限に抑えることができる。同時に、標的成分による、それおぞれの電位に対応する電流には十分な差異が生じ、精度の高い測定ができる。
さらに、請求項5記載の電気化学的測定装置は、作用極、参照極および対極からなる電極系を用い、作用極に電位(検出電位)を印加して標的成分の電極酸化に伴う電流信号を測定する電気化学的測定装置であって、作用極の電位を参照極に対して任意の値に保持する機構、適当なタイミングで作用極に印加された電位を変更する機構、異なる印加電位から得られた複数の電流信号の差から、試料中に含まれる被測定成分の濃度を演算する機構を有することを特徴とするので、共存妨害成分が含まれる試料に対しても、標的成分を高精度に測定することができる。
The electrochemical measurement method according to claim 4 is characterized in that, in claim 1 or claim 2, the difference between two applied potentials having different values is in a range of 0.1 to 0.4V. Along with the potential change, in addition to the current due to the electrochemical reaction by the substance such as the target component, a current due to the change of the electric double layer or the electrode itself is temporarily generated, but the difference between the two applied potentials falls within this range. If present, such primary current can be minimized. At the same time, there is a sufficient difference in the current corresponding to each potential due to the target component, and a highly accurate measurement can be performed.
Furthermore, the electrochemical measurement apparatus according to claim 5 uses an electrode system including a working electrode, a reference electrode, and a counter electrode, and applies a potential (detection potential) to the working electrode to generate a current signal associated with electrode oxidation of the target component. An electrochemical measuring device that measures the potential of the working electrode at an arbitrary value relative to the reference electrode, a mechanism that changes the potential applied to the working electrode at an appropriate timing, and a different applied potential. Since it has a mechanism that calculates the concentration of the component to be measured contained in the sample from the difference between the multiple current signals, the target component can be accurately detected even for samples containing coexistence interference components. Can be measured.

以下図面などを用いて本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to the drawings.

本発明で使用される電気化学的測定系は作用極、参照極および対極からなる。作用極の材料として白金、パラジウム、イリジウム、金などの貴金属、およびカーボン、ダイヤモンドが例として挙げられるが、安定性や使用のしやすさから白金がもっともよい。参照極としては銀/塩化銀電極、かんこう電極が例として挙げられるが、固体で成形しやすいことから、銀/塩化銀電極がもっとも好ましい。銀/塩化銀電極が安定的に機能するには一定濃度の塩素イオン、例えば塩化カリウム(KCl)と接触する必要があり、その基準電位(標準水素電極に対して)はKClの濃度に依存する(図9参照)。本発明では、特に言及しない限り、電位は飽和KClに対していう。対極として作用極と同じ材料、例えば白金を使用してよい。これらの電極はそれぞれ分離した形でポテンシオスタットに接続するか、ひとつの絶縁性基体に形成してもよい。図10にはセラミック基板上に形成された白金作用極、白金対極、および銀/塩化銀からなるプレーナー型電極系(プレーナー電極)を示す。プレーナー電極の場合、参照極に内部液を備える代わりに、一定濃度のKClを含む水溶液、例えば緩衝液に電極を接触させることによって、参照極の電位を一定に保つ方法を用いてもよい。   The electrochemical measurement system used in the present invention includes a working electrode, a reference electrode, and a counter electrode. Examples of the working electrode material include noble metals such as platinum, palladium, iridium, and gold, carbon, and diamond. Platinum is the best because of its stability and ease of use. Examples of the reference electrode include a silver / silver chloride electrode and a permeation electrode, but a silver / silver chloride electrode is most preferred because it is solid and easy to mold. In order for the silver / silver chloride electrode to function stably, it needs to be in contact with a certain concentration of chloride ion, for example, potassium chloride (KCl), and its reference potential (relative to the standard hydrogen electrode) depends on the concentration of KCl. (See FIG. 9). In the present invention, unless otherwise stated, the potential refers to saturated KCl. The same material as the working electrode may be used as the counter electrode, for example, platinum. These electrodes may be separately connected to the potentiostat or formed on a single insulating substrate. FIG. 10 shows a planar electrode system (planar electrode) made of a platinum working electrode, a platinum counter electrode, and silver / silver chloride formed on a ceramic substrate. In the case of a planar electrode, instead of providing the reference electrode with the internal solution, a method of keeping the potential of the reference electrode constant by bringing the electrode into contact with an aqueous solution containing a constant concentration of KCl, for example, a buffer solution may be used.

白金作用極を使用した場合、過酸化水素、各種のアミン、尿酸やアスコルビン酸などの還元性物質を直接検出することができる。また、作用極表面あるいは表面近傍に過酸化水素生成酵素などを含む生体触媒を固定化することにより、過酸化水素形成酵素の基質となる色んな成分を検出対象とするバイセンサとして利用することができる。   When a platinum working electrode is used, reducing substances such as hydrogen peroxide, various amines, uric acid and ascorbic acid can be directly detected. Further, by immobilizing a biocatalyst containing hydrogen peroxide-producing enzyme or the like on the surface of the working electrode or in the vicinity of the surface, it can be used as a bisensor for detecting various components that are substrates for the hydrogen peroxide-forming enzyme.

本発明による電気化学的測定方法は、標的成分の酸化または還元による電流信号が異なるように選択される、値の異なる少なくとも2つの電位を印加し、得られた値の異なる少なくとも2つの応答電流の差から、試料中に含まれる標的成分の濃度を求めることを特徴とする。例えば、測定される標的成分は一つの物質Aを含む試料を測定する場合、まず電位E1を印加し、得られた電流をI1とし、次に電位E2を印加し、得られた電流をI2とすると、以下の式によって標的成分Aの濃度CAを求める:   The electrochemical measurement method according to the present invention applies at least two potentials having different values selected so that current signals due to oxidation or reduction of a target component are different, and obtains at least two response currents having different values. From the difference, the concentration of the target component contained in the sample is obtained. For example, when measuring a sample containing one substance A as a target component to be measured, first, the potential E1 is applied, the obtained current is set to I1, then the potential E2 is applied, and the obtained current is set to I2. Then, the concentration CA of the target component A is obtained by the following formula:

CA=(I2−I1)/K 4)       CA = (I2-I1) / K 4)

式中Kは標準試料の測定による検量線から決定される係数である。 In the formula, K is a coefficient determined from a calibration curve obtained by measuring a standard sample.

