JPH0126194B2 - - Google Patents
Info
- Publication number
- JPH0126194B2 JPH0126194B2 JP15849381A JP15849381A JPH0126194B2 JP H0126194 B2 JPH0126194 B2 JP H0126194B2 JP 15849381 A JP15849381 A JP 15849381A JP 15849381 A JP15849381 A JP 15849381A JP H0126194 B2 JPH0126194 B2 JP H0126194B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- bipolar transistor
- field effect
- emitter
- junction field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000004065 semiconductor Substances 0.000 claims description 8
- 230000005669 field effect Effects 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims 3
- 238000007254 oxidation reaction Methods 0.000 claims 3
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000000151 deposition Methods 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Bipolar Transistors (AREA)
- Semiconductor Integrated Circuits (AREA)
- Bipolar Integrated Circuits (AREA)
- Junction Field-Effect Transistors (AREA)
Description
【発明の詳細な説明】
この発明は、エレクトレツトコンデンサマイク
等にインピーダンス変換用として用いられる半導
体装置の製造方法に関する。
従来、J―FET(接合形電界効果トランジス
タ)を使用した高インピーダンス変換回路とし
て、第1図乃至第3図に示すものがある。第1図
は、FET1のゲートG・ソースS間に2個のダ
イオード2,3を双方向に接続したもの、第2図
は同じくFET1のゲート・ソース間に数百MΩの
抵抗4を接続したものである。また、第3図は
FET1のゲート・ソース間に2個のPNPトラン
ジスタ5,6を接続したもので、一方のトランジ
スタ5はベース・コレクタ間、他方のトランジス
タ6はベース・エミツタ間がそれぞれ短絡されて
いる。これらの接続回路素子はそれぞれ入力パル
スを放電させる役割を有する。
ところで、上記インピーダンス変換回路は、第
1図では1個のFET1及び2個のダイオード2,
3、第2図では1個のFET1及び1個の抵抗4、
第3図では1個のFET1及び2個のPNPトラン
ジスタ5,6の構成になり、これらを各々単体の
部品から作つていたのでは、非常に高価になり、
またコンデンサマイクなどに使用する場合、組立
工数が増え、寸法も大きくなるという欠点があつ
た。そこで、最近は全ての部品を組み込んだ集積
回路としての製造が主流になつている。ここで、
安定度特性に優れ、チツプの製造プロセス的にも
1個のFETを作るのと殆ど変らない第3図のイ
ンピーダンス変換回路について説明する。
第3図の回路構成において、インピーダンス変
換器としての重要な特性である安定度(入力信号
に対する出力信号の回復時間tr)は、0.3Vにおけ
るゲート・ソース間の漏れ電流(±IGSO)と第4
図に示すような相関があることは既に知られてい
る。trは通常数秒以下でなくてはならず、そのた
めには±IGSOの値は、数十nA以上が必要となる。
しかし、極端に大きくなり過ぎると、入力インピ
ーダンスの低下、雑音特性の悪化等の影響が出て
来るため、数十〜数百nA(20〜200nA)が適正な
値となる。±IGSOは第3図において、
−IGSO=−IF+hFE×(−IF)=−IF(1+hFE)
+IGSO=+IF+RhFE×(+IF)=+IF(1+RhFE)
となり、各々のトランジスタ5,6の電流増幅率
RhFEによつて±IGSOの値が左右される。通常、
FET1の単体での0.3Vに於ける±IFは1nA以下
(ピコアンペアオーダー)であり、上述のトラン
ジスタ5,6のhFE,RhFEを数百〜数千にしなけれ
ばインピーダンス変換器としての役割を果たさな
いことになる。
さて、第3図の回路構成を持つた半導体装置の
チツプを製造するに当つては出来るだけ合理化さ
れた簡単な工程であることが望ましい。第5図a
〜dにFET1の単体を作るのと殆ど変わらない
工程で2個のPNPトランジスタ5,6も同時に
作る製造方法の一例を示す。
まず、第5図aに示すようにP形のシリコン基
板11上にN形のエピタキシヤル層を成長させ、
このエピタキシヤル層をFETのチヤンネル及び
2個のPNPトランジスタのベースとなる3つの
島領域(N-層)12,13,14に分離すべく
アイソレーションの拡散を行なう。次に、第5図
bに示すように、基板11表面に酸化膜(SiO2)
15を形成し、この酸化膜15にPEP(Photo
Engraving Process)によりFET1のゲート
拡散孔16、トランジスタ5,6のエミツタ拡散
孔17,18を同時に設け、P形の不純物例えば
ボロンを拡散することにより、ゲート領域19、
エミツタ領域20,21を形成する。次に同様な
方法にて第5図cに示すように、FET1のソー
ス・ドレインのオーミツクコンタクト領域22,
23を形成する。最後に、FET1と2個のトラ
ンジスタ5,6をアルミニウム(Al)等の電極
材料で配線24を施すと第3図と等しい回路構成
を持つた半導体装置が得られる。ここで、ゲート
領域19はシリコン基板11と電気的に接続され
ており、トランジスタ5,6のコレクタ領域はシ
リコン基板11を利用している。ここで、上記各
領域の不純物濃度は、例えば、ベース及びチヤネ
