JPH01264910A - Device for forming thin composite oxide superconducting film - Google Patents

Device for forming thin composite oxide superconducting film

Info

Publication number
JPH01264910A
JPH01264910A JP63328300A JP32830088A JPH01264910A JP H01264910 A JPH01264910 A JP H01264910A JP 63328300 A JP63328300 A JP 63328300A JP 32830088 A JP32830088 A JP 32830088A JP H01264910 A JPH01264910 A JP H01264910A
Authority
JP
Japan
Prior art keywords
chamber
annealing
film forming
substrate
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63328300A
Other languages
Japanese (ja)
Inventor
Saburo Tanaka
三郎 田中
Hideo Itozaki
糸崎 秀夫
Kenjiro Higaki
檜垣 賢次郎
Shuji Yatsu
矢津 修示
Tetsuji Jodai
哲司 上代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63328300A priority Critical patent/JPH01264910A/en
Publication of JPH01264910A publication Critical patent/JPH01264910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To continuously and efficiently form a high-performance thin film without exposing the formed thin film to the external air by providing the deaeration chamber, film forming chamber, and annealing chamber wherein the conditions can be independently set adjacent to one another in the title device by the physical vapor deposition method. CONSTITUTION:A target 7 is placed on a magnetron electrode 5, and a substrate 8 is fixed to a substrate holder 6 in the deaeration chamber 1. The deaeration chamber 1 and the film forming chamber 2 are evacuated to control the degree of vacuum in both chambers 1 and 2 to an appropriate value, then an airtight door 4 is opened, and the electrode 5 and the substrate 8 are transferred into the film forming chamber 2. The airtight door 4 is then closed, a sputtering gas is introduced into the film forming chamber 2 to a specified pressure, the substrate 8 is heated to a specified temp. by a heater 12, and sputtering is started. Meanwhile, the target 7 and the substrate 8 are set in the deaeration chamber 1 which is then evacuated, and the annealing chamber 3 is also evacuated. After a film is formed, the film forming chamber 2 is evacuated, the airtight door 4 is opened, the electrode 5 and the substrate holder 6 are transferred to the annealing chamber 3, the airtight door 4 is closed, an atmospheric gas is introduced into the annealing chamber 3, and annealing is carried out. The electrode 5 and the substrate holder 6 are transferred to the film forming chamber 2 from the deaeration chamber 1, and the process is repeated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複合酸化物超電導薄膜を作製する装置に関す
る。より詳細には、高い超電導臨界温度を始めとする優
れた特性を有し、組成の均一な複合酸化物超電導薄膜を
連続的に作製する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus for producing a composite oxide superconducting thin film. More specifically, the present invention relates to an apparatus for continuously producing composite oxide superconducting thin films having excellent properties including a high superconducting critical temperature and having a uniform composition.

従来の技術 電子の相転移であるといわれる超電導現象は、特定の条
件下で導体の電気抵抗が零の状態となり完全な反磁性を
示す現象である。
BACKGROUND OF THE INVENTION Superconductivity, which is said to be a phase transition of electrons, is a phenomenon in which the electrical resistance of a conductor becomes zero under certain conditions and exhibits complete diamagnetic properties.

超電導現象をエレクトロニクスの分野で応用したものと
して各種の超電導素子が知られている。
Various superconducting elements are known as applications of the superconducting phenomenon in the field of electronics.

代表的なものとして、超電導体の弱結合において量子効
果が巨視的に発現するジョセフソン効果を利用した所謂
ジョセフソン効果素子が挙げられる。
A typical example is the so-called Josephson effect element, which utilizes the Josephson effect, in which quantum effects appear macroscopically in weak coupling of superconductors.

最も一般的なトンネル接合型ジョセフソン素子は、超電
導体のエネルギーギャップが小さいことから極めて高速
な低電力消費のスイッチング素子として期待されている
。また、ジョセフソン効果が電磁波や磁場に対する正確
な量子現象として現れることから、ジョセフソン素子を
磁場、マイクロ波、放射線等の超高感度センサとして利
用することも提案されている。
The most common type of tunnel junction type Josephson device is expected to be an extremely high-speed switching device with low power consumption because the energy gap of the superconductor is small. Furthermore, since the Josephson effect appears as a precise quantum phenomenon for electromagnetic waves and magnetic fields, it has also been proposed to use Josephson elements as ultrasensitive sensors for magnetic fields, microwaves, radiation, and the like.