以下その基本的原理を図面に基づいて説明する。   The basic principle will be described below with reference to the drawings.

図1は物質Aの定常電流電位曲線である。定常電流電位曲線とは時間的影響を受けない電流電位曲線で、各電位における電流値は電極表面に接する媒体中の物質の濃度に比例する。濃度が一定であれば、図示するように、電流が電位によってきまる。定常電流電位曲線は電位をゆっくり走査する(例えば走査速度を5mV/s以下)、あるいは階段的に切り替えることによって求めることができる。電位の上昇とともに電流値が増大するが、ある一定電位になると電流値が最大になって増加が止まる。この最大電流値は限界電流という。電位を電流値がゼロよりも大きい(即ち物質Aが酸化される)任意の値に固定し、濃度を変えて測定すると、濃度と電流の関係を示す曲線、すなわち検量線が得られる。図2は図1の電位E1およびE2に対応する検量線を図式に示したものである。   FIG. 1 is a steady-state current-potential curve of substance A. The steady-state current-potential curve is a current-potential curve that is not affected by time, and the current value at each potential is proportional to the concentration of the substance in the medium in contact with the electrode surface. If the concentration is constant, the current is determined by the potential, as shown. The steady-state current-potential curve can be obtained by scanning the potential slowly (for example, the scanning speed is 5 mV / s or less) or switching stepwise. The current value increases as the potential increases. However, when the potential reaches a certain potential, the current value becomes maximum and the increase stops. This maximum current value is called a limiting current. When the potential is fixed at an arbitrary value where the current value is larger than zero (that is, the substance A is oxidized) and measured at different concentrations, a curve indicating the relationship between the concentration and the current, that is, a calibration curve, is obtained. FIG. 2 schematically shows a calibration curve corresponding to the potentials E1 and E2 of FIG.

I1 = K1*C 5)
I2 = K2*C 6)
I1 = K1 * C 5)
I2 = K2 * C 6)

選択された電位において、物質A以外の物質による電流がない、または無視できる場合、一点測定によって、どちらの検量線に基づいても濃度を求めることができるが、物質A以外に電極反応活性を示す共存成分(妨害成分)が存在する場合、測定された電流値に妨害成分による寄与が含まれるので、この方法では測定精度が大きく落ちる。   If there is no current due to a substance other than substance A at the selected potential or can be ignored, the concentration can be determined based on which calibration curve by single-point measurement. When a coexisting component (interfering component) is present, the measured current value includes a contribution due to the disturbing component, and this method greatly reduces the measurement accuracy.

図3には妨害成分Bが共存する場合の電流電位曲線を示す。物質Aと妨害成分Bが単独存在する場合の曲線はIAとIBであるが、共存した場合の電流IはIAとIBの合計になる。   FIG. 3 shows a current-potential curve when the disturbing component B coexists. The curve when the substance A and the interfering component B exist alone is IA and IB, but the current I when they coexist is the sum of IA and IB.

一般的に、2つの物質が共存する場合、それおぞれの電位における電流は両成分による電流の合計である:   In general, when two substances coexist, the current at each potential is the sum of the currents from both components:

I1 = KA1*CA+KB1*CB 7)
I2 = KA2*CA+KB2*CB 8)
I1 = KA1 * CA + KB1 * CB 7)
I2 = KA2 * CA + KB2 * CB 8)

KA1、KA2、KB1、KB2はそれぞれの標準試料による検量線から決められた係数である。この連立方程式を解くことによってそれぞれの濃度を求めることができる。例えば標的物質Aの濃度は以下の式によって求められる:   KA1, KA2, KB1, and KB2 are coefficients determined from calibration curves obtained from respective standard samples. Each concentration can be obtained by solving the simultaneous equations. For example, the concentration of the target substance A is obtained by the following formula:

CA = (KB1*I2-KB2*I1)/(KB1*KA2-KB2*KA1) 9)     CA = (KB1 * I2-KB2 * I1) / (KB1 * KA2-KB2 * KA1) 9)

図3に示すように、妨害成分Bは標的成分Aとは異なるパターンの電流電位曲線を示すので、電位を適宜に選択することによって、電位E1とE2とでは、標的成分Aによる電流IA1とIA2とでは大きく異なるが、妨害成分Bによる電流IB1とIB2が実質的に同じである。この場合、式9)のKB1とKB2は実質的に同じ値となるので、式9)は以下のように書き換えられる:   As shown in FIG. 3, the disturbing component B shows a current-potential curve having a pattern different from that of the target component A. Therefore, the currents IA1 and IA2 generated by the target component A can be obtained at the potentials E1 and E2 by appropriately selecting the potential. The currents IB1 and IB2 due to the disturbing component B are substantially the same. In this case, since KB1 and KB2 in Equation 9) are substantially the same value, Equation 9) can be rewritten as follows:

CA = (I2-I1)/(KA2-KA1) = (I2-I1)/K 10)     CA = (I2-I1) / (KA2-KA1) = (I2-I1) / K 10)

すなわち、標的成分Aの濃度は2つの電位で測定された電流の差によって決められ、共存妨害成分Bが存在してもその影響を受けない。さらに、他の妨害成分、例えば妨害成分Cが存在しても、それに対応する電流IC1とIC2がほとんど同じになるように適宜選択された電位によって、妨害成分Bの場合と同様にその影響を除去することができる。   That is, the concentration of the target component A is determined by the difference between the currents measured at the two potentials, and is not affected by the presence of the coexistence disturbing component B. Further, even when other disturbing components, for example, disturbing component C are present, the influence is removed in the same manner as in the case of disturbing component B by the potential appropriately selected so that the corresponding currents IC1 and IC2 are almost the same. can do.

