JPH01260842A - Semiconductor integrated circuit - Google Patents
Semiconductor integrated circuitInfo
- Publication number
- JPH01260842A JPH01260842A JP8941588A JP8941588A JPH01260842A JP H01260842 A JPH01260842 A JP H01260842A JP 8941588 A JP8941588 A JP 8941588A JP 8941588 A JP8941588 A JP 8941588A JP H01260842 A JPH01260842 A JP H01260842A
- Authority
- JP
- Japan
- Prior art keywords
- signal wiring
- junction
- capacitor
- type
- capacitance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 239000003990 capacitor Substances 0.000 abstract description 32
- 229910052710 silicon Inorganic materials 0.000 abstract description 13
- 239000010703 silicon Substances 0.000 abstract description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 12
- 230000003071 parasitic effect Effects 0.000 abstract description 12
- 239000012535 impurity Substances 0.000 abstract description 4
- 230000015654 memory Effects 0.000 abstract description 4
- 230000007423 decrease Effects 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 229910052814 silicon oxide Inorganic materials 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は信号配線の寄生容量の低減化を図った半導体
集積回路に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit in which the parasitic capacitance of signal wiring is reduced.
第9図(a)は従来の半導体集積回路における信号配線
部を示す断面図、同図(b)はその等価回路図である。FIG. 9(a) is a sectional view showing a signal wiring section in a conventional semiconductor integrated circuit, and FIG. 9(b) is an equivalent circuit diagram thereof.
同図において、1はn型導電性を示すシリコン基板であ
り、このシリコン基板1上において集積回路が作られる
。信号配線3は、シリコン酸化膜2を介してシリコン基
板1の一方主面上にアルミ配線層により形成される。こ
の信号配線3を保護するため、窒化膜よりなるパシベー
ションPA4が信号配線3を覆って形成される。なお、
n形シリコン基板1は図示しない電源Vcoに接続され
ている。In the figure, 1 is a silicon substrate exhibiting n-type conductivity, and an integrated circuit is formed on this silicon substrate 1. The signal wiring 3 is formed of an aluminum wiring layer on one main surface of the silicon substrate 1 with the silicon oxide film 2 interposed therebetween. In order to protect the signal wiring 3, a passivation PA4 made of a nitride film is formed to cover the signal wiring 3. In addition,
The n-type silicon substrate 1 is connected to a power supply Vco (not shown).
第9図(a)で示したような信号配線3が形成される半
導体集積回路では、第9図(b)で示すように信号配線
3とシリコン基板1間のシリコン酸化膜2に次(1)式
で表わされる容量値の寄生キャパシタC1を形成する。In a semiconductor integrated circuit in which the signal wiring 3 as shown in FIG. 9(a) is formed, the silicon oxide film 2 between the signal wiring 3 and the silicon substrate 1 is ) A parasitic capacitor C1 having a capacitance value expressed by the following equation is formed.
Sl :信号配線3の面積
dl :信号配線3とシリコン基板1間におけるシリコ
ン酸化膜2の厚さ
C0:真空の比誘電率
ε °シリコン酸化膜2の比誘電率
V
〔発明が解決しようとする課題〕
従来の半導体集積回路は以上のように構成されており、
信号配線は(1)式で示した容量値の寄生キャパシタC
1を有する。SL: Area of the signal wiring 3 dl: Thickness of the silicon oxide film 2 between the signal wiring 3 and the silicon substrate 1 C0: Vacuum relative dielectric constant ε ° Relative dielectric constant V of the silicon oxide film 2 [What the invention seeks to solve] Issue] Conventional semiconductor integrated circuits are configured as described above.
The signal wiring is a parasitic capacitor C with a capacitance value shown in equation (1).
1.
この容量値が大きいと、信号配線を伝わる電気信号の速
度が遅くなる問題が生じる。この問題は半導体メモリ等
の高集積化に伴い内部に使用されている電界効果トラン
ジスタ等の能動素子の性能(スイッチング特性)が向上
するに従い大きなものとなり、ひいては信号配線を伝わ
る電気信号の遅延が半導体メモリ等の遅延時間を決定し
てしまうという問題点があった。If this capacitance value is large, a problem arises in that the speed of electrical signals transmitted through the signal wiring becomes slow. This problem becomes more serious as the performance (switching characteristics) of active elements such as field-effect transistors used internally improves as semiconductor memories become more highly integrated. There was a problem that the delay time of memory etc. was determined.