更に、電子回路の集積度が高くなるにつれて単位面積当
たりの発熱量が冷却能力の限界に迫っていることから、
半導体回路の高速化は限界に近いといわれており、この
ような制限のない超電導素子を使用した回路の開発が要
望されている。
Furthermore, as the degree of integration of electronic circuits increases, the amount of heat generated per unit area is approaching the limit of cooling capacity.
It is said that the speed of semiconductor circuits has reached its limit, and there is a demand for the development of circuits using superconducting elements that do not have such limitations.

一方、様々な努力にもかかわらず、超電導材料の超電導
臨界温度Tcは長期間に亘ってNb、Geの23Kを越
えることができなかった。しかしながら、1986年に
[La、 Ba) 2cuo4または[:La、 Sr
] 2Cu04等の複合酸化物焼結体が高いTcを有す
る超電導材料であることが見出され、非低温超電導を実
現する可能性が大きく高まっている。これらの物質では
、30乃至50にという従来に比べて飛躍的に高いT。
On the other hand, despite various efforts, the superconducting critical temperature Tc of superconducting materials could not exceed 23K for Nb and Ge for a long period of time. However, in 1986 [La, Ba)2cuo4 or [:La, Sr
] It has been discovered that a sintered composite oxide such as 2Cu04 is a superconducting material having a high Tc, and the possibility of realizing non-low temperature superconductivity is greatly increasing. These materials have a T of 30 to 50, which is dramatically higher than that of conventional materials.

が観測されている。更に、YBCOと称されるY1Ba
2Cu30t−エで表される複合酸化物は、90に以上
の温度範囲で超電導特性を示すことが発表されている。
has been observed. Furthermore, Y1Ba, also called YBCO
It has been announced that a composite oxide represented by 2Cu30t-E exhibits superconducting properties in a temperature range of 90°C or higher.

このような複合酸化物系超電導材料は、当初焼結体の形
態で見出されたが、前述のような電子素子材料としての
利用を考えると薄膜化することが必要であり、焼結体材
料をターゲットとしたスパッタリング法等の物理蒸着に
よって複合酸化物超電導薄膜化することが一般的である
Such composite oxide-based superconducting materials were initially discovered in the form of sintered bodies, but considering their use as electronic device materials as mentioned above, it was necessary to make them into thin films, so sintered bodies were It is common to form composite oxide superconducting thin films by physical vapor deposition such as sputtering using a target of .

また、複合酸化物系超電導体の超電導特性は、材料の結
晶中の酸素欠陥が大きく影響されることが知られており
、結晶中の酸素欠陥が適正でない場合は、Tcの低下や
オンセット温度と抵抗が完全に0となる温度との差の拡
大等好ましくない特性が顕著になり甚だしい場合は全く
超電導特性を示さなくなる。そこで、前述のように物理
蒸着法によって作製した複合酸化物薄膜は、一般に酸素
含有雰囲気下でアニール処理を行うことによって酸素含
有量の適正化を行っていた。
In addition, it is known that the superconducting properties of composite oxide superconductors are greatly affected by oxygen defects in the crystals of the material, and if the oxygen defects in the crystals are not appropriate, the Tc decreases and the onset temperature increases. Unfavorable characteristics such as an increase in the difference between the temperature and the temperature at which the resistance becomes completely zero become noticeable, and in extreme cases, the superconducting characteristics will not be exhibited at all. Therefore, the composite oxide thin film produced by the physical vapor deposition method as described above is generally annealed in an oxygen-containing atmosphere to optimize the oxygen content.

発明が解決しようとする課題 上述のようなアニール処理は、一般に成膜操作後に薄膜
を成膜装置から取り出し、他に用意された炉を用いて行
われている。
Problems to be Solved by the Invention The above-described annealing process is generally performed by taking out the thin film from the film forming apparatus after the film forming operation and using a furnace prepared elsewhere.