以上の原理から分かるように、本発明による方法が有効になるには、標的成分と妨害成分との間に電気化学的な性質が有意に異なること、および印加電位を適宜に選択されることが必要である。ここで電気化学的性質が有意に異なるとは、具体的に図3に示すように、両者の電流電位曲線のパターンが異なることによって、標的成分による電流が異なるが、妨害成分による電流が実質的に同じとなるような2つの異なる電位が存在することを指す。   As can be seen from the above principle, for the method according to the present invention to be effective, it is necessary that the electrochemical properties are significantly different between the target component and the interfering component and that the applied potential is appropriately selected. is there. Here, the electrochemical properties are significantly different from each other, as specifically shown in FIG. 3, the current due to the target component differs depending on the pattern of the current-potential curve of both, but the current due to the disturbing component is substantially different. There are two different potentials that are the same.

ここで、「実質的に同じ」とは、両電位における妨害成分による電流信号の差が十分に小さく、その寄与による標的成分測定への影響が許容される誤差以内になることを意味する。したがって、実際に許容される差は、標的成分と妨害成分との濃度関係、標的成分と妨害成分の感度関係(具体的には式7)における係数:KA1、KA2、KB1、KB2)、および許容誤差などによって異なる。共存妨害成分の濃度が標的成分に比べて相対的に高いほど、また、妨害成分の感度が高いほど、許容される両電位における妨害成分による電流信号の差が小さくなる。例えば、妨害成分と標的成分の感度が同程度で、電位E2における標的成分による電流が電位E1におけるそれの2倍ならば、同電位における妨害成分による電流の差が10%の場合、妨害成分による誤差が10%になるので、妨害成分による許容誤差が20%ならば、20%違っても実質的に同じことになる。一方、同許容誤差が10%ならば、「実質的に同じ」ことは両者の差が10%以下になることを意味する。また、電位E2における標的成分による電流が電位E1におけるそれの1.5倍ならば、同電位における妨害成分による電流の差が20%の場合、妨害成分による誤差が40%になるので、同許容誤差が10%ならば、「実質的に同じ」ことは両者の差が5%以下になることを意味する。   Here, “substantially the same” means that the difference between the current signals due to the disturbing components at both potentials is sufficiently small, and the influence of the contribution on the target component measurement is within an allowable error. Therefore, the actual allowable difference is the concentration relationship between the target component and the disturbing component, the coefficient in the sensitivity relationship between the target component and the disturbing component (specifically, Equation 7): KA1, KA2, KB1, KB2), and the tolerance It depends on the error. The higher the concentration of the coexistence disturbing component is relative to the target component, and the higher the sensitivity of the disturbing component, the smaller the difference in the current signal due to the disturbing component at both potentials allowed. For example, if the sensitivity of the disturbing component and the target component is the same, and the current due to the target component at the potential E2 is twice that at the potential E1, the difference in current due to the disturbing component at the same potential is 10%. Since the error is 10%, if the tolerance due to the disturbing component is 20%, the difference will be substantially the same even if the difference is 20%. On the other hand, if the allowable error is 10%, “substantially the same” means that the difference between the two becomes 10% or less. Also, if the current due to the target component at the potential E2 is 1.5 times that at the potential E1, if the difference in current due to the disturbing component at the same potential is 20%, the error due to the disturbing component will be 40%. If it is 10%, “substantially the same” means that the difference between them is 5% or less.

したがって、本発明において、印加電位を適宜に決定することが重要である。以下印加電位の決定方法について説明する。標的成分が一つの場合、印加電位が最低2つ必要であるが、一般的には2つの電位で十分である。   Therefore, in the present invention, it is important to appropriately determine the applied potential. Hereinafter, a method for determining the applied potential will be described. In the case of one target component, at least two applied potentials are necessary, but generally two potentials are sufficient.

まず、測定対象となる試料の中に、標的成分以外にどんな酸化還元性を有する成分が含まれるかを調査する。その中から、標的成分に比べて、その含有量が無視できないレベルに達しているものをリストアップする。例えば、グルコースオキシダーゼと白金電極を組み合わせた酵素センサを使用して、尿中グルコースを測定する場合、過酸化水素が実質的な標的成分になるので、過酸化水素が酸化反応を起こす電位範囲において、共存可能な妨害成分は尿酸、アスコルビン酸、各種生体アミン、および風薬の成分であるアセトアミノフェンなどが考えられるが、定常的に無視できないレベルに存在する成分は尿酸とアスコルビン酸である。   First, it is investigated what components having redox properties other than the target component are contained in the sample to be measured. Among them, those whose contents have reached a level that cannot be ignored compared to the target component are listed. For example, when measuring glucose in the urine using an enzyme sensor that combines glucose oxidase and a platinum electrode, hydrogen peroxide becomes a substantial target component, so in the potential range where hydrogen peroxide undergoes an oxidation reaction, Interfering components that can coexist are uric acid, ascorbic acid, various biogenic amines, and acetaminophen, which is a component of wind medicine, but components that are present at a level that cannot be ignored regularly are uric acid and ascorbic acid.

次に、リストアップされた妨害成分および標的成分の電流電位曲線を測定し、その酸化挙動を明らかにする。   Next, the current-potential curve of the listed disturbing component and target component is measured to reveal its oxidation behavior.

電流電位曲線の測定は電位を連続的に走査する方法や、電位を段階的に変更する方法など、一般的な電気化学的手法を用いて行ってよいが、具体的な実験系や、電解液、電極など、使用される電気化学的な材料は実際の測定に準じるものを使用することが望ましい。電極については、作用極の材料はもちろん、参照極や対極も実際に使用されるものを用いることが望ましい。   The measurement of the current-potential curve may be performed by using a general electrochemical method such as a method of continuously scanning the potential or a method of changing the potential stepwise. It is desirable to use an electrochemical material such as an electrode that conforms to the actual measurement. As for the electrode, it is desirable to use a material for the working electrode as well as a reference electrode and a counter electrode that are actually used.

