JPH01261272A - Production of sintered silicon nitride of high strength at elevated temperature - Google Patents

Production of sintered silicon nitride of high strength at elevated temperature

Info

Publication number
JPH01261272A
JPH01261272A JP63085283A JP8528388A JPH01261272A JP H01261272 A JPH01261272 A JP H01261272A JP 63085283 A JP63085283 A JP 63085283A JP 8528388 A JP8528388 A JP 8528388A JP H01261272 A JPH01261272 A JP H01261272A
Authority
JP
Japan
Prior art keywords
silicon nitride
aluminum oxide
oxide
lanthanum oxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63085283A
Other languages
Japanese (ja)
Inventor
Toshiyuki Mori
利之 森
Toshihiko Arakawa
荒川 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP63085283A priority Critical patent/JPH01261272A/en
Publication of JPH01261272A publication Critical patent/JPH01261272A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the sintered products of high oxidation resistance and high strength at elevated temperature, by calcining a mixed powder in which a proportion of lanthanum oxide, aluminum oxide and silicon nitride, the oxygen content and the total amount of metal impurities are specified at a specific temperature and pressure. CONSTITUTION:The proportion of powders of lanthanum oxide, aluminum oxide and silicon nitride is specified to 1.0-2.5wt.% of lanthanum oxide, 0.1-2.5wt.% of aluminum oxide where the weight ratio of the lanthanum oxide/aluminum oxide is over 0.6, and the rest part of silicon nitride. The oxygen content in the silicon nitride is less than 2.0wt.% and the total amount of the metal impurities is less than 200ppm. The powder mixture is sintered in a nitrogen atmosphere at 1,900-2,100 deg.C under pressure over 5kg/cm<2>G. The sintering temperature must be 1,900-2,100 deg.C and lower temperature results in unsatisfactory densification of the sintered products, while too high temperature causes undesirably the decomposition of silicon nitride.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温で耐酸化性及び高強度を有する窒化珪素
質焼結体及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a silicon nitride sintered body having oxidation resistance and high strength at high temperatures, and a method for manufacturing the same.

(従来の技術) 窒化珪素質焼結体は、強度、靭性、耐熱性、熱衝撃性、
耐酸化性などに優れていることからエンジン部品など′
の高温構造材料として高温での苛酷な使用条件下での応
用が検討されている。 、しかし、窒化珪素は助剤の存
在なしには焼結しにくい性質を有することから、各種の
焼結助剤を添加することにより、ち密化する方法が提案
されている。
(Conventional technology) Silicon nitride sintered bodies have excellent strength, toughness, heat resistance, thermal shock resistance,
Due to its excellent oxidation resistance, it is used in engine parts, etc.
Its application as a high-temperature structural material under harsh usage conditions at high temperatures is being considered. However, since silicon nitride has a property that it is difficult to sinter without the presence of an auxiliary agent, methods of densification by adding various sintering auxiliaries have been proposed.

しかし、窒化珪素のち密化を促進させる役割をはだす焼
結助剤は窒化珪素の粒界に低融点のガラス相を形成し、
高温においてこのガラス相が軟化して高温強度を低下さ
せ、耐酸化性も劣化させることが多い。
However, the sintering aid, which plays a role in promoting the densification of silicon nitride, forms a glass phase with a low melting point at the grain boundaries of silicon nitride.
At high temperatures, this glass phase softens, lowering the high temperature strength and often deteriorating the oxidation resistance.

この問題点を解決するため、以下のような方法が提案さ
れている。
In order to solve this problem, the following methods have been proposed.

(1)窒化珪素粉末に周期律表111a族の群より選ば
れた元素の酸化物とアルミナを添加する。
(1) An oxide of an element selected from Group 111a of the periodic table and alumina are added to silicon nitride powder.

(例えば、特公昭52−3849号公報、特公昭55−
109277号公報) (2)イツトリウム、ランタン、ネオジム等の酸化物、
窒化アルミニウム及びシリケートを添加する(特公昭5
θ−9475号公報)。
(For example, Japanese Patent Publication No. 52-3849, Japanese Patent Publication No. 55-1982)
109277) (2) Oxides of yttrium, lanthanum, neodymium, etc.
Adding aluminum nitride and silicate
θ-9475 Publication).