ルを3×1015cm-3、コレクタを4×1016cm-3、エ
ミツタ及びゲートを2×1020cm-3とする。
以上の製造過程より明らかなようにFET1の
チヤンネル領域25とトランジスタ5,6のベー
ス領域26,27は全く同じ厚さに形成されてい
る。従つて、トランジスタ5,6のhFE、RhFEはN
形エピタキシヤル層の島領域12〜14の濃度に
よつて決定される。
しかしながら、この方法によつて製造された構
造の±IGSOの特性分布は、第6図に示すように−
IGSOはほぼ要求を満足するものの、+IGSOについて
はレベルが低過ぎて安定度が悪化する。従つて、
コンデンサマイク等のインピーダンス変換用とし
ては使用出来ないことになる。
これらの現象は、FET1単体としての0.3V近
辺に於ける+IFが数pAと、−IF(数十〜数百pA)
に比べ非常に小さく、又、トランジスタ5,6の
ベース巾が全く同一であり、トランジスタ5の
(1+hFE)とトランジスタ6の(1+RhFE)が1
桁以上違わないために起こると考えられる。+IGSO
を10〜100nAのレベルに上げてやるためには、ト
ランジスタ6のRhFEをトランジスタ5のhFEより
も2桁大きくする必要がある。例えば、
トランジスタ5:−IF×(1+hFE)≒100pA×
(1+10 3)=100nA
トランジスタ6:+IF×(1+RhFE)≒1pA×
(1+10 5)=100nA
トランジスタ5,6のhFEは前述のように本例
ではベース濃度によつて決定される。従つてトラ
ンジスタ6のhFE(hFE DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device used for impedance conversion in an electret condenser microphone or the like. Conventionally, there are high impedance conversion circuits using J-FETs (junction field effect transistors) as shown in FIGS. 1 to 3. Figure 1 shows two diodes 2 and 3 bidirectionally connected between the gate G and source S of FET 1 , and Figure 2 shows a resistor 4 of several hundred MΩ connected between the gate and source of FET 1 . It is connected. Also, Figure 3 shows
Two PNP transistors 5 and 6 are connected between the gate and source of FET 1. One transistor 5 has its base and collector shorted, and the other transistor 6 has its base and emitter shorted. ing. Each of these connected circuit elements has the role of discharging an input pulse. By the way, the impedance conversion circuit shown in FIG. 1 consists of one FET 1 and two diodes 2,
3. In Figure 2, one FET 1 and one resistor 4,
In Fig. 3, the configuration consists of one FET 1 and two PNP transistors 5 and 6. If each of these were made from a single component, it would be very expensive.
Furthermore, when used in condenser microphones, etc., there are disadvantages in that the number of assembly steps increases and the size also increases. Therefore, recently, manufacturing as an integrated circuit incorporating all the components has become mainstream. here,
The impedance conversion circuit shown in Fig. 3, which has excellent stability characteristics and whose chip manufacturing process is almost the same as manufacturing a single FET, will be explained. In the circuit configuration shown in Figure 3, the stability (recovery time t r of the output signal with respect to the input signal), which is an important characteristic as an impedance converter, is determined by the leakage current between the gate and source (±I GSO ) at 0.3V. Fourth
It is already known that there is a correlation as shown in the figure. t r must normally be several seconds or less, and for that purpose, the value of ±I GSO must be several tens of nA or more.