以下尿糖測定の場合、妨害成分になる尿酸およびアスコルビン酸の電流曲線の測定を例示する。電極として図10に示すプレーナータイプの白金電極を使用した。この電極の作用極は白金ペーストを原料として、スクリーン印刷で形成し、焼結されたものである。作用極のサイズは1.7×1.8mmで、面積は約3mm2である。この電極をフロースルーセルに装着し、図12に示す測定系に組み込んだ。電解液として0.05Mの塩化カリウムを含む0.067Mのリン酸緩衝液(pH6.8)に所定の成分を添加したものを使用した。塩化カリウムは銀/塩化銀参照極の電位を安定化させるために添加したものである。なお、銀/塩化銀の基準電位は参照極に接する塩化カリウムの濃度に依存する(図9参照)に銀/塩化銀電極の基準電位と塩化カリウムの濃度との関係を示す。図9から、塩化カリウム濃度が0.05Mの場合、基準電位は約0.3Vであり、飽和塩化カリウムの場合は約0.2Vなので、本測定系における電位は飽和塩化カリウムを使用した系に比べて電位は約0.1V高い。
電解液を1ml/minの速度(作用極表面における平均線速度は約30cm/min)で送液し、初期電位を0Vまたは0.1Vとし、5mV/secの速度電位を0.8Vまで走査し、電流を記録した。得られた電流電位曲線を図4に示す。図4から、3成分とも印加電位の増大とともに電流が増加したが、アスコルビン酸の酸化電流は0.35V以上で電流がほぼ増加しなくなった。また尿酸については0.5V以上で増加しなくなった。一方、過酸化水素の酸化電流は電位が0.8vになってもまだ増加する傾向にあった。
Hereinafter, in the case of urine sugar measurement, the measurement of current curves of uric acid and ascorbic acid that become interference components will be exemplified. As the electrode, a planar type platinum electrode shown in FIG. 10 was used. The working electrode of the electrode is formed by screen printing using platinum paste as a raw material and sintered. The size of the working electrode is 1.7 × 1.8 mm, and the area is about 3 mm 2. This electrode was attached to the flow-through cell and incorporated in the measurement system shown in FIG. As an electrolytic solution, a 0.067 M phosphate buffer (pH 6.8) containing 0.05 M potassium chloride was added with predetermined components. Potassium chloride is added to stabilize the potential of the silver / silver chloride reference electrode. The standard potential of silver / silver chloride depends on the concentration of potassium chloride in contact with the reference electrode (see FIG. 9), and shows the relationship between the standard potential of the silver / silver chloride electrode and the concentration of potassium chloride. From FIG. 9, when the potassium chloride concentration is 0.05M, the reference potential is about 0.3V, and in the case of saturated potassium chloride, it is about 0.2V. Therefore, the potential in this measurement system is higher than that in the system using saturated potassium chloride. Is about 0.1V higher.
Electrolyte is fed at a rate of 1 ml / min (average linear velocity at the working electrode surface is about 30 cm / min), the initial potential is set to 0 V or 0.1 V, and the speed potential of 5 mV / sec is scanned to 0.8 V. Was recorded. The obtained current potential curve is shown in FIG. As can be seen from FIG. 4, the current increased with increasing applied potential for all three components, but the ascorbic acid oxidation current was 0.35 V or higher and the current almost did not increase. Uric acid did not increase at 0.5V or higher. On the other hand, the oxidation current of hydrogen peroxide tended to increase even when the potential reached 0.8v.

以上の結果から、測定する標的成分が過酸化水素の場合、電位E1を0.5V以上、例えば0.5-0.6の間から選択し、電位E2を0.55V以上、例えば0.6-0.8Vの間に選定して測定すれば、アスコルビン酸と尿酸の影響を除去することができる。もちろん、過酸化水素生成酵素と電極とを組み合わせて、過酸化水素生成酵素の基質、例えばグルコースを測定する場合も同じである。   From the above results, when the target component to be measured is hydrogen peroxide, select the potential E1 from 0.5V or more, for example, 0.5-0.6, and select the potential E2 from 0.55V, for example, 0.6-0.8V. Measurement can eliminate the effects of ascorbic acid and uric acid. Of course, the same applies to the case where a hydrogen peroxide-producing enzyme substrate, for example, glucose, is measured by combining a hydrogen peroxide-producing enzyme and an electrode.

一方、標的成分が例えば尿酸の場合、測定対象となる媒体に過酸化水素が入っていないことを条件に、別の電位を選定することによって、アスコルビン酸の影響を受けずに、尿酸を測定することができる。一例として、電位E1を0.4V、電位E2を0.5Vとすることが挙げられる。   On the other hand, when the target component is uric acid, for example, uric acid is measured without being affected by ascorbic acid by selecting another potential on the condition that hydrogen peroxide is not contained in the medium to be measured. be able to. As an example, the potential E1 is 0.4V and the potential E2 is 0.5V.

なお、電位E1とE2との間隔について、標的成分以外の妨害成分による2つの電流が実質的に同じで、標的成分による2つの電流が有意に異なれば、特に規定することはないが、一般的に、標的成分による2つの電流の間に20%以上の差があることが望ましい。差が小さいと、式8の分母が小さくなることから、測定誤差が大きくなる。こういう意味ではE1とE2をできるだけ離した方がよいようだが、あまり離しすぎると、E2が高くなるので、電極自身の酸化による電流が発生すること、また、電流を大きくジャンプすることに伴う暗電流が大きくなることなどにより、同様に測定誤差が大きくなる恐れがある。具体的な間隔として、電位E2が電位E1に比べて0.1V−0.4V高い範囲にあることが望ましい。   Note that the interval between the potentials E1 and E2 is not particularly specified if the two currents due to the disturbing components other than the target component are substantially the same and the two currents due to the target component are significantly different. In addition, it is desirable that there is a difference of 20% or more between the two currents due to the target component. If the difference is small, the denominator of Equation 8 becomes small, and the measurement error increases. In this sense, it seems better to separate E1 and E2 as much as possible, but if they are too far apart, E2 will become high, so that current will be generated due to oxidation of the electrode itself, and dark current due to large jump of current The measurement error may increase in the same manner due to the increase of. As a specific interval, it is desirable that the potential E2 is in a range higher by 0.1V-0.4V than the potential E1.