この発明は上記のような問題点を解決するためになされ
たもので、信号配線の寄生容量の低減化を図った半導体
集積回路を得ることを目的とする。The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain a semiconductor integrated circuit in which the parasitic capacitance of signal wiring is reduced.
〔課題を解決するための手段〕
この発明にかかる半導体集積回路は、半導体基板の一方
主面上に絶縁膜を介して信号配線を形成し、前記信号配
線下における前記半導体基板の一方主面領域にpn接合
を設け、前記半導体基板の前記一方主面側の前記pn接
合を形成する領域を、フローティング状態にする、ある
いは前記pn接合に逆バイアスがかかるように高抵抗値
を有する抵抗体を介して電圧設定している。[Means for Solving the Problems] A semiconductor integrated circuit according to the present invention includes a signal wiring formed on one main surface of a semiconductor substrate via an insulating film, and a region of one main surface of the semiconductor substrate below the signal wiring. A pn junction is provided in the semiconductor substrate, and a region on the one principal surface side of the semiconductor substrate where the pn junction is formed is placed in a floating state, or a resistor having a high resistance value is provided so as to apply a reverse bias to the pn junction. The voltage is set.
(作用〕
この発明におけるpn接合は信号配線下における絶縁膜
下に設けたため、絶縁膜を介することにより形成される
寄生容量に、このpn接合による容量が直列に接続され
る。(Function) Since the pn junction in this invention is provided under the insulating film under the signal wiring, the capacitance due to the pn junction is connected in series with the parasitic capacitance formed through the insulating film.
第1図(a)はこの発明の一実施例である半導体集積回
路の信号配線部を示す断面図であり、同図(b)はその
等価回路図である。第1図(a)に示すように従来と異
なり、絶縁1142を介した信号配線3下のn型半導体
基板1表面領域内にp型アイランド5を設けている。p
型アイランド5はp型の不純物を低濃度含みn型シリコ
ン基板1とでpn接合を設けている。FIG. 1(a) is a sectional view showing a signal wiring section of a semiconductor integrated circuit according to an embodiment of the present invention, and FIG. 1(b) is an equivalent circuit diagram thereof. As shown in FIG. 1(a), unlike the conventional method, a p-type island 5 is provided in the surface region of the n-type semiconductor substrate 1 under the signal wiring 3 via an insulator 1142. p
The type island 5 contains a p-type impurity at a low concentration and forms a pn junction with the n-type silicon substrate 1.
このように構成することで、第1図(b)に示すように
、信号配線3とp型アイランド5間の寄生キャパシタC
、p型アイランド5とn型半導体基板1とのpn接合に
よるキャパシタC2が直列接続されることになる。With this configuration, as shown in FIG. 1(b), the parasitic capacitor C between the signal wiring 3 and the p-type island 5 is reduced.
, a capacitor C2 formed by a pn junction between the p-type island 5 and the n-type semiconductor substrate 1 is connected in series.
キャパシタC2は、pn接合部分の空乏層で形成された
接合容量である。この接合容量値は、接合面積S2及び
空乏層の厚さd2に依存し、次(2)式で表わされる。Capacitor C2 is a junction capacitance formed by a depletion layer at the pn junction portion. This junction capacitance value depends on the junction area S2 and the thickness d2 of the depletion layer, and is expressed by the following equation (2).
ε ゛シリコンの比誘電率 r2゜ また、空乏層の厚さd2は次(3)式で表わされる。ε゛Relative dielectric constant of silicon r2゜ Further, the thickness d2 of the depletion layer is expressed by the following equation (3).
・・・(3)
q:電荷間
N :n型不純物濃度
N :n型不純物濃度
φ :pn接合のビルトインポテンシャル■R:逆バイ
アス電圧
従って、キャパシタC2の容量値は次(4)式で表わさ
れる。...(3) q: Charge distance N: N-type impurity concentration N: N-type impurity concentration φ: Built-in potential of pn junction ■R: Reverse bias voltage Therefore, the capacitance value of capacitor C2 is expressed by the following equation (4). It will be done.