しかしながら、このような従来の方法では、アニール処
理する前に薄膜が空気に曝され、また冷却速度等アニー
ル条件の制御が不完全になるという問題があった。
However, such conventional methods have the problem that the thin film is exposed to air before the annealing process, and that the annealing conditions such as the cooling rate cannot be fully controlled.

また、成膜装置から薄膜を取り出す際に、成膜装置内に
外気が入るため、次の成膜操作を行うためには再び成膜
室の排気操作を行う必要があり、生産効率が悪かった。
In addition, when taking out the thin film from the deposition equipment, outside air enters the deposition equipment, so the deposition chamber must be evacuated again in order to perform the next deposition operation, resulting in poor production efficiency. .

そこで、本発明の目的は、上記従来技術の問題点を解決
し、精密なアニール処理が可能であり、且つ連続した超
電導薄膜の作製を効率良く行うことができる新規な超電
導薄膜の製造装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a novel superconducting thin film manufacturing apparatus that solves the above-mentioned problems of the prior art, enables precise annealing treatment, and is capable of efficiently manufacturing a continuous superconducting thin film. It's about doing.

課題を解決するための手段 即ち、本発明に従うと、チャンバと、該チャンバと外部
との間に設けられた脱気室と、該チャンバ内を真空に排
気する排気手段と、該チャンバ内に任意の気体を供給す
る供給手段と、該チャンバ内の蒸着源にエネルギーを加
える活性化手段を具備する複合酸化物超電導薄膜を物理
蒸着により作製する装置において、成膜を行う成膜室と
、アニールを行うアニール室とを備え、該成膜室内およ
び該アニール室内の状態を独立して設定できることを特
徴とする複合酸化物超電導薄膜を作製する装置が提供さ
れる。
Means for Solving the Problems According to the present invention, a chamber, a deaeration chamber provided between the chamber and the outside, an evacuation means for evacuating the inside of the chamber, and an arbitrary In an apparatus for producing a composite oxide superconducting thin film by physical vapor deposition, the apparatus includes a supply means for supplying a gas, and an activation means for applying energy to a vapor deposition source in the chamber. Provided is an apparatus for producing a composite oxide superconducting thin film, which is equipped with an annealing chamber for performing annealing, and is characterized in that the conditions in the film forming chamber and in the annealing chamber can be set independently.

尚、上記本発明に係る装置において有利に実施し得る物
理蒸着法として、スパッタリング法を挙げることができ
、特にマグネトロンスパッタリングを更に好ましいもの
として挙げることができる。
Incidentally, as a physical vapor deposition method that can be advantageously implemented in the apparatus according to the present invention, a sputtering method can be mentioned, and particularly magnetron sputtering can be mentioned as a more preferable method.

作用 前述のように、優れた超電導特性を発揮する複合酸化物
超電導薄膜を作製するには成膜後にアニール処理が必須
となる。ここで、処理条件、即ち、アニール温度、アニ
ール時の酸素分圧、アニール時間、冷却速度等を厳密に
制御する必要があるが、従来はアニールを行うのに成膜
装置から薄膜を取り出してアニール炉に移して処理して
いたので、移動の際外気に触れたりして、上記のアニー
ル条件を厳密に制御することが不可能であった。
Function As mentioned above, annealing treatment is essential after film formation in order to produce a composite oxide superconducting thin film that exhibits excellent superconducting properties. Here, it is necessary to strictly control the processing conditions, such as the annealing temperature, oxygen partial pressure during annealing, annealing time, and cooling rate. Since the material was transferred to a furnace for treatment, it was exposed to outside air during the transfer, making it impossible to strictly control the annealing conditions described above.

これに対して、本発明に係る装置は、成膜装置とアニー
ル処理装置とを一体化し、成膜からアニール処理に至る
一連の工程を連続して行うことを可能としている。
In contrast, the apparatus according to the present invention integrates a film forming apparatus and an annealing apparatus, making it possible to continuously perform a series of steps from film forming to annealing.