2つの電位を印加する順序についてはどの電位を先に印加してもよいが、自然電位からのシフトが大きいほど、電気二重層や電極自身の変化による暗電流の発生が大きいことから、まず低い電位のE1を印加し、次にE2にシフトする方が望ましい。また、電位E1からE2、またはE2からE1へ切り替える方法として、瞬時にスイッチする方法、段階的に切り替える方法、または一定の速度で電位を走査する方法が例として挙げられる。電位を瞬時に切り替える方法は、装置が簡単とのメリットがある。ただし、切り替えた直後では電気二重層や電極自身の変化による暗電流も含まれるので、一定時間経過後の電流を信号として読み取ることが望ましい。一方、電位を走査する方法では、走査速度を適度に遅く制御するころで、電気二重層や電極自身の変化による暗電流を小さく抑制することができるので、電位E2に達した直後の電流を信号とすることができる。ただし、電位操作機構が必要など、装置が少し複雑になる。   As for the order of applying the two potentials, any potential may be applied first. However, the larger the shift from the natural potential, the more the dark current is generated due to the change of the electric double layer or the electrode itself. It is desirable to apply the potential E1 and then shift to E2. Examples of the method of switching from the potential E1 to E2 or from E2 to E1 include a method of switching instantaneously, a method of switching stepwise, or a method of scanning the potential at a constant speed. The method of switching the potential instantaneously has the advantage that the device is simple. However, since dark current due to changes in the electric double layer and the electrode itself is also included immediately after switching, it is desirable to read the current after a certain period of time as a signal. On the other hand, in the method of scanning the potential, the dark current due to the change of the electric double layer or the electrode itself can be suppressed to a small level by controlling the scanning speed to be moderately slow, so that the current immediately after reaching the potential E2 is signaled. It can be. However, the apparatus becomes a little complicated, such as the need for a potential operation mechanism.

以上標的成分がひとつの場合の測定原理と方法について説明した。同様な方法で、2つの標的成分を測定することができる。この場合、電位を最低3つ選定し、3点以上の測定を行う。例えば、尿中グルコースと尿酸を測定する場合、電位E1を0.4V、電位E2を0.5V、電位E3を0.7Vと選定して、3つの電流を測定することによって、尿中アスコルビン酸の影響を受けずに、尿酸とグルコースを測定することができる。   The measurement principle and method when there is one target component have been described above. In a similar manner, two target components can be measured. In this case, select at least three potentials and measure at three or more points. For example, when measuring urinary glucose and uric acid, the potential E1 is set to 0.4V, the potential E2 is set to 0.5V, the potential E3 is set to 0.7V, and the influence of urinary ascorbic acid is measured by measuring three currents. Without receiving, uric acid and glucose can be measured.

次に具体的な測定シーケンスについて説明する。実際の測定手法に関しては、2つの電位を印加し、それに対応する2つの応答電流を測定して、得られた2つの電流の差から標的成分の濃度を決定する、という基本的な手法を取り入れればよく、特に制限されることはない。   Next, a specific measurement sequence will be described. As for the actual measurement method, a basic method is adopted in which two potentials are applied, two response currents corresponding to the two potentials are measured, and the concentration of the target component is determined from the difference between the two currents obtained. There is no particular limitation.

図5に2つの電位印加によって1つの標的成分を測定する手順の一例を示す。待機状態において、電源投入または測定ボタン等によって測定モードに入って、電位E1を印加する。次に試料を導入し、電位E1に対応する電流I1を測定し、記憶する。次に印加電位をE2にシフトし、電位E2に対応する電流I2を記憶し、この段階で測定結果を出力し表示する。
次に試料を排出し、電極を含めた系を洗浄し、待機状態に戻って、次の測定に備える。
FIG. 5 shows an example of a procedure for measuring one target component by applying two potentials. In the standby state, the power is turned on or the measurement mode is entered by a measurement button or the like, and the potential E1 is applied. Next, a sample is introduced, and a current I1 corresponding to the potential E1 is measured and stored. Next, the applied potential is shifted to E2, the current I2 corresponding to the potential E2 is stored, and the measurement result is output and displayed at this stage.
Next, the sample is discharged, the system including the electrode is washed, and the system returns to the standby state to prepare for the next measurement.

この測定シーケンスでは、待機時電極への電位を印加していないが、トイレ設置型検査装置など、使用者の排泄に伴って直ぐ測定を開始し、短時間で結果を出力する必要がある場合、待機時に一定の電位、例えば第一の電位E1を印加する方法を取り入れてもよい。この場合の測定シーケンス例を図6に示す。   In this measurement sequence, no potential is applied to the standby electrode, but it is necessary to start measurement immediately with the user's excretion, such as a toilet installation type inspection device, and output the result in a short time. A method of applying a constant potential, for example, the first potential E1 during standby may be adopted. An example of the measurement sequence in this case is shown in FIG.

試料を導入する方法として、試料をそのまま作用極表面に導入してもよいが、試料に含まれる成分の濃度が高い、または測定精度が要求される場合、成分が一定のベース電解液で試料を希釈して導入する方法が望ましい。具体的な方法として、試料を予めベース電解液と混合して、均一に混ぜてから電極表面に導入する方法、およびベース電解液を送液しながら、送液の流路の途中で試料を注入する方法、などが例として挙げられる。後者の例としてフローインジェクション分析が挙げられる。フローインジェクション分析方法は特別な洗浄動作を必要とせず、測定が早いなどのメリットがあるが、試料がある濃度分布を有する溶液ゾーンとして電極表面を通過するので、電位E1とE2の印加タイミングに合わせて、2回試料を注入する必要がある。   As a method of introducing a sample, the sample may be introduced as it is onto the surface of the working electrode. However, when the concentration of the component contained in the sample is high or measurement accuracy is required, the sample is introduced with a base electrolyte having a constant component. The method of introducing after dilution is desirable. As a specific method, the sample is mixed with the base electrolyte in advance and mixed uniformly and then introduced to the electrode surface. The sample is injected in the middle of the flow path of the solution while the base electrolyte is being fed. Examples of such a method are as follows. An example of the latter is flow injection analysis. The flow injection analysis method does not require a special cleaning operation and has advantages such as quick measurement, but the sample passes through the electrode surface as a solution zone with a certain concentration distribution, so it matches the application timing of potentials E1 and E2. The sample needs to be injected twice.

