JPH01256123A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01256123A
JPH01256123A JP63084281A JP8428188A JPH01256123A JP H01256123 A JPH01256123 A JP H01256123A JP 63084281 A JP63084281 A JP 63084281A JP 8428188 A JP8428188 A JP 8428188A JP H01256123 A JPH01256123 A JP H01256123A
Authority
JP
Japan
Prior art keywords
trench
capacitor
silicon substrate
impurity layer
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63084281A
Other languages
Japanese (ja)
Inventor
Shuichi Enomoto
秀一 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63084281A priority Critical patent/JPH01256123A/en
Publication of JPH01256123A publication Critical patent/JPH01256123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To form an impurity layer up to the deep part of a trench side surface, and increase the capacitance of a capacitor, by using an ion implantation mask having an aperture whose end-portion is formed in a tapered-type. CONSTITUTION:A resist mask 12 provided with an aperture having a taper angle theta1 is formed. After a trench 13 is formed by etching a P-type silicon substrate 11, arsenide ion 14 is implanted at an angle theta smaller than the angle theta1 with respect to the silicon substrate 11, and an impurity layer 15 is formed on the side wall of the trench. The resist mask 12 is eliminated, thermal oxidation is performed in an oxygen atmosphere, and a capacitor oxide film 16 is grown on the P-type silicon substrate and the surface of the trench 13. Successively polysilicon containing impurity is deposited on the capacitor oxide film 16, and turned into a capacitor electrode 17. Thereby the impurity layer 15 can be formed on the whole side surface of the trench, so that the capacitance of a capacitor can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に溝型キャパシタの形成
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a method for forming a trench capacitor.

〔従来の技術〕[Conventional technology]

1111のトランジスタと1個のキャパシタにより構成
されるメモリセルを有するダイナミックRAMでは高集
積化により溝型のキャパシタが採用されてきている。キ
ャパシタはシリコン基板。
In a dynamic RAM having a memory cell composed of 1111 transistors and one capacitor, trench-type capacitors have been adopted due to higher integration. The capacitor is a silicon substrate.

キャパシタ酸化膜、キャパシタ電極から構成されている
が、キャパシタ電極電位が電源電圧の半分に設定された
場合、キャパシタ酸化膜と接しているシリコン基板に不
純物層を形成してデプレッション化する必要がある。
It consists of a capacitor oxide film and a capacitor electrode, but when the capacitor electrode potential is set to half the power supply voltage, it is necessary to form an impurity layer on the silicon substrate in contact with the capacitor oxide film to create depletion.

溝側面に不純物層が形成されている従来の溝型キャパシ
タの製造方法を第3図(a)、(b)に示す。
A method of manufacturing a conventional trench capacitor in which an impurity layer is formed on the side surface of the trench is shown in FIGS. 3(a) and 3(b).

まず、第3図(a)に示すように、P型シリコン基板3
1上の所定位置に開口部を有すレジストマスク32を形
成した後、RIE法によりP型シリコン基板31をエツ
チングして溝33を形成する。続いて講33の側面にヒ
素イオン34をイオン注入して不純物層35を形成する
。この場合のイオン注入は溝内の側部に不純物層を形成
するためシリコン基板31に対し0度でない角度θ(先
7°が普通である)でイオン注入を行なわなければなら
ない。
First, as shown in FIG. 3(a), a P-type silicon substrate 3
After forming a resist mask 32 having an opening at a predetermined position on the substrate 1, the P-type silicon substrate 31 is etched by RIE to form a groove 33. Subsequently, arsenic ions 34 are implanted into the side surface of the groove 33 to form an impurity layer 35. In this case, the ion implantation must be performed at an angle θ (usually 7°) that is not 0 degrees with respect to the silicon substrate 31 in order to form an impurity layer on the sides of the trench.