However, if it becomes too large, there will be effects such as a decrease in input impedance and deterioration of noise characteristics, so a suitable value is several tens to several hundred nA (20 to 200 nA). ±I GSO is calculated as follows in Figure 3: −I GSO = −I F +h FE ×(−I F )=−I F (1+h FE ) +I GSO =+I F + R h FE ×(+I F )=+I F ( 1+ R h FE ), and the current amplification factor of each transistor 5 and 6 is
The value of ±I GSO is influenced by R h FE . usually,
The ±I F of FET 1 alone at 0.3V is less than 1 nA (picoampere order), and unless the h FE and R h FE of the transistors 5 and 6 mentioned above are several hundred to several thousand, it will not work as an impedance converter. will not be able to fulfill its role. Now, in manufacturing a semiconductor device chip having the circuit configuration shown in FIG. 3, it is desirable that the process be as streamlined and simple as possible. Figure 5a
An example of a manufacturing method in which two PNP transistors 5 and 6 are simultaneously manufactured using a process that is almost the same as that for manufacturing a single FET 1 is shown in d. First, as shown in FIG. 5a, an N-type epitaxial layer is grown on a P-type silicon substrate 11.
Isolation diffusion is performed to separate this epitaxial layer into three island regions (N - layer) 12, 13, and 14 that will become the bases of the FET channel and the two PNP transistors. Next, as shown in FIG. 5b, an oxide film (SiO 2 ) is formed on the surface of the substrate 11.
15 is formed, and this oxide film 15 is coated with PEP ( P hoto
By simultaneously providing the gate diffusion hole 16 of FET 1 and the emitter diffusion holes 17 and 18 of transistors 5 and 6 by engraving process, and diffusing P -type impurities such as boron, the gate region 19,
Emitter regions 20 and 21 are formed. Next, in a similar manner, as shown in FIG .
form 23. Finally, wiring 24 is provided between the FET 1 and the two transistors 5 and 6 using an electrode material such as aluminum (Al) to obtain a semiconductor device having a circuit configuration similar to that shown in FIG. 3. Here, the gate region 19 is electrically connected to the silicon substrate 11, and the collector regions of the transistors 5 and 6 utilize the silicon substrate 11. Here, the impurity concentration of each region is, for example, 3×10 15 cm −3 for the base and channel, 4×10 16 cm −3 for the collector, and 2×10 20 cm −3 for the emitter and gate. As is clear from the above manufacturing process, the channel region 25 of FET 1 and the base regions 26 and 27 of transistors 5 and 6 are formed to have exactly the same thickness. Therefore, h FE and R h FE of transistors 5 and 6 are N
The shape of the epitaxial layer is determined by the concentration of the island regions 12-14 of the epitaxial layer. However, the characteristic distribution of ±I GSO of the structure manufactured by this method is −
Although I GSO almost satisfies the requirements, the level of +I GSO is too low and stability deteriorates. Therefore,
This means that it cannot be used for impedance conversion of condenser microphones, etc. These phenomena are caused by +I F (several pA) and -I F (several tens to hundreds of pA) at around 0.3V for FET 1 alone.
In addition, the base widths of transistors 5 and 6 are exactly the same, and (1+h FE ) of transistor 5 and (1+ R h FE ) of transistor 6 are 1.
This is thought to occur because the difference is not more than an order of magnitude. +I GSO
In order to raise the voltage to a level of 10 to 100 nA, R h FE of transistor 6 needs to be two orders of magnitude larger than h FE of transistor 5 . For example, transistor 5 : −I F × (1 + h FE ) ≒ 100 pA ×
(1+ 103 )=100nA Transistor 6 : + IF × (1 +RhFE ) ≒1pA×
(1+ 10 5 )=100 nA The h FE of transistors 5 and 6 is determined by the base concentration in this example as described above. Therefore , h FE (h FE
Claims (1)
界効果トランジスタのソースにエミツタが、ゲー
トにベースとコレクタがそれぞれ接続された第一
のバイポーラトランジスタ及び上記接合型電界効
果トランジスタのソースにベースとエミツタが、
ゲートにコレクタがそれぞれ接続された第二のバ
イポーラトランジスタからなる半導体装置の製造
方法において、 第一導電型半導体基板を前記第一及び第二のバ
イポーラトランジスタの共通のコレクタ領域と
し、該半導体基板の一主表面に第二導電型の少な
くとも2つのベース領域と前記接合型電界効果ト
ランジスタのチヤンネル領域とを形成する工程
と、 前記ベース領域及びチヤンネル領域の形成され
た半導体基板上に酸化膜及び耐酸化性膜を順次堆
積し、該酸化膜及び耐酸化性膜の前記第二のバイ
ポーラトランジスタのエミツタ形成予定領域に対
応する位置に第一の開孔を形成する工程と、 前記第一の開孔部を酸化する工程と、 前記第一の開孔部の酸化膜及び前記耐酸化性膜
を除去した後、前記酸化膜の前記接合型電界効果
トランジスタのゲート形成予定領域及び前記第一
のバイポーラトランジスタのエミツタ形成予定領
域それぞれに対応する位置に第二、第三の開孔を
形成する工程と、 前記第一、第二、第三の開孔を通して前記ベー
ス及びチヤンネル領域内に第一導電型の不純物拡
散を行ない、前記接合型電界効果トランジスタの
ゲート領域と、前記第一のバイポーラトランジス