・・・(4)
このpn接合によるキャパシタC2が寄生キャパシタC
1に直列に接続されるため、信号配線3の容量Cはキャ
パシタC,C2の合成言回となす、次(5)式で表わさ
れる。...(4) Capacitor C2 due to this pn junction is parasitic capacitor C
1 in series, the capacitance C of the signal line 3 is expressed by the following equation (5), which is a composite expression of capacitors C and C2.
C1+02
その結果、信号配線3による容量値Cは低下することで
信号配l113を伝わる電気信号の速度が速くなり、高
速動作の半導体メモリ等に対しても十分対応することが
できる。C1+02 As a result, the capacitance value C of the signal line 3 is reduced, and the speed of the electrical signal transmitted through the signal line 113 becomes faster, making it possible to sufficiently cope with high-speed operation semiconductor memories and the like.
第2図(a)はこの発明の他の実施例である半導体集積
回路の信号配線部を示す断面図であり、同図(b)はそ
の等価回路図である。第2図(a)に示すようにp型ア
イランド5内にさらにn型拡散層6を、絶縁膜2を介し
た信号配線3下に形成している。FIG. 2(a) is a sectional view showing a signal wiring section of a semiconductor integrated circuit according to another embodiment of the present invention, and FIG. 2(b) is an equivalent circuit diagram thereof. As shown in FIG. 2(a), an n-type diffusion layer 6 is further formed within the p-type island 5 under the signal wiring 3 with an insulating film 2 interposed therebetween.
このように構成することで、第2図(blに示すように
信号配線3とn型拡散層6間のシリコン酸化膜2による
寄生キャパシタC、p型アイランド5とn型シリコン基
板1とのpn接合によるキャパシタC2に加え、n型拡
散層6とn型アイランド5によるpn接合によるキャパ
シタC3が直列接続される。このため、第1図(a)、
(b)で示した実施例に比べ、さらに信号配線3の容
量値は抑えることができる。With this configuration, as shown in FIG. In addition to the junction capacitor C2, a pn junction capacitor C3 formed by the n-type diffusion layer 6 and the n-type island 5 is connected in series.
Compared to the embodiment shown in (b), the capacitance value of the signal wiring 3 can be further suppressed.
第3図(a)、 (b)はそれぞれこの発明の他の実施
例を示す等価回路図である。同図(a)に示すようにp
n接合によるキャパシタC2のn型シリコン基板1の一
方主面側の領域(第1図(a)のn型アイランド5)を
高抵抗値の抵抗R1を介して接地している。このため、
キャパシタC2には逆バイアスV(=■o。)が与えら
れ、(4)式よりキャパシタC2の容ffi値は第1図
(a)、 (b)の実施例に比べφ8/(φ8+■R)
の比で減少する。また抵抗R1の抵抗値をキャパシタC
2のインピーダンス(m:fは入力信号の周波数)より
十分大C□
きくすることで、抵抗R1を介して電流が流れるのを防
止する。なお、第3図(b)は抵抗R1の代りにキャパ
シタC2のインピーダンスより十分大きく設定したイン
ピーダンスを有し、ゲートに電源■ccが与えられるn
チャネルトランジスタNT1を用いた例を示している。FIGS. 3(a) and 3(b) are equivalent circuit diagrams showing other embodiments of the present invention. As shown in (a) of the same figure, p
A region of the n-junction capacitor C2 on one main surface side of the n-type silicon substrate 1 (n-type island 5 in FIG. 1(a)) is grounded via a resistor R1 having a high resistance value. For this reason,
A reverse bias V (=■o.) is applied to the capacitor C2, and from equation (4), the capacitance ffi value of the capacitor C2 is φ8/(φ8+■R )
decreases by the ratio of Also, the resistance value of resistor R1 is changed to the value of capacitor C.
By making C□ sufficiently larger than the impedance of 2 (m:f is the frequency of the input signal), current can be prevented from flowing through the resistor R1. In addition, FIG. 3(b) has an impedance set sufficiently larger than the impedance of the capacitor C2 instead of the resistor R1, and the gate is supplied with the power supply ■cc.
An example using a channel transistor NT1 is shown.