以上、本発明による方法の原理と具体的な測定方法について説明した。次に本発明による電気化学的測定装置について説明する。本発明による装置は電位操作および得られた電流信号の演算方法によって特徴付けられることから、電気化学回路および内蔵する制御・演算ソフトがポイントである。具体的には、作用極の電位を参照極に対して任意の値に保持する機構、適当なタイミングで作用極に印加された電位を変更する機構、および異なる印加電位から得られた複数の電流信号の差から、試料中に含まれる被測定成分の濃度を演算する機構を含む。他のシステム、例えば、送液・試料導入システム、洗浄システムや出力・表示システムなどは従来周知のシステムを必要に応じて使用してよい。   The principle of the method according to the present invention and the specific measurement method have been described above. Next, an electrochemical measurement apparatus according to the present invention will be described. Since the apparatus according to the present invention is characterized by a potential operation and a calculation method of the obtained current signal, the electrochemical circuit and the built-in control / calculation software are the points. Specifically, a mechanism for holding the potential of the working electrode at an arbitrary value with respect to the reference electrode, a mechanism for changing the potential applied to the working electrode at an appropriate timing, and a plurality of currents obtained from different applied potentials A mechanism for calculating the concentration of the component to be measured contained in the sample from the signal difference is included. Other systems such as a liquid feeding / sample introduction system, a cleaning system, and an output / display system may be conventionally used as necessary.

(実施例) アスコルビン酸と尿酸共存下のグルコース測定 (Example) Measurement of glucose in the presence of ascorbic acid and uric acid

グルコースセンサの作成:図10に示すプレーナ型電極の作用極表面に、グルコース酸化酵素(2290units/ml)、牛血清アルブミン(17.5 mg/ml)、および架橋剤であるグルタルアルデヒド(0.2%)を含む水溶液(10μl)をスポット状に滴下し、乾燥して作用極表面にGOD酵素膜を有するグルコースセンサを作成した。できたセンサの作用極表面上の膜構造を図7に示す。白金作用電極の表面に酵素膜を設けた非常に簡単な構造を有するセンサである。   Production of glucose sensor: The surface of the working electrode of the planar electrode shown in FIG. 10 contains glucose oxidase (2290 units / ml), bovine serum albumin (17.5 mg / ml), and glutaraldehyde (0.2%) as a cross-linking agent. A glucose sensor having a GOD enzyme film on the surface of the working electrode was prepared by dropping an aqueous solution (10 μl) in a spot shape and drying. FIG. 7 shows the film structure on the working electrode surface of the completed sensor. It is a sensor having a very simple structure in which an enzyme film is provided on the surface of a platinum working electrode.

できたセンサをフローセルに装着し、図12に示す分析装置にセットした。まずベースとなる電解液(組成:0.033Mのリン酸水素二ナトリウム、0.033Mのリン酸二水素カリウム、0.05MのKCl)を送液しセルを満たしてから作用極表面に0.5Vの電位を印加した。次にグルコース溶液1に対してベース電解液35の比率で混合した複合液に切り替えて送液した。応答電流が確認された後、印加電位を0.7Vに切り替えて電流を継続的に記録した。できた電流曲線の一例として、10mMのグルコースを測定した電流電位曲線を図8に示す。0.5Vの電位が印加された状態でグルコースがセルの送液されると、電流が増えてやがて定常値に達する。この電流信号は電位E1に対応する応答電流I1である。次に電位を0.7Vにシフトすると、電流が一旦急激に上昇するが、速やかに低下し、I1よりも高いレベルで再び安定する。この安定したところの電流はE2に対応する応答電流I2である。図8から、安定するまで電位切換えから2分間強かかるが、すでに説明したように、電位切換えによる電流変化は基本的に電気二重層や電極自身の変化によるものであり、被測定媒体中の物質濃度と関係ないことから、予め予測し補正することができることから、測定時間をより短縮する必要がある場合、例えば1分間のところでの電流を使用してもよい。なお、本実施例では試料に接触するまでのベース電流が非常に低く無視できるが、無視できない場合についてはI1とI1はこのベース電流を差引いた値を用いる。   The resulting sensor was attached to the flow cell and set in the analyzer shown in FIG. First, the base electrolyte (composition: 0.033M disodium hydrogen phosphate, 0.033M potassium dihydrogen phosphate, 0.05M KCl) was pumped to fill the cell, and then 0.5V potential was applied to the working electrode surface. Applied. Next, it switched to the complex liquid mixed with the ratio of the base electrolyte solution 35 with respect to the glucose solution 1, and liquid-fed. After the response current was confirmed, the applied potential was switched to 0.7 V and the current was continuously recorded. As an example of the resulting current curve, a current-potential curve obtained by measuring 10 mM glucose is shown in FIG. When glucose is fed to the cell with a 0.5 V potential applied, the current increases and eventually reaches a steady value. This current signal is a response current I1 corresponding to the potential E1. Next, when the potential is shifted to 0.7 V, the current once suddenly rises, but then falls rapidly and becomes stable again at a level higher than I1. This stable current is a response current I2 corresponding to E2. From FIG. 8, it takes 2 minutes from the potential switching until it stabilizes, but as already explained, the current change due to the potential switching is basically due to the change of the electric double layer or the electrode itself, and the substance in the medium to be measured Since it is irrelevant to the concentration and can be predicted and corrected in advance, when it is necessary to further shorten the measurement time, for example, a current at 1 minute may be used. In this embodiment, the base current until contact with the sample is very low and can be ignored. However, when it cannot be ignored, I1 and I1 are values obtained by subtracting the base current.

グルコース濃度を変えて測定し、また尿酸とアスコルビン酸についても測定した。それぞれの応答電流応答値を表1に示す。またグルコースについては検量線を作成した。その結果を合わせて表1に示す。   The glucose concentration was changed and measured, and uric acid and ascorbic acid were also measured. Each response current response value is shown in Table 1. A calibration curve was prepared for glucose. The results are shown in Table 1.

Figure 2006105615
Figure 2006105615

表1から、グルコースに対して応答電流値が印加電位によって大きく異なるが、尿酸とアスコルビン酸については印加電位に伴う変化がほとんどなかったことが確認できる。   From Table 1, it can be confirmed that the response current value for glucose differs greatly depending on the applied potential, but there was almost no change associated with the applied potential for uric acid and ascorbic acid.