しかし、これらの方法は、以下に記すような欠点を持ち
、実用上から見た場合、未だ問題があるものである。
However, these methods have the following drawbacks and are still problematic from a practical standpoint.

(1)の周期律表IIIa族元素の酸化物とアルミナを
添加する方法による場合は、焼結が促進され、常圧焼結
でも高密度でありかつ高強度の焼結体が得られるが、粒
界が結晶化する領域は!!1a族元素のおのおのにおい
て異なり、しかも、極めて狭い領域でのみおこる。その
ため、得られた焼結体は一般に、高温強度の低下が大き
く、耐酸化性にも劣るものとなる。そのため、結晶化処
理等の操作後、ホットプレス等の特殊な焼結方法を採用
しないと、ち密で高温強度の優れた焼結体は得られない
In the case of the method (1) of adding oxides of group IIIa elements of the periodic table and alumina, sintering is promoted and a high-density and high-strength sintered body can be obtained even by pressureless sintering. What is the region where grain boundaries crystallize? ! It is different for each group 1a element, and moreover, it occurs only in an extremely narrow region. Therefore, the obtained sintered body generally has a large decrease in high temperature strength and has poor oxidation resistance. Therefore, a dense sintered body with excellent high-temperature strength cannot be obtained unless a special sintering method such as hot pressing is employed after operations such as crystallization treatment.

(2)のイツトリウム、ランタン、ネオジム等の酸化物
と窒化アルミニウムとシリケートを添加する方法では、
常圧焼結により得られる粒界相が高温において極めて容
易に軟化し、または非晶質化し、高温強度を低下させる
という問題点を有している。また、上記のものの耐酸化
性は、せいぜい1200℃が限界であり、それ以上の温
度領域で使用するものについては、炭化珪素系の複合材
料の検討が主に行われている。
In the method (2) of adding oxides such as yttrium, lanthanum, neodymium, aluminum nitride, and silicate,
The problem is that the grain boundary phase obtained by pressureless sintering very easily softens or becomes amorphous at high temperatures, reducing high-temperature strength. Further, the oxidation resistance of the above materials is limited to 1200° C. at most, and silicon carbide-based composite materials are mainly being studied for materials used in a temperature range higher than that.

(発明が解決しようとする課題) 本発明は、上記課題の解決を目的とするものである。す
なわち、高温で高強度を有し、耐酸化性に優れた窒化珪
素質焼結体及びその製造方法を提供しようとするもので
ある。
(Problems to be Solved by the Invention) The present invention aims to solve the above problems. That is, the present invention aims to provide a silicon nitride sintered body that has high strength at high temperatures and excellent oxidation resistance, and a method for manufacturing the same.

(課題を解決するための手段) 一般に良好な焼結性を付与させるためには、さまざまな
、添加剤が使用されているが、これら添加剤の多くは、
高温においてガラス相を生成するか、軟化しやすいもの
が多く、不満足な結果しか得られない。このことから、
これらの点について鋭意研究を進めた結果、酸化ランタ
ン、酸化アルミニウム及び窒化硅素からなる系において
、その配合割合いを制御することにより、1400℃に
おいても良好な耐酸化性を有し、物性の低下の少ない窒
化珪素質セラミックスが得られることを見出した。
(Means for solving the problem) Various additives are generally used to impart good sinterability, but many of these additives are
Many of them tend to form a glass phase or soften at high temperatures, giving unsatisfactory results. From this,
As a result of intensive research on these points, we have found that by controlling the blending ratio of a system consisting of lanthanum oxide, aluminum oxide, and silicon nitride, it has good oxidation resistance even at 1400°C and reduces the decrease in physical properties. It has been found that silicon nitride ceramics with low oxidation can be obtained.

