JPH01255664A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH01255664A
JPH01255664A JP8184688A JP8184688A JPH01255664A JP H01255664 A JPH01255664 A JP H01255664A JP 8184688 A JP8184688 A JP 8184688A JP 8184688 A JP8184688 A JP 8184688A JP H01255664 A JPH01255664 A JP H01255664A
Authority
JP
Japan
Prior art keywords
thin film
plasma
gas
sputtering
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8184688A
Other languages
Japanese (ja)
Inventor
Takashi Akahori
孝 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8184688A priority Critical patent/JPH01255664A/en
Publication of JPH01255664A publication Critical patent/JPH01255664A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a thin film on a specimen without lowering step coverage and evenness while making damage affecting an element small by especially making both reactive gas added with etching gas and sputtering gas to plasma with plasma discharge and producing the excitation species. CONSTITUTION:A magnetic field is generated in plasma chamber 7 by electrifying a magnetic coil 3 and microwaves are introduced 8 into the chamber 7. Simultaneously SiH4, etc., as a feed source incorporated in reactive gas, O2 and H2O, etc., as an O2 feed source incorporated therein, gaseous Ar as sputtering gas and furthermore SF6 and CF4, etc., as etching gas are introduced into the chamber 7 respectively. As a result, SiH4 and O2, etc., are dissociated by plasma discharge to generate the excitation species such as ions and radicals. A thin film is formed on a base plate (specimen) 2 by allowing these excitation species to react and also negative auto-bias is induced by impressing RF high frequency on a specimen base 1 with a high frequency power source 5 and directional property is given to the plasma flow and a thin film excellent in step coverage and evenness is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子サイクロトロン共鳴(E 1ectron
Cyclotron  Re5onance)励起プラ
ズマ又はRF(Radio  F requency 
)励起プラズマを用いる