即ち、本発明に係る装置は、隣接した設けられた脱気室
と成膜室とアニール室とを備え、各室は互いに独立して
開閉可能な気密扉で遮断されており、各室内の圧力、雰
囲気はそれぞれ独立して設定することができる。
That is, the apparatus according to the present invention includes a degassing chamber, a film forming chamber, and an annealing chamber that are provided adjacent to each other, and each chamber is isolated from the other by an airtight door that can be opened and closed independently. , the atmosphere can be set independently.

従って、成膜後薄膜を外気に曝すことなく、成膜とアニ
ール処理とを連続して行うことができる。
Therefore, film formation and annealing treatment can be performed continuously without exposing the thin film to the outside air after film formation.

また、アニール室が隣接しているので、速やかに基板を
移動することができ自然冷却による制御外の温度変化も
殆どない。尚、基板ホルダにヒータを組み込むことによ
って、更に精密な基板温度の制御を行うことも可能であ
る。
Furthermore, since the annealing chambers are adjacent to each other, the substrate can be moved quickly and there is almost no uncontrolled temperature change due to natural cooling. Note that by incorporating a heater into the substrate holder, it is also possible to control the substrate temperature more precisely.

更に、アニール室を予め真空に排気しておくことで成膜
室の雰囲気および圧力を殆ど変化することなく薄膜が堆
積した基板の移動ができる。
Furthermore, by evacuating the annealing chamber to vacuum in advance, the substrate on which the thin film has been deposited can be moved without substantially changing the atmosphere and pressure of the film forming chamber.

また、成膜中に次に使用する基板およびターゲットを脱
気室に予めセットし、脱気室内を真空に排気しておくこ
とで、成膜室に外気を侵入させることなく、新しい基板
、ターゲットを成膜室内に入れることができる。
In addition, by setting the substrate and target to be used next in the degassing chamber in advance during film deposition and evacuating the degassing chamber to a vacuum, new substrates and targets can be used without infiltration of outside air into the deposition chamber. can be placed inside the film forming chamber.

即ち、本発明の装置を使用することにより、成膜と平行
してアニールおよび次に使用する基板ふよびターゲット
の準備が行え、しかも成膜室内の状態を大きく変化させ
ることなく、基板、ターゲットの入れ替えができるため
、連続的に複合酸化物超電導薄膜を作製することが可能
である。
That is, by using the apparatus of the present invention, annealing and preparation of the substrate and target to be used next can be performed in parallel with film formation, and the substrate and target can be prepared without significantly changing the conditions inside the deposition chamber. Since they can be replaced, it is possible to continuously produce composite oxide superconducting thin films.

また、成膜直後の複合酸化物超電導薄膜を外気に触れさ
せることなく、基板温度を制御しながらアニール室に移
動させ、アニールを行うことができるため、従来より優
れた特性を有する複合酸化物超電導薄膜を得ることがで
きる。
In addition, the composite oxide superconducting thin film that has just been formed can be moved to an annealing chamber and annealed while controlling the substrate temperature without exposing it to the outside air. A thin film can be obtained.

本発明の装置を使用して作製することのできる複合酸化
物系超電導薄膜として好ましいものに、Y−Ba−Cu
−0系、La−Ba−Cu −0系およびLa−3r 
−Cu−0系等の酸化物セラミックスが挙げられる。よ
り一般的には、周期律表IIa族元素から選択された1
種の元素αと、周期律表ma族元素から選択された1種
の元素βと、銅(Cu)とを含有する複合酸化物である
。尚、これらの構成元素の一部がAI、 Fe、 Co
、 Ni5Zn、 Ag、 Tiによって構成される群
から選択される少なくとも1種の他の元素で置換された
ものであってもよい。
Preferred composite oxide superconducting thin films that can be produced using the apparatus of the present invention include Y-Ba-Cu
-0 series, La-Ba-Cu -0 series and La-3r
Examples include oxide ceramics such as -Cu-0. More generally, 1 selected from the elements of group IIa of the periodic table.
It is a composite oxide containing a seed element α, one type of element β selected from the elements of Group Ma of the periodic table, and copper (Cu). In addition, some of these constituent elements are AI, Fe, Co
, Ni5Zn, Ag, and Ti.