すなわち、本発明は全体の組成が酸化ランタン1.0〜
2.51t%、酸化アルミニウム0.1〜2,5νt%
及び残部が窒化珪素であり、ただし酸化ランタンl酸化
アルミニウム重量比 0.6以上でありかつ、密度が3
.0 g/cs3以上である焼結体を提供するものであ
る。また、含有酸素2.0wt%以下、金属不純物総Q
 200pp−以下の窒化珪素粉末を用いた上記組成の
混合粉末を窒素雰囲気中で、1900〜2100℃、5
Kg/cシG以上で焼結することによる窒化珪素質焼結
体の製造方法を提供するものである。本発明において、
酸化ランタン及び酸化アルミニウムの含有量が上記範囲
を上回ると耐酸化性及び高温強度が低下し、その範囲を
下回ると、焼結体のち密化が進行せず、耐酸化性、高強
度化共に満たされない。さらに、酸化ランタンl酸化ア
ルミニウム重量比の値が0.8未満であるとち密化は進
行するが、粒界は十分に結晶化せず耐酸化性、高温強度
は低下する。焼結体密度も3.0g/cm’未満では、
耐酸化性および高温強度が低下する。
That is, the present invention has a total composition of 1.0 to 1.0 lanthanum oxide.
2.51t%, aluminum oxide 0.1-2.5νt%
and the remainder is silicon nitride, provided that the weight ratio of lanthanum oxide to aluminum oxide is 0.6 or more and the density is 3
.. The present invention provides a sintered body having a weight ratio of 0 g/cs3 or more. In addition, the content of oxygen is 2.0 wt% or less, and the total Q of metal impurities is
A mixed powder of the above composition using silicon nitride powder of 200 pp- or less was heated at 1900 to 2100°C for 50 minutes in a nitrogen atmosphere.
The present invention provides a method for producing a silicon nitride sintered body by sintering at Kg/c or more. In the present invention,
If the content of lanthanum oxide and aluminum oxide exceeds the above range, oxidation resistance and high-temperature strength will decrease, and if it falls below that range, the sintered body will not become denser, and both oxidation resistance and high strength will not be satisfied. Not done. Further, if the weight ratio of lanthanum oxide to aluminum oxide is less than 0.8, densification will proceed, but the grain boundaries will not be sufficiently crystallized and oxidation resistance and high temperature strength will decrease. If the sintered body density is also less than 3.0 g/cm',
Oxidation resistance and high temperature strength are reduced.

窒化珪素粉末の含有酸素が2.ovt%をこえ、金属不
純物総量が200pp−こえると密度3.0g/cm3
以上の焼結体を得ることが困難となり、またこのような
密度のものが得られたとしても粒界における不純物相及
び高酸素の川が高温において軟化しやすく、したがって
焼結体の耐酸化性を低下させる。
The oxygen content of silicon nitride powder is 2. ovt% and the total amount of metal impurities exceeds 200 pp-, the density is 3.0 g/cm3.
It is difficult to obtain a sintered body with such a density, and even if such a density is obtained, the impurity phase and high oxygen content at the grain boundaries are likely to soften at high temperatures, and therefore the oxidation resistance of the sintered body is affected. decrease.

本発明の製造方法における焼結温度は、1900〜21
00℃でなければならず、温度が低すぎると、焼結体の
ち密化は十分、に進行せず、焼結体の密度は上がらない
。また、逆に高すぎると窒化珪素の分解が進み好ましく
ない。
The sintering temperature in the manufacturing method of the present invention is 1900 to 21
If the temperature is too low, the densification of the sintered body will not proceed sufficiently and the density of the sintered body will not increase. On the other hand, if it is too high, silicon nitride will decompose, which is undesirable.

焼結方法は、公知の各種方法が採用され、例えばホット
プレス法、雰囲気加圧法、熱間静水圧法等があげられる
As the sintering method, various known methods are employed, such as a hot press method, an atmosphere pressurization method, a hot isostatic pressure method, and the like.

焼結時間は、焼結温度との関係で適宜選択することがで
きるが2時間以上が好ましい。
The sintering time can be appropriately selected depending on the sintering temperature, but is preferably 2 hours or more.

これらの条件を満たすことにより、本発明によるち密化
、耐酸化性、高強度化の効果が達成される。
By satisfying these conditions, the effects of densification, oxidation resistance, and high strength according to the present invention can be achieved.