続いて、第3図(b)に示すように、レジストマスク3
2を除去した後熱酸化法によりシリコン基板31および
溝33表面にキャパシタ酸化膜36を形成し、その後減
圧CVD法により不純物を含むポリシリコンを堆積して
キャパシタ電極37を形成する。
Next, as shown in FIG. 3(b), a resist mask 3 is applied.
2, a capacitor oxide film 36 is formed on the surfaces of the silicon substrate 31 and the groove 33 by thermal oxidation, and then polysilicon containing impurities is deposited by low pressure CVD to form a capacitor electrode 37.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

溝側面に不純物層をイオン注入により形成するなめには
イオン注入はシリコン基板に対し0でない角度θで斜め
イオン注入する必要がある。この場合溝が深い時講内側
面上部にイオンは到達できるので不純物層が形成される
が、溝内側面下部では溝上部の上のレジストがマスクと
なり、イオンが到達できず溝側面下部に不純物層が形成
されない領域が存在するので容量を大きくできないとい
う欠点がある。
In order to form an impurity layer on the side surface of the groove by ion implantation, it is necessary to perform ion implantation obliquely at an angle θ that is not 0 with respect to the silicon substrate. In this case, when the groove is deep, ions can reach the upper part of the inner side of the groove, forming an impurity layer, but at the lower part of the inner side of the groove, the resist above the upper part of the groove acts as a mask, and the ions cannot reach the lower part of the groove, forming an impurity layer. There is a drawback that the capacitance cannot be increased because there is a region in which the capacitance is not formed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、半導体基板の表面か
ら内部に向けて掘られた溝並びにこの溝と整合し深さ方
向に幅が狭くなる開口を有するイオン注入用マスクを形
成したのち、イオン注入法により前記溝の側面に不純物
層を設けて溝型キャパシタを形成する工程を有するとい
うものである。
In the method of manufacturing a semiconductor device of the present invention, after forming an ion implantation mask having a groove dug inward from the surface of a semiconductor substrate and an opening aligned with the groove and narrowing in width in the depth direction, ion implantation is performed. The method includes a step of forming an impurity layer on the side surface of the trench by an implantation method to form a trench capacitor.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)、(b)は本発明の第1の実施例を説明す
るための工程順に配置した半導体チップの断面図である
FIGS. 1(a) and 1(b) are cross-sectional views of semiconductor chips arranged in the order of steps for explaining a first embodiment of the present invention.

まず、第1図(a)に示すように、P型シリコン基板1
1表面に従来と同様の方法により所定位置が開口される
ように厚さ1.5μmのレジスト膜をパターニングした
後120℃で1時間程度ボストベークを行なうと端部に
θ1 (約30°)のテーパー角度が付いた開口を有す
るレジストマスク12ができる。続いて従来同様にP型
シリコン基板11をRIE法によりエツチングし講13
を形成してからエネルギー100keV、ドーズ量1×
1014/cI112のヒ素イオン14をシリコン基板
11に対しθ1より小さい角度θ(約7°)でイオン注
入すると溝側部に不純物層15が形成される。
First, as shown in FIG. 1(a), a P-type silicon substrate 1
1. After patterning a resist film with a thickness of 1.5 μm so that openings are made at predetermined positions on one surface using the same method as before, and then post-baking at 120°C for about 1 hour, a taper of θ1 (approximately 30°) is created at the end. A resist mask 12 having angled openings is produced. Next, the P-type silicon substrate 11 is etched using the RIE method as in the conventional method.
After forming, the energy is 100 keV and the dose is 1×
When arsenic ions 14 of 1014/cI112 are implanted into the silicon substrate 11 at an angle θ (approximately 7°) smaller than θ1, an impurity layer 15 is formed on the trench side.

つぎに第1図(b)に示すように、レジストマスク12
を除去し酸素雰囲気中にて熱酸化しP型シリコン基板1
1及び溝13表面に厚さ10nmのキャパシタ酸化膜1
6を成長させる。続いて減圧CVD法で不純物を含むポ
リシリコンをキャパシタ酸化膜16上に堆積させてキャ
パシタ電極17とする。
Next, as shown in FIG. 1(b), the resist mask 12
is removed and thermally oxidized in an oxygen atmosphere to form a P-type silicon substrate 1.
Capacitor oxide film 1 with a thickness of 10 nm on the surfaces of 1 and groove 13
Grow 6. Subsequently, polysilicon containing impurities is deposited on the capacitor oxide film 16 by a low pressure CVD method to form the capacitor electrode 17.