タのエミツタ領域、該第一のバイポーラトランジ
スタのエミツタ領域よりも深い第二のバイポーラ
トランジスタのエミツタ領域を同時に形成する工
程と を具備したことを特徴とする半導体装置の製造方
法。[Claims] 1. A junction field effect transistor, a first bipolar transistor whose emitter is connected to the source of the junction field effect transistor, and whose base and collector are connected to the gate, respectively; and a first bipolar transistor whose source is connected to the source of the junction field effect transistor. The base and emitsuta are
In a method of manufacturing a semiconductor device comprising a second bipolar transistor having a collector connected to its gate, the first conductivity type semiconductor substrate is used as a common collector region of the first and second bipolar transistors, and one part of the semiconductor substrate is forming at least two base regions of a second conductivity type and a channel region of the junction field effect transistor on the main surface; and forming an oxide film and an oxidation-resistant film on the semiconductor substrate on which the base region and the channel region are formed. a step of sequentially depositing films and forming a first opening in the oxide film and the oxidation-resistant film at a position corresponding to a region where the emitter of the second bipolar transistor is to be formed; oxidizing, and after removing the oxide film in the first opening and the oxidation-resistant film, a region of the oxide film where the gate of the junction field effect transistor is to be formed and an emitter of the first bipolar transistor; forming second and third openings at positions corresponding to the respective formation regions; and diffusing a first conductivity type impurity into the base and channel regions through the first, second, and third openings. simultaneously forming a gate region of the junction field effect transistor, an emitter region of the first bipolar transistor, and an emitter region of a second bipolar transistor deeper than the emitter region of the first bipolar transistor; A method for manufacturing a semiconductor device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15849381A JPS5858763A (en) | 1981-10-05 | 1981-10-05 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15849381A JPS5858763A (en) | 1981-10-05 | 1981-10-05 | Manufacture of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5858763A JPS5858763A (en) | 1983-04-07 |
JPH0126194B2 true JPH0126194B2 (en) | 1989-05-22 |
Family
ID=15672942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15849381A Granted JPS5858763A (en) | 1981-10-05 | 1981-10-05 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5858763A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60115252A (en) * | 1983-11-28 | 1985-06-21 | Nec Corp | Semiconductor device |
JPS60117765A (en) * | 1983-11-30 | 1985-06-25 | Fujitsu Ltd | Manufacture of semiconductor device |
JPS60257577A (en) * | 1984-06-04 | 1985-12-19 | Mitsubishi Electric Corp | Junction type field-effect transistor |
-
1981
- 1981-10-05 JP JP15849381A patent/JPS5858763A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5858763A (en) | 1983-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4814287A (en) | Method of manufacturing a semiconductor integrated circuit device | |
US3414782A (en) | Semiconductor structure particularly for performing unipolar transistor functions in integrated circuits | |
JP2751650B2 (en) | Semiconductor circuit | |
US3817794A (en) | Method for making high-gain transistors | |
JPH0126194B2 (en) | ||
JP3037952B2 (en) | Integrated circuit die with resistive substrate isolation of multiple circuits | |
JPS59169177A (en) | Semiconductor device | |
JPS643065B2 (en) | ||
JPS61129861A (en) | Semiconductor device | |
JP2783888B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS5882562A (en) | Semiconductor device | |
JPH02114645A (en) | Bipolar transistor | |
JPS62104068A (en) | Semiconductor integrated circuit device | |
JPS62109360A (en) | Manufacture of darlington transistor | |
JPH01293660A (en) | Semiconductor integrated circuit | |
JPH05283418A (en) | Bipolar integrated circuit device | |
JPH0917803A (en) | Semiconductor device | |
JPH02154427A (en) | Bipolar transistor | |
JPS6188561A (en) | Transistor | |
JPH056962A (en) | Semiconductor device | |
JPS58158960A (en) | Semiconductor integrated circuit device | |
JPS59113658A (en) | Bipolar semiconductor device | |
JPH03219641A (en) | Semiconductor device | |
JPH01129457A (en) | Semiconductor device | |
JPH02186664A (en) | Bipolar integrated circuit |