(作用) 上記の割合いで焼結助剤を添加し焼結することにより、
本発明の効果が何故、発現するかについては、未だ充分
には解明されていないが、以下のような理由によるもの
と思われる。酸化アルミニウムの含有量が0.1〜2.
5vt%であっても、酸化ランタンが前述のごと< 2
.5wt%を越えると高温での物性を低下させることか
ら、これらの場合、これら添加剤を含んだ粒界は結晶化
せず、ガラス状であるために、粒界を通して酸化が進み
、高温での強度低下が起こるものと考えられる。
(Function) By adding the sintering aid in the above ratio and sintering,
Although it has not yet been fully elucidated why the effects of the present invention are produced, it is thought to be due to the following reasons. The content of aluminum oxide is 0.1 to 2.
Even at 5vt%, lanthanum oxide is <2 as mentioned above.
.. If it exceeds 5 wt%, the physical properties at high temperatures will deteriorate; therefore, in these cases, the grain boundaries containing these additives do not crystallize and are glassy, so oxidation progresses through the grain boundaries, resulting in poor performance at high temperatures. It is thought that a decrease in strength occurs.

以上の理由から、本発明のように酸化ランタンと酸化ア
ルミニウムの量を制限した領域でち密化した焼結体の粒
界は結晶化しており、1400℃という高温においても
軟化せず、粒界からの酸化を防ぎ、高温において高強度
を有し、高温耐クリープ性を有することとなるものと考
えられる。
For the above reasons, the grain boundaries of a sintered body densified in a region where the amount of lanthanum oxide and aluminum oxide is limited as in the present invention are crystallized, and do not soften even at a high temperature of 1400°C, and are separated from the grain boundaries. It is thought that this will prevent oxidation, have high strength at high temperatures, and have high temperature creep resistance.

(発明の効果) 以上説明したように、本発明の窒化珪素質焼結体は14
00℃という高温で非常に高い耐酸化性及び強度を有す
るセラミックスであって、従来の窒化珪素質焼結体の使
用範囲を拡張することが可能となり、この温度での高温
部材に適用できる。また、本発明の方伜によって上記の
窒化珪素質焼結体を製造することができる。
(Effect of the invention) As explained above, the silicon nitride sintered body of the present invention has 14
This ceramic has extremely high oxidation resistance and strength at a high temperature of 00°C, making it possible to expand the range of use of conventional silicon nitride sintered bodies, and making it applicable to high-temperature members at this temperature. Further, the above silicon nitride sintered body can be manufactured by the method of the present invention.

(実施例) 実施例1〜6.比較例1〜11 下記窒化珪素粉末 下表のA:東ソー■製TS−10 シリコンイミドの熱分解によって合成 されたもの。(Example) Examples 1-6. Comparative examples 1 to 11 Silicon nitride powder below A in the table below: TS-10 manufactured by Tosoh ■ Synthesized by thermal decomposition of silicon imide what was done.

粒径    0.2〜0.3μm 含有酸素  1.2vt% 金属不純物 80ppm 下表のB:電気化学工業■製5N−93−金属珪素の直
接窒化によって合成され たもの。
Particle size: 0.2 to 0.3 μm Oxygen content: 1.2 vt% Metal impurities: 80 ppm B in the table below: Synthesized by direct nitridation of 5N-93-metallic silicon manufactured by Denki Kagaku Kogyo ■.

粒径    10μm以下 含有酸素  2.lvt% 金属不純物 0.7vt% のいずれかと酸化ランタン粉末(信越化学工業■製)と
酸化アルミニウム粉末(住人化学工業■製AKP−30
)とを窒化珪素製のボ・ットミル中で24時間混合した
。得られた混合物を1500Kg/c−の圧力で、50
ssX 30m5X 5msの成形体に静水圧ブレスし
、窒化ホウ素粉末中に収めて、窒素雰囲気中で4時間焼
成した。
Particle size: 10 μm or less Containing oxygen 2. lvt% metal impurity 0.7vt%, lanthanum oxide powder (manufactured by Shin-Etsu Chemical Co., Ltd.), and aluminum oxide powder (AKP-30, manufactured by Sumima Chemical Co., Ltd.).
) were mixed for 24 hours in a silicon nitride bottle mill. The resulting mixture was heated at a pressure of 1500 Kg/c-50
A compact of ssX 30m5X 5ms was hydrostatically pressed, placed in boron nitride powder, and fired in a nitrogen atmosphere for 4 hours.