次にグルコース、尿酸およびアスコルビン酸を含む混合溶液を調整し、試料として同様に測定した。得られた電流応答値およびグルコース濃度の演算結果を表2に示す。 Next, a mixed solution containing glucose, uric acid and ascorbic acid was prepared and measured in the same manner as a sample. Table 2 shows the obtained current response values and the calculation results of the glucose concentration.

Figure 2006105615
Figure 2006105615

表2から、このセンサは尿酸とアスコルビン酸に対応した応答電流が2つの電位においても高い値が記録されたにもかかわらず、両成分が共存した場合でも、グルコースの濃度が正確に測定されていることが確認された。   From Table 2, this sensor is able to accurately measure the glucose concentration even when both components coexist even though the response currents corresponding to uric acid and ascorbic acid were recorded at high values at two potentials. It was confirmed that

標的成分に対する電流電位曲線を概念的に示す図である。It is a figure which shows notionally the electric current potential curve with respect to a target component. 印加電位に対応する標的成分に対する検量線を示す図である。It is a figure which shows the calibration curve with respect to the target component corresponding to an applied potential. 本発明による標的成分を測定する原理を示す図である。It is a figure which shows the principle which measures the target component by this invention. アスコルビン酸、尿酸および過酸化水素の電流電位曲線を示す図である。It is a figure which shows the electric potential curve of ascorbic acid, uric acid, and hydrogen peroxide. 本発明による方法の測定シーケンスを示す図である。FIG. 4 shows a measurement sequence of the method according to the invention. 本発明による方法の別の測定シーケンスを示す図である。FIG. 6 shows another measurement sequence of the method according to the invention. 実施例で試作したグルコースセンサの膜構造を示す図である。It is a figure which shows the film | membrane structure of the glucose sensor made as an experiment in the Example. 実施例におけるグルコースを測定するときの電流信号を示す図である。It is a figure which shows the electric current signal when measuring glucose in an Example. 銀/塩化銀参照極の基準電位と塩化カリウム濃度の関係を示す図である。It is a figure which shows the relationship between the standard electric potential of a silver / silver chloride reference electrode, and potassium chloride concentration. セラミック基板上に形成されたプレーナー型電極系を示す図である。It is a figure which shows the planar type electrode system formed on the ceramic substrate. 従来技術に用いられるグルコースセンサの構造を例示する図である。It is a figure which illustrates the structure of the glucose sensor used for a prior art. 本発明による方法に使用される測定装置を例示する図である。It is a figure which illustrates the measuring apparatus used for the method by this invention.

符号の説明Explanation of symbols

1電極
2…作用極
7…参照極
8…対極
10…プレーナー電極系
26…過酸化水素選択透過膜
28…酵素膜



DESCRIPTION OF SYMBOLS 1 electrode 2 ... Working electrode 7 ... Reference electrode 8 ... Counter electrode 10 ... Planar electrode system 26 ... Hydrogen peroxide selective permeable membrane 28 ... Enzyme membrane



Claims (5)

作用極、参照極および対極からなる電極系を用い、作用極に電位を印加して標的成分の電気化学的酸化または還元に伴う電流信号を検出する電気化学的測定方法において、標的成分の酸化または還元による電流信号が異なるように選択される、値の異なる少なくとも2つの電位を印加し、得られた値の異なる少なくとも2つの応答電流の差から、試料中に含まれる一つまたは複数の標的成分の濃度を求めることを特徴とする、電気化学的測定方法。 In an electrochemical measurement method that uses an electrode system composed of a working electrode, a reference electrode, and a counter electrode and applies a potential to the working electrode to detect a current signal accompanying electrochemical oxidation or reduction of the target component, One or a plurality of target components contained in the sample from the difference between at least two response currents obtained by applying at least two potentials having different values, the current signals resulting from the reduction being selected to be different A method for electrochemical measurement, characterized in that the concentration of lysine is determined. 作用極、参照極および対極からなる電極系と、過酸化水素生成酵素を含む生体触媒とを組み合わせてなる測定系をを用い、作用極に電位を印加して過酸化水素の電極酸化に伴う電流信号を検出して試料に含まれる前記過酸化水素生成酵素の基質となる物質を測定する電気化学的測定方法において、過酸化水素の酸化による電流信号が異なるように選択される、値の異なる少なくとも2つの電位を印加し、得られた少なくとも2つの応答電流の差から、試料中に含まれる過酸化水素生成酵素の基質となる物質の濃度を求めることを特徴とする、電気化学的測定方法。 Using a measurement system that combines an electrode system consisting of a working electrode, a reference electrode and a counter electrode, and a biocatalyst containing a hydrogen peroxide-producing enzyme. In an electrochemical measurement method for detecting a signal and measuring a substance serving as a substrate for the hydrogen peroxide-producing enzyme contained in a sample, the current signal due to oxidation of hydrogen peroxide is selected to be different, and at least different values A method for electrochemical measurement, characterized in that a concentration of a substance serving as a substrate for a hydrogen peroxide-producing enzyme contained in a sample is determined from a difference between at least two response currents obtained by applying two potentials. 前記作用極の材料は白金を主成分とすることを特徴とする、請求項1または請求項2記載の電気化学的測定方法。 The electrochemical measurement method according to claim 1, wherein the material of the working electrode contains platinum as a main component. 前記値の異なる2つの印加電位の差が0.1から0.4Vの範囲にあることを特徴とする、請求項1または請求項2記載の電気化学的測定方法 The electrochemical measurement method according to claim 1 or 2, wherein a difference between two applied potentials having different values is in a range of 0.1 to 0.4V. 作用極、参照極および対極からなる電極系を用い、作用極に電位(検出電位)を印加して標的成分の電極酸化に伴う電流信号を測定する電気化学的測定装置であって、
作用極の電位を参照極に対して任意の値に保持する機構、適当なタイミングで作用極に印加された電位を変更する機構、異なる印加電位から得られた複数の電流信号の差から、試料中に含まれる被測定成分の濃度を演算する機構を有することを特徴とする、電気化学的測定装置。



An electrochemical measurement device that uses an electrode system composed of a working electrode, a reference electrode, and a counter electrode, applies a potential (detection potential) to the working electrode, and measures a current signal associated with electrode oxidation of the target component,
A mechanism that holds the potential of the working electrode at an arbitrary value with respect to the reference electrode, a mechanism that changes the potential applied to the working electrode at an appropriate timing, and a difference between multiple current signals obtained from different applied potentials, An electrochemical measurement apparatus having a mechanism for calculating a concentration of a component to be measured contained therein.