上記周期律表[a族元素αとして好ましいものとしては
、Ba、 Srが挙げられる。また上記周期律表1Ia
族元素βとしては、YlLaSGdlDy、 Ho、E
r、 Tm、 Yb、 Lu、 Nd55m5Eu等の
ランタンイド元素を例示することができ、更にこれらの
うちから複数元素を組み合わせて用いることもできる。
Preferred examples of the group a elements α in the periodic table include Ba and Sr. Also, the periodic table 1Ia above
Group elements β include YlLaSGdlDy, Ho, E
Examples include lanthanide elements such as r, Tm, Yb, Lu, Nd55m5Eu, and a combination of a plurality of these elements can also be used.

これらの複合酸化物系超電導材料は、 一般式: (αl−XβX) CuyOt〔但し、αお
よびβは、前記定義の元素であり、Xは、α+βに対す
るβの原子比で 0.1≦X≦0.9を満たす数であり、yおよび2は、
(αI−XβX)を1とした場合にそれぞれ原子比で 0.4  ≦y≦3.0. 1.0≦2≦5.0を満たす数である。〕で表される組
成を有する化物である。
These composite oxide superconducting materials have the general formula: (αl-XβX) CuyOt [However, α and β are the elements defined above, and X is the atomic ratio of β to α+β, which is 0.1≦X≦ A number that satisfies 0.9, and y and 2 are
When (αI−XβX) is 1, each atomic ratio is 0.4≦y≦3.0. The number satisfies 1.0≦2≦5.0. ] It is a compound having the composition represented by.

尚、上記のαとβの原子比は、上記αおよびβの種類に
応じて適宜選択できる。すなわち、Ba −YSBa−
La、’ 5r−La系の場合にはそれぞれ以下の比を
満足したときに優れた特性を発揮することが確g忍され
ている。
The atomic ratio of α and β described above can be appropriately selected depending on the types of α and β. That is, Ba -YSBa-
In the case of La and '5r-La systems, it is believed that excellent properties are exhibited when the following ratios are satisfied.

Y/ (Y+Ba) :       0.06〜0.
94、好ましくは0.1〜0.4 Ba/ (La+Ba) :       0.04〜
0.96、好ましくは0.08〜0.45 Sr/ (La+Sr) :       0,03〜
0.95、好ましくは0.05〜0.1 より具体的には、 YrBa2Cu307−xSHo+Ba2CuzO7−
xzLu+Ba2Cua off−XSSm+BazC
us 0t−X1NdtBazCua 0t−X、 G
d + Ba2Cu30、−x、ELl+Ba2CU3
07−XSBr+Ba2Cu+ o7−X%0’/+B
a2CL1307−xSTm+Ba2Cu3off−X
Yb1Ba2Cu* off−X    La+Ba2
Cu307−X%(La、 Sr) 2Cu 04−x
 s(ただし、Xは(]<x<lを満たす数)で表わさ
る複合酸化物である。
Y/(Y+Ba): 0.06~0.
94, preferably 0.1 to 0.4 Ba/(La+Ba): 0.04 to
0.96, preferably 0.08~0.45 Sr/(La+Sr): 0.03~
0.95, preferably 0.05 to 0.1 More specifically, YrBa2Cu307-xSHo+Ba2CuzO7-
xzLu+Ba2Cua off-XSSm+BazC
us 0t-X1NdtBazCua 0t-X, G
d + Ba2Cu30, -x, ELl+Ba2CU3
07-XSBr+Ba2Cu+ o7-X%0'/+B
a2CL1307-xSTm+Ba2Cu3off-X
Yb1Ba2Cu* off-X La+Ba2
Cu307-X% (La, Sr) 2Cu 04-x
It is a complex oxide represented by s (where X is a number satisfying (]<x<l).

これら複合酸化物はペロブスカイト型酸化物または擬似
ペロブスカイト型酸化物であることが好ましい。擬似ペ
ロブスカイトとはペロブスカイトに類似した構造をいい
、例えば酸素欠損ペロブスカイト型、オルソロンピック
型等を含むものである。
These composite oxides are preferably perovskite-type oxides or pseudo-perovskite-type oxides. Pseudo-perovskite refers to a structure similar to perovskite, and includes, for example, an oxygen-deficient perovskite type, an orthorhombic type, and the like.

また、本発明の装置は、他の複合酸化物系超電導薄膜の
作製にも使用することができる。即ち、一般式: D4
 (E+−q、 CaqL Cuh o、、r〔但し、
元素りは、BiまたはTIであり、元素Eは元素りがB
iのときはSrであり、元素りがTIのときはBaであ
り、 m、nSp、qSrはそれぞれ 6≦m≦10. 4≦n≦8. 1)= (31+2m+2n) / 2.0<q<1、 一2≦r≦2を満たす数を表す〕 で表される組成の複合酸化物、即ち、 B14Sr4Ca、Cu6020+r (rは一2≦r
≦+2)[3+2Sr2Ca2Cu30 lO+y (
rは一2≦r≦+2)T14Ba4Ca4Cus O3
Q+r (rは一2≦r≦+2)Tl□Ba2Ca2C
u301Q+r (rは一2≦r≦+2)等で示される
複合酸化物を主とした混合相または上記いずれかの式で
表される単相と考えられる超電導体等も好ましいものの
ひとつである。
Furthermore, the apparatus of the present invention can also be used for producing other composite oxide-based superconducting thin films. That is, the general formula: D4
(E+-q, CaqL Cuho,,r [However,
The element is Bi or TI, and the element E is B.
When the element is TI, it is Sr; when the element is TI, it is Ba; m, nSp, and qSr are each 6≦m≦10. 4≦n≦8. 1) = (31+2m+2n) / 2.0<q<1, represents a number that satisfies -2≦r≦2] Composite oxide with a composition represented by: B14Sr4Ca, Cu6020+r (r is -2≦r
≦+2) [3+2Sr2Ca2Cu30 lO+y (
r is -2≦r≦+2)T14Ba4Ca4Cus O3
Q+r (r is -2≦r≦+2) Tl□Ba2Ca2C
A mixed phase mainly composed of a complex oxide represented by u301Q+r (r is -2≦r≦+2) or a superconductor considered to be a single phase expressed by any of the above formulas are also preferred.

以下に図面を参照して本発明に係る装置をより具体的に
詳述するが、以下の開示は本発明の一実施例に過ぎず、
本発明の技術的範囲を何ら限定するものではない。
The apparatus according to the present invention will be described in more detail below with reference to the drawings, but the following disclosure is only one embodiment of the present invention.
This is not intended to limit the technical scope of the present invention in any way.

実施例 第1図の装置は、マグネトロンスパッタリング法で成膜
を行う本発明の装置の一例である。この装置は、気密扉
4で仕切られ、互いに隣接している脱気室1、成膜室2
およびアニール室3から主に構成される。各部屋には排
気孔10があって、排気ポンプ(不図示)に接続されて
おり、それぞれ独立に室内を排気することができる。ま
た、成膜室2およびアニール室3にはガス導入孔9が備
えられ、室内に任意のガスを任意の圧力で導入すること
ができる。
Embodiment The apparatus shown in FIG. 1 is an example of the apparatus of the present invention for forming a film by magnetron sputtering. This device consists of a degassing chamber 1 and a film forming chamber 2, which are separated by an airtight door 4 and are adjacent to each other.
and an annealing chamber 3. Each room has an exhaust hole 10 and is connected to an exhaust pump (not shown), so that the room can be independently evacuated. Further, the film forming chamber 2 and the annealing chamber 3 are provided with gas introduction holes 9, and any gas can be introduced into the chambers at any pressure.

上記の本発明の装置を用いて複合酸化物超電導薄膜を作
製するには、以下の手順による。
In order to produce a composite oxide superconducting thin film using the above-mentioned apparatus of the present invention, the following procedure is followed.

■ まず、脱気室1でマグネトロン電極5にターゲット
7を、基板ホルダー6に基板8を取付け、脱気室1内を
真空に排気する。
(2) First, the target 7 is attached to the magnetron electrode 5 and the substrate 8 is attached to the substrate holder 6 in the degassing chamber 1, and the inside of the degassing chamber 1 is evacuated to a vacuum.