このようにして、例えば、幅及び深さがそれぞれ1μm
及び8μmの溝の側面全体に不純物層15を形成するこ
とができる。従来例では深さ6.6μmのところまでし
か形成できなかったのに比べ約120%の容量を形成す
ることができる。
In this way, for example, the width and depth are each 1 μm.
The impurity layer 15 can be formed on the entire side surface of the 8 μm groove. Compared to the conventional example, which could only form to a depth of 6.6 μm, it is possible to form a capacitance of about 120%.

第2図は、第2の実施例を説明するための半導体チップ
の断面図である。P型シリコン基板21上にCVD法に
より酸化シリコン膜24を厚さ400nm堆積後従来同
様に所定位置が開口されるようにレジスト膜をバターニ
ングする。次にこのようにして形成されたレジストマス
ク22を用いて酸化シリコン膜22を等方性エツチング
するとサイドエッチにより酸化シリコン膜24には約4
5°のテーパー角がついた状態でP型シリコン基板21
表面が一部露出する。つづいてRIE法でP型シリコン
基板21をエツチングして溝23を形成する。この後レ
ジストマスク22を除去し、酸化シリコン膜24をイオ
ン注入用マスクとして、第1の実施例と同時に、イオン
注入を行ない、溝側面に不純物層を形成し酸化シリコン
膜24を除去しキャパシタ酸化膜、キャパシタ電極を形
成すると第1図(b)と同様の溝型キャパシタとなる。
FIG. 2 is a cross-sectional view of a semiconductor chip for explaining the second embodiment. After a silicon oxide film 24 is deposited to a thickness of 400 nm on a P-type silicon substrate 21 by the CVD method, the resist film is buttered in a conventional manner so that openings are formed at predetermined positions. Next, when the silicon oxide film 22 is isotropically etched using the resist mask 22 formed in this way, the silicon oxide film 24 is etched by approximately
P-type silicon substrate 21 with a taper angle of 5°
Part of the surface is exposed. Subsequently, the P-type silicon substrate 21 is etched by RIE to form a groove 23. Thereafter, the resist mask 22 is removed, and using the silicon oxide film 24 as a mask for ion implantation, ion implantation is performed simultaneously with the first embodiment to form an impurity layer on the side surface of the trench, and the silicon oxide film 24 is removed to oxidize the capacitor. After forming the film and the capacitor electrode, a trench type capacitor similar to that shown in FIG. 1(b) is obtained.

この場合のテーパー角度は酸化シリコン膜22のサイド
エッチを利用している為安定した形状のイオン注入マス
クが形成でき再現性よく不純物層を深くまで形成できる
利点がある。
In this case, since the taper angle utilizes side etching of the silicon oxide film 22, an ion implantation mask having a stable shape can be formed, and the impurity layer can be formed deeply with good reproducibility.