JP2004288759A 2004-09-30 2004-09-30 Electrochemical measuring method and measuring apparatus using it Pending JP2006105615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004288759A JP2006105615A (en) 2004-09-30 2004-09-30 Electrochemical measuring method and measuring apparatus using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004288759A JP2006105615A (en) 2004-09-30 2004-09-30 Electrochemical measuring method and measuring apparatus using it

Publications (1)

Publication Number Publication Date
JP2006105615A true JP2006105615A (en) 2006-04-20

Family

ID=36375552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004288759A Pending JP2006105615A (en) 2004-09-30 2004-09-30 Electrochemical measuring method and measuring apparatus using it

Country Status (1)

Country Link
JP (1) JP2006105615A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034587A1 (en) * 2006-09-18 2008-03-27 Schultheiss, Klaus, Werner Determination of hydrogen peroxide concentrations
WO2009119117A1 (en) * 2008-03-27 2009-10-01 パナソニック株式会社 Measurement device, measurement system, and concentration measurement method
WO2011151953A1 (en) * 2010-06-03 2011-12-08 株式会社村田製作所 Method for measuring substance
JP2014048220A (en) * 2012-09-03 2014-03-17 Meidensha Corp Nitrite nitrogen concentration measuring method and device therefor
CN114166904A (en) * 2020-10-30 2022-03-11 中国科学院烟台海岸带研究所 Method for detecting nitrate ions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217152A (en) * 1983-05-25 1984-12-07 Matsushita Electric Works Ltd Quantification of material
JPH03113360A (en) * 1989-09-28 1991-05-14 Tekunoroogu:Kk Method for measuring concentration of hydrogen peroxide
JPH07103939A (en) * 1993-10-06 1995-04-21 Nec Corp Measuring method for biosensor
JPH1183799A (en) * 1997-07-14 1999-03-26 Imura Japan Kk Measuring method of concentration of a plurality of substances to be measured using diamond electrode and concentration sensor
WO2003076919A1 (en) * 2002-03-08 2003-09-18 Matsushita Electric Industrial Co., Ltd. Substrate determining method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217152A (en) * 1983-05-25 1984-12-07 Matsushita Electric Works Ltd Quantification of material
JPH03113360A (en) * 1989-09-28 1991-05-14 Tekunoroogu:Kk Method for measuring concentration of hydrogen peroxide
JPH07103939A (en) * 1993-10-06 1995-04-21 Nec Corp Measuring method for biosensor
JPH1183799A (en) * 1997-07-14 1999-03-26 Imura Japan Kk Measuring method of concentration of a plurality of substances to be measured using diamond electrode and concentration sensor
WO2003076919A1 (en) * 2002-03-08 2003-09-18 Matsushita Electric Industrial Co., Ltd. Substrate determining method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034587A1 (en) * 2006-09-18 2008-03-27 Schultheiss, Klaus, Werner Determination of hydrogen peroxide concentrations
US9938555B2 (en) 2006-09-18 2018-04-10 Alexander Adlassnig Determination of hydrogen peroxide concentrations
WO2009119117A1 (en) * 2008-03-27 2009-10-01 パナソニック株式会社 Measurement device, measurement system, and concentration measurement method
JP5032654B2 (en) * 2008-03-27 2012-09-26 パナソニック株式会社 Measuring device, measuring system, and concentration measuring method
WO2011151953A1 (en) * 2010-06-03 2011-12-08 株式会社村田製作所 Method for measuring substance
JP2014048220A (en) * 2012-09-03 2014-03-17 Meidensha Corp Nitrite nitrogen concentration measuring method and device therefor
CN114166904A (en) * 2020-10-30 2022-03-11 中国科学院烟台海岸带研究所 Method for detecting nitrate ions
CN114166904B (en) * 2020-10-30 2023-11-28 中国科学院烟台海岸带研究所 Method for detecting nitrate ions

Similar Documents

Publication Publication Date Title
JP5385607B2 (en) Gated current measuring instrument
AU2001273197B2 (en) Electrochemical method for measuring chemical reaction rates
KR101950615B1 (en) Interference compensating two electrodes test strip
EP1021720B1 (en) Electrochemical determination of fructosamine
JPH01219661A (en) Analysis method and apparatus using enzyme electrode type sensor
Iveković et al. Amperometric uric acid biosensor with improved analytical performances based on alkaline-stable H2O2 transducer
JP2014224828A (en) Low total salt reagent composition and system for biosensor
JP2006317360A (en) Biosensor using bamboo-shaped carbon nanotube
RU2267120C2 (en) Electrochemical mode of measuring of speed of chemical reactions
JP2006105615A (en) Electrochemical measuring method and measuring apparatus using it
JP2007240419A (en) Concentration measuring device
JP4859003B2 (en) Electrochemical determination of hydrogen peroxide
US20150260677A1 (en) Method For Manufacturing A Lot Of Test Sensors
JP4404433B2 (en) Disposable BUN sensor and manufacturing method thereof
Lewenstam Clinical analysis of blood gases and electrolytes by ion-selective sensors
D’Orazio Electrochemical sensors: a review of techniques and applications in point of care testing
JP3803945B2 (en) Hydrogen peroxide analytical enzyme electrode
AU2014218413B2 (en) Gated amperometry
JP2005156543A (en) Electrochemical measuring method and apparatus
JPS62235557A (en) Enzyme electrode
AU2016213744B2 (en) Gated amperometry
JPS62240849A (en) Enzyme electrode
AU2013200069B2 (en) Gated amperometry
Hitchman et al. Electrochemical methods
JPS613048A (en) Measurement using biosensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005