このように構成することで、第1図(a)、 (b)で
示した実施例に比ベキせパシタC2の容量値を低減化す
ることでさらに信号配線3による容積値を低下させるこ
とができる。With this configuration, it is possible to further reduce the volume value of the signal wiring 3 by reducing the capacitance value of the pacitor C2 compared to the embodiments shown in FIGS. 1(a) and 1(b). can.
第4図(a)、 (b)はそれぞれこの発明の他の実施
例を示す等価回路図である。同図(a)に示すようにp
n接合によるキャパシタC2の一方主面側の領域(第2
図(a)のn型アイランド5)を高抵抗値の抵抗R2を
介して接地し、pn接合によるキャパシタC3の一方主
面側の領域(第2図(a)のn型拡散層6)を高抵抗値
の抵抗R3を介して電源Vccに接続している。このた
め、キャパシタC2,c3にはそれぞれ逆バイアスvR
(−■。。)が与えられ、第3図(a)、(1))で示
した実施例同様、キャパシタC2,C3の容量値は減少
する。なお、第4図(b)は抵抗R2,R3の代りにゲ
ートに電源V。0が与えられる高インピーダンスのnチ
ャネルトランジスタNT2.ゲートが接地された高イン
ピーダンスのpチャネルトランジスタPTIを用いた例
を示している。FIGS. 4(a) and 4(b) are equivalent circuit diagrams showing other embodiments of the present invention. As shown in (a) of the same figure, p
A region on one main surface side of capacitor C2 (second
The n-type island 5) in FIG. 2(a) is grounded via a high-resistance resistor R2, and the region on one main surface side of the capacitor C3 (n-type diffusion layer 6 in FIG. 2(a)) formed by a pn junction is It is connected to the power supply Vcc via a resistor R3 having a high resistance value. Therefore, the capacitors C2 and c3 have a reverse bias vR, respectively.
(-■..) is given, and the capacitance values of the capacitors C2 and C3 decrease as in the embodiment shown in FIGS. 3(a) and (1). In addition, in FIG. 4(b), the power supply V is connected to the gate instead of the resistors R2 and R3. 0 is applied to the high impedance n-channel transistor NT2. An example using a high impedance p-channel transistor PTI whose gate is grounded is shown.
このように構成することで、第2図(a)、 (b)で
示した実施例に比べ、キャパシタC2,C3の容量値を
低減化することで、さらに信号配線3による容量値を低
下させることができる。With this configuration, compared to the embodiments shown in FIGS. 2(a) and 2(b), the capacitance values of the capacitors C2 and C3 are reduced, thereby further reducing the capacitance value due to the signal wiring 3. be able to.
なお、これらの実施例では、n型シリコン基板1上にシ
リコン酸化膜2を介して信号配線3を形成した例を示し
たが、第5図〜第8図に示すようにp型シリコン基板上
にシリコン酸化膜を介して信号配線を形成する場合でも
、この発明を適用することができる。なお、第5図〜第
8図において、11はp型半導体基板、12はシリコン
酸化膜、13は信号配線、14はパシベーション膜、1
5はn型アイランド、16はp型拡散層、C11はシリ
コン酸化膜12を介することによる寄生キャパシタ、C
12はp型半導体基板11とn型アイランド15のpn
接合によるキャパシタ、C13はn型アイランド15と
n型拡散層16のpn接合によるキャパシタ、抵抗R1
1〜R13は高抵抗値を有する抵抗、PTII、PT1
2はゲートが接地された高インピーダンスのnチャネル
トランジスタ、NT11はゲートが電源V。0に接続さ
れた高インピーダンスのnチャネルトランジスタである
。In these examples, the signal wiring 3 was formed on the n-type silicon substrate 1 via the silicon oxide film 2, but as shown in FIGS. 5 to 8, the signal wiring 3 was formed on the p-type silicon substrate. The present invention can also be applied to the case where signal wiring is formed via a silicon oxide film. 5 to 8, 11 is a p-type semiconductor substrate, 12 is a silicon oxide film, 13 is a signal wiring, 14 is a passivation film, 1
5 is an n-type island, 16 is a p-type diffusion layer, C11 is a parasitic capacitor via the silicon oxide film 12, C
12 is a pn of the p-type semiconductor substrate 11 and the n-type island 15;
A capacitor formed by a junction, C13 is a capacitor formed by a pn junction between the n-type island 15 and the n-type diffusion layer 16, and a resistor R1
1 to R13 are resistors with high resistance values, PTII, PT1
2 is a high impedance n-channel transistor whose gate is grounded, and NT11 has its gate connected to the power supply V. A high impedance n-channel transistor connected to zero.