■ 同時に、成膜室2内も真空に排気し、両方の室内の
真空度が適当になったところで脱気室1、成膜室2間の
気密扉4を開き、マグネトロン電極5および基板ホルダ
ー6を成膜室に移動する。
■ At the same time, the inside of the film forming chamber 2 is also evacuated, and when the degree of vacuum in both chambers is appropriate, the airtight door 4 between the degassing chamber 1 and the film forming chamber 2 is opened, and the magnetron electrode 5 and substrate holder 6 are opened. is moved to the film forming chamber.

■ 次いで、気密扉4を閉じ、成膜室2内にスパッタリ
ングガスを所定の圧力まで導入するとともに、基板8を
所定の温度まで加熱し、スパッタリングを開始する。成
膜室2でスパッタリングを行っている間に、脱気室1で
ターゲット7、基板8を取付け、脱気室1内を真空に排
気しておく。また、アニール室3内も真空に排気してお
く。
(2) Next, the airtight door 4 is closed, sputtering gas is introduced into the film forming chamber 2 to a predetermined pressure, and the substrate 8 is heated to a predetermined temperature to start sputtering. While sputtering is being performed in the film forming chamber 2, a target 7 and a substrate 8 are attached to the degassing chamber 1, and the inside of the degassing chamber 1 is evacuated. Further, the inside of the annealing chamber 3 is also evacuated to a vacuum.

■ 成膜が終了したら、成膜室2内を真空に排気し、成
膜室2、アニール室3間の気密扉4を開きマグネトロン
電極5および基板ホルダ6をアニール室3に移動する。
(2) When the film formation is completed, the inside of the film formation chamber 2 is evacuated, the airtight door 4 between the film formation chamber 2 and the annealing chamber 3 is opened, and the magnetron electrode 5 and substrate holder 6 are moved to the annealing chamber 3.

■ 気密扉4を閉じ、アニール室3内に雰囲気ガスを導
入し、アニールを行う。
■ Close the airtight door 4, introduce atmospheric gas into the annealing chamber 3, and perform annealing.

■ 脱気室1から成膜室2ヘマグネトロン電極5および
基板ホルダ6を移動する。■以降を繰り返す。
(2) Move the magnetron electrode 5 and substrate holder 6 from the degassing chamber 1 to the film forming chamber 2. ■Repeat the following steps.

以上の手順に従えば、連続的に複合酸化物超電導薄膜を
作製することが可能である。
If the above procedure is followed, it is possible to continuously produce a composite oxide superconducting thin film.

発明の効果 本発明の装置を用いることにより、従来と異なリ、複合
酸化物超電導薄膜を連続的に効率よく作製することがで
きる。これは、本発明の装置に独特な、脱気室力よびア
ニール室が成膜に隣接している構造により初めて可能に
なったものである。
Effects of the Invention By using the apparatus of the present invention, a composite oxide superconducting thin film can be produced continuously and efficiently, unlike conventional methods. This was made possible for the first time by the unique structure of the apparatus of the present invention, in which the degassing chamber and the annealing chamber are adjacent to the deposition chamber.