得られた焼結体の1400℃における曲げ強度をDIS
 R1601(1981)の規定によって、また耐酸化
性を空気中1400℃、100時間における酸化増量に
よって測定した。
The bending strength of the obtained sintered body at 1400°C is
R1601 (1981) and the oxidation resistance was determined by oxidation weight gain in air at 1400° C. for 100 hours.

上記の条件以外の条件及び上記のΔP1定結果を下表に
示す。
Conditions other than the above conditions and the above ΔP1 constant results are shown in the table below.

Claims (2)

【特許請求の範囲】[Claims] (1)組成が 酸化ランタン 1.0〜2.5wt% 酸化アルミニウム 0.1〜2.5wt% ただし、酸化ランタン/酸化アルミニウ ム重量比 0.6以上 窒化珪素 残部 であり、かつ 密度 3.0g/cm^3以上 であることを特徴とする窒化珪素質焼結体。(1) The composition is Lanthanum oxide 1.0-2.5wt% Aluminum oxide 0.1-2.5wt% However, lanthanum oxide/aluminum oxide Lum weight ratio 0.6 or more Silicon nitride remainder and Density 3.0g/cm^3 or more A silicon nitride sintered body characterized by: (2)酸化ランタン,酸化アルミニウムおよび窒化珪素
の各粉末の割合いが 酸化ランタン 1.0〜2.5wt% 酸化アルミニウム 0.1〜2.5wt% ただし、酸化ランタン/酸化アルミニウ ム重量比 0.6以上 窒化珪素 残部 であり、かつ該窒化珪素粉末が 含有酸素 2.0wt%以下 金属不純物総量 200ppm以下 である混合粉末を窒素雰囲気中で 温度 1900〜2100℃ 圧力 5Kg/cm^2以上 で焼結することを特徴とする窒化珪素質焼結体の製造方
法。
(2) Ratio of each powder of lanthanum oxide, aluminum oxide, and silicon nitride Lanthanum oxide: 1.0 to 2.5 wt% Aluminum oxide: 0.1 to 2.5 wt% However, the weight ratio of lanthanum oxide/aluminum oxide is 0.6 A mixed powder containing the remaining silicon nitride and containing 2.0 wt% or less of oxygen or less than 200 ppm of total metal impurities is sintered in a nitrogen atmosphere at a temperature of 1900 to 2100°C and a pressure of 5 kg/cm^2 or more. A method for manufacturing a silicon nitride sintered body, characterized by:
JP63085283A 1988-04-08 1988-04-08 Production of sintered silicon nitride of high strength at elevated temperature Pending JPH01261272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63085283A JPH01261272A (en) 1988-04-08 1988-04-08 Production of sintered silicon nitride of high strength at elevated temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63085283A JPH01261272A (en) 1988-04-08 1988-04-08 Production of sintered silicon nitride of high strength at elevated temperature

Publications (1)

Publication Number Publication Date
JPH01261272A true JPH01261272A (en) 1989-10-18

Family

ID=13854244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63085283A Pending JPH01261272A (en) 1988-04-08 1988-04-08 Production of sintered silicon nitride of high strength at elevated temperature

Country Status (1)

Country Link
JP (1) JPH01261272A (en)

Similar Documents

Publication Publication Date Title
KR0168303B1 (en) Aluminum nitride sinter and process for the production thereof
JPH0455143B2 (en)
JPH0232230B2 (en)
JPS62153169A (en) Silicon nitride ceramic sintered body
US5017530A (en) Silicon nitride sintered body and process for preparation thereof
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JPS61209959A (en) Manufacture of aluminum nitride
JPH0258233B2 (en)
JPH01261272A (en) Production of sintered silicon nitride of high strength at elevated temperature
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JP2642429B2 (en) Silicon nitride sintered body and method for producing the same
JPS62153170A (en) Silicon nitride ceramic sintered body and manufacture
JPH035371A (en) Production of si3n4 sintered compact
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JP2960591B2 (en) Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPS62275067A (en) Manufacture of silicon nitride sintered body
JPS63252967A (en) Manufacture of silicon nitride base sintered body
JPH0513104B2 (en)
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JPH0788256B2 (en) Method for manufacturing aluminum nitride sintered body
JPH0559073B2 (en)