また、上記した実施例では信号配線材料としてアルミニ
ウムの例を示したが、これに限定されずポリシリコン、
モリブデンサイド等の高融点金属材料を用いてもよい。In addition, in the above embodiments, aluminum was used as an example of the signal wiring material, but the material is not limited to polysilicon, polysilicon,
A high melting point metal material such as molybdenum side may also be used.
以上説明したように、この発明によれば、信号配線下に
おける半導体基板内にpn接合を設けたため、信号配線
における奇生容量の容量値の低減が図ることができる効
果がある。As described above, according to the present invention, since a pn junction is provided in the semiconductor substrate under the signal wiring, it is possible to reduce the capacitance value of the parasitic capacitance in the signal wiring.
第1図(a)、 (b)はそれぞれこの発明の一実施例
である半導体集積回路の信号配線部を示す断面図。
等価回路図、第2図(a)、(b)はそれぞれこの発明
の他の実施例である半導体集積回路の信号配線部を示す
断面図2等価回路図、第3図(a)、(b)はこの発明
の他の実施例である半導体集積回路の信号配線部を示す
等価回路図、第4図(a)、 (b)はこの発明の他の
実施例である半導体集積回路の信号配線部を示す等価回
路図、第5図(a)、(b)はそれぞれこの発明の他の
実施例である半導体集積回路の信号配線部を示す断面図
1等価回路図、第6図(a)、 (b)はそれぞれこの
発明の他の実施例である半導体集積回路の信号配線部を
示す断面図9等価回路図、第7図(a)、(b)はこの
発明の他の実施例である半導体集積回路の信号配線部を
示す等価回路図、第8図(a)、 (b)はこの発明の
他の実施例である半導体集積回路の信号配線部を示す等
価回路図、第9図(a)、 (b)はそれぞれ従来の半
導体集積回路の信号配線部を示す断面図2等価回路図で
ある。
図において、1はn型シリコン基板、2はシリコン酸化
膜、3は信号配線、5はp型アイランド、6はn型拡散
層、R1−R3は高抵抗値の抵抗、NT1.NT2は高
インピーダンスのnチャネルトランジスタ、PTlは高
インピーダンスのnチャネルトランジスタである。
なお、各図中同一符号は同一または相当部分を示す。FIGS. 1(a) and 1(b) are cross-sectional views showing a signal wiring portion of a semiconductor integrated circuit according to an embodiment of the present invention. Equivalent circuit diagrams, FIGS. 2(a) and 2(b) are cross-sectional views showing the signal wiring portion of a semiconductor integrated circuit according to another embodiment of the present invention. FIGS. 3(a) and 3(b) are equivalent circuit diagrams. ) is an equivalent circuit diagram showing a signal wiring section of a semiconductor integrated circuit according to another embodiment of the present invention, and FIGS. 4(a) and 4(b) are signal wiring diagrams of a semiconductor integrated circuit according to another embodiment of the present invention. FIGS. 5(a) and 5(b) are cross-sectional views showing the signal wiring portion of a semiconductor integrated circuit according to another embodiment of the present invention. FIG. , (b) is a sectional view 9 equivalent circuit diagram showing the signal wiring section of a semiconductor integrated circuit which is another embodiment of the present invention, and FIGS. 7(a) and (b) are other embodiments of the present invention. 8(a) and 8(b) are equivalent circuit diagrams showing a signal wiring section of a certain semiconductor integrated circuit, and FIG. 9 is an equivalent circuit diagram showing a signal wiring section of a semiconductor integrated circuit according to another embodiment of the present invention. (a) and (b) are sectional views 2 and 2 equivalent circuit diagrams each showing a signal wiring section of a conventional semiconductor integrated circuit. In the figure, 1 is an n-type silicon substrate, 2 is a silicon oxide film, 3 is a signal wiring, 5 is a p-type island, 6 is an n-type diffusion layer, R1-R3 are high resistance resistors, NT1. NT2 is a high impedance n-channel transistor, and PTl is a high impedance n-channel transistor. Note that the same reference numerals in each figure indicate the same or corresponding parts.
Claims (1)
線を形成する半導体集積回路において、前記信号配線下
における前記半導体基板内にpn接合を設け、前記半導
体基板の前記一方主面側の前記pn接合を形成する領域
を フローティング状態にする、 あるいは前記pn接合に逆バイアスがかかるように高抵
抗値を有する抵抗体を介して電圧設定することを特徴と
する半導体集積回路。(1) In a semiconductor integrated circuit in which signal wiring is formed on one main surface of a semiconductor substrate via an insulating film, a pn junction is provided in the semiconductor substrate under the signal wiring, and a pn junction is provided in the semiconductor substrate on the one main surface of the semiconductor substrate. A semiconductor integrated circuit characterized in that a region forming the pn junction is placed in a floating state, or a voltage is set via a resistor having a high resistance value so that a reverse bias is applied to the pn junction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8941588A JPH01260842A (en) | 1988-04-12 | 1988-04-12 | Semiconductor integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8941588A JPH01260842A (en) | 1988-04-12 | 1988-04-12 | Semiconductor integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01260842A true JPH01260842A (en) | 1989-10-18 |
Family
ID=13970019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8941588A Pending JPH01260842A (en) | 1988-04-12 | 1988-04-12 | Semiconductor integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01260842A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1341377A2 (en) * | 2002-02-27 | 2003-09-03 | Canon Kabushiki Kaisha | Signal processing device for image pickup apparatus |
JP2006190761A (en) * | 2005-01-05 | 2006-07-20 | Nec Corp | Semiconductor chip and semiconductor device |
-
1988
- 1988-04-12 JP JP8941588A patent/JPH01260842A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1341377A2 (en) * | 2002-02-27 | 2003-09-03 | Canon Kabushiki Kaisha | Signal processing device for image pickup apparatus |
US7429764B2 (en) | 2002-02-27 | 2008-09-30 | Canon Kabushiki Kaisha | Signal processing device and image pickup apparatus using the same |
JP2009088539A (en) * | 2002-02-27 | 2009-04-23 | Canon Inc | Imaging apparatus |
EP1341377A3 (en) * | 2002-02-27 | 2010-11-03 | Canon Kabushiki Kaisha | Signal processing device for image pickup apparatus |
JP2006190761A (en) * | 2005-01-05 | 2006-07-20 | Nec Corp | Semiconductor chip and semiconductor device |
JP4502820B2 (en) * | 2005-01-05 | 2010-07-14 | 日本電気株式会社 | Semiconductor chip and semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4167018A (en) | MIS capacitance element | |
KR100532208B1 (en) | Decoupling capacitors for thin gate oxides | |
US4617482A (en) | Complementary type MOS field-effect transistor circuit provided with a gate protection structure of small time constant | |
JPS6048106B2 (en) | semiconductor integrated circuit | |
US4042945A (en) | N-channel MOS transistor | |
US4947228A (en) | Integrated circuit power supply contact | |
US20020056885A1 (en) | Semiconductor integrated circuit device | |
US4247826A (en) | Semiconductor integrated amplifier | |
JPH06500668A (en) | Monolithic integrated sensor circuit in CMOS technology | |
US7816212B2 (en) | Method of high voltage operation of a field effect transistor | |
JPS6386465A (en) | Method of forming capacitor on substrate | |
JP2839375B2 (en) | Semiconductor integrated circuit device | |
JPH0653497A (en) | Semiconductor device equipped with i/o protective circuit | |
JPH01260842A (en) | Semiconductor integrated circuit | |
JP3175196B2 (en) | Integrated circuit | |
JPH06103735B2 (en) | Semiconductor integrated circuit | |
JPH07135296A (en) | Semiconductor integrated circuit device | |
JPH0532908B2 (en) | ||
JPH04206961A (en) | Semiconductor device | |
JP2655595B2 (en) | Complementary semiconductor integrated circuit device | |
JPH02305460A (en) | Semiconductor integrated circuit | |
KR100244287B1 (en) | Cmosfet | |
JPH09246476A (en) | Power supply lines and method of planning layout of them in semiconductor integrated circuit | |
JP2585633B2 (en) | Semiconductor device | |
JPS612355A (en) | Composite semiconductor element |