さらに、本発明の装置を用いることにより、成膜後、ア
ニールを行うまでの間も基板温度や雰囲気ガスを制御し
得るので、優れた超電導特性の複合酸化物超電導薄膜を
得ることができる。
Furthermore, by using the apparatus of the present invention, it is possible to control the substrate temperature and atmospheric gas after film formation and before annealing, so it is possible to obtain a composite oxide superconducting thin film with excellent superconducting properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の複合酸化物超電導薄膜を作製する装
置の一例を表す模式図である。 〔主な参照番号〕 1・・脱気室、2・・成膜室、3・・アニール室、4・
・気密扉、5・・マグネトロン電極、6・・基板ホルダ
ー  7・・ターゲット、8・・基板、9・・ガス導入
孔、10・・排気孔、11・・高周波電源、12・・ヒ
ータ 特許出願人  住友電気工業株式会社
FIG. 1 is a schematic diagram showing an example of an apparatus for producing a composite oxide superconducting thin film of the present invention. [Main reference numbers] 1. Deaeration chamber, 2. Film formation chamber, 3. Annealing chamber, 4.
・Airtight door, 5. Magnetron electrode, 6. Substrate holder 7. Target, 8. Substrate, 9. Gas introduction hole, 10. Exhaust hole, 11. High frequency power supply, 12. Heater patent application. People Sumitomo Electric Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims]  チャンバと、該チャンバと外部との間に設けられた脱
気室と、該チャンバ内を真空に排気する排気手段と、該
チャンバ内に任意の気体を供給する供給手段と、該チャ
ンバ内の蒸着源にエネルギーを加える活性化手段を具備
する複合酸化物超電導薄膜を物理蒸着により作製する装
置において、成膜を行う成膜室と、アニールを行うアニ
ール室とを備え、該成膜室内および該アニール室内の状
態を独立して設定できることを特徴とする複合酸化物超
電導薄膜を作製する装置。
a chamber, a deaeration chamber provided between the chamber and the outside, an evacuation means for evacuating the inside of the chamber, a supply means for supplying any gas into the chamber, and a vapor deposition chamber inside the chamber. An apparatus for producing a composite oxide superconducting thin film by physical vapor deposition, which is equipped with activation means for applying energy to a source, and includes a film formation chamber for film formation and an annealing chamber for annealing. An apparatus for producing a composite oxide superconducting thin film, which is characterized by the ability to independently set indoor conditions.
JP63328300A 1987-12-25 1988-12-26 Device for forming thin composite oxide superconducting film Pending JPH01264910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63328300A JPH01264910A (en) 1987-12-25 1988-12-26 Device for forming thin composite oxide superconducting film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-328495 1987-12-25
JP32849587 1987-12-25
JP63328300A JPH01264910A (en) 1987-12-25 1988-12-26 Device for forming thin composite oxide superconducting film

Publications (1)

Publication Number Publication Date
JPH01264910A true JPH01264910A (en) 1989-10-23

Family

ID=26572819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63328300A Pending JPH01264910A (en) 1987-12-25 1988-12-26 Device for forming thin composite oxide superconducting film

Country Status (1)

Country Link
JP (1) JPH01264910A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140875A (en) * 1981-02-25 1982-08-31 Toppan Printing Co Ltd Continuous sputtering method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140875A (en) * 1981-02-25 1982-08-31 Toppan Printing Co Ltd Continuous sputtering method

Similar Documents

Publication Publication Date Title
JP2567460B2 (en) Superconducting thin film and its manufacturing method
JPH01163058A (en) Supercoductive thin film and its preparation
JP3089294B2 (en) Manufacturing method of superconducting tape material
JP2933225B2 (en) Metal oxide material
JPS63242532A (en) Super conductor and its manufacture
JPH0286014A (en) Composite oxide superconducting thin film and film forming method
JPH01264910A (en) Device for forming thin composite oxide superconducting film
JPS63310515A (en) Manufacture of superconductor membrane
JP2501620B2 (en) Preparation method of superconducting thin film
JPH0264021A (en) Preparation of multiple oxide superconducting thin film
JP2713343B2 (en) Superconducting circuit fabrication method
JP2603688B2 (en) Superconducting material reforming method
US5206214A (en) Method of preparing thin film of superconductor
JPS63301424A (en) Manufacture of oxide superconductor membrane
JP2544759B2 (en) How to make a superconducting thin film
JPH0764678B2 (en) Method for producing superconducting thin film
JP3478543B2 (en) Oxide superconducting thin film and method for producing the same
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
JP2668532B2 (en) Preparation method of superconducting thin film
JPH01264911A (en) Formation of thin composite oxide superconducting film
JPH01126206A (en) Superconducting thin film
JPH0714816B2 (en) Method for forming superconducting oxide thin film containing rare earth element
JPS63307614A (en) High-temperature oxide superconductor thin film
JPH0761867B2 (en) Method for producing complex oxide superconducting thin film
JPH0195415A (en) Formation of superconducting thin film