〔発明の効果〕 以上説明したように本発明は溝側面に斜めイオン注入で
不純物層を形成する場合、端部がテーパー状になった開
口を有するイオン注入マスクを用いることにより、溝側
面部の深くにまで不純物層が形成できるのでキャパシタ
の容量が高まり、またイオン注入マスクの膜厚も厚くで
き、歩留りも向上するという効果がある。
[Effects of the Invention] As explained above, when an impurity layer is formed on the side surface of a trench by oblique ion implantation, the present invention uses an ion implantation mask having an opening with a tapered end. Since the impurity layer can be formed deeply, the capacitance of the capacitor can be increased, and the thickness of the ion implantation mask can also be increased, which has the effect of improving the yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の第1の実施例を説明す
るための工程順に配置した半導体チップの断面図、第2
図は第2の実施例を説明するための半導体チップの断面
図、第3図(a)、(b)は従来例を説明するための工
程順に配置した半導体チップの断面図である。 11.21.31・・・P型シリコン基板、12゜22
.32・・・レジストマスク、13,23.33・・・
溝、14.34・・・ヒ素イオン、1.5.35・・・
不純物層、16.36・・・キャパシタ酸化膜、17゜
37・・・キャパシタ電極、24・・・酸化シリコン膜
1(a) and 1(b) are cross-sectional views of semiconductor chips arranged in the order of steps for explaining the first embodiment of the present invention;
The figure is a sectional view of a semiconductor chip for explaining a second embodiment, and FIGS. 3(a) and 3(b) are sectional views of semiconductor chips arranged in the order of steps for explaining a conventional example. 11.21.31...P-type silicon substrate, 12°22
.. 32...Resist mask, 13,23.33...
Groove, 14.34... Arsenic ion, 1.5.35...
Impurity layer, 16.36... Capacitor oxide film, 17°37... Capacitor electrode, 24... Silicon oxide film.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の表面から内部に向けて掘られた溝並びにこ
の溝と整合し深さ方向に幅が狭くなる開口を有するイオ
ン注入用マスクを形成したのち、イオン注入法により前
記溝の側面に不純物層を設けて溝型キャパシタを形成す
る工程を有することを特徴とする半導体装置の製造方法
After forming an ion implantation mask having a groove dug inward from the surface of the semiconductor substrate and an opening aligned with the groove and narrowing in width in the depth direction, an impurity layer is formed on the sides of the groove by ion implantation. 1. A method of manufacturing a semiconductor device, comprising the step of forming a groove-type capacitor by providing a groove-type capacitor.
JP63084281A 1988-04-05 1988-04-05 Manufacture of semiconductor device Pending JPH01256123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63084281A JPH01256123A (en) 1988-04-05 1988-04-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63084281A JPH01256123A (en) 1988-04-05 1988-04-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01256123A true JPH01256123A (en) 1989-10-12

Family

ID=13826072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63084281A Pending JPH01256123A (en) 1988-04-05 1988-04-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01256123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265279B1 (en) * 1999-09-24 2001-07-24 Infineon Technologies Ag Method for fabricating a trench capacitor
JP2009212172A (en) * 2008-03-03 2009-09-17 Fuji Electric Device Technology Co Ltd Method of manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265279B1 (en) * 1999-09-24 2001-07-24 Infineon Technologies Ag Method for fabricating a trench capacitor
JP2009212172A (en) * 2008-03-03 2009-09-17 Fuji Electric Device Technology Co Ltd Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JPS6316673A (en) Manufacture of semiconductor device
JPH0529342A (en) Manufacture of power misfet
JPH05283519A (en) Manufacture of semiconductor device
JPH02162738A (en) Manufacture of mos fet
JPH01256123A (en) Manufacture of semiconductor device
JPS62291176A (en) Semiconductor device and manufacture thereof
JPH09181311A (en) Field-effect transistor and manufacture thereof
JPS6315749B2 (en)
JP2680923B2 (en) Method for manufacturing semiconductor device
JPH025434A (en) Manufacture of field-effect transistor
JPH025436A (en) Manufacture of field-effect transistor
JPS63211748A (en) Manufacture of semiconductor device
JPS6316672A (en) Manufacture of semiconductor element
JPH0334378A (en) Mos type field effect transistor
JPS61251165A (en) Manufacture of bi-mis integrated circuit
KR100268918B1 (en) Semiconductor device and method for fabricating the same
JPH0319268A (en) Semiconductor device and manufacture thereof
JPH04162535A (en) Manufacture of semiconductor device
JPS61184872A (en) Manufacture of semiconductor device
JPH03188669A (en) Semiconductor memory and manufacture thereof
JPH0267756A (en) Semiconductor device
JPH03196641A (en) Manufacture of junction type field effect transistor
JPH01251715A (en) Manufacture of semiconductor device
JPH02305467A (en) Manufacture of semiconductor integrate circuit
JPS60132370A (en) Electrodes of semiconductor device and forming method of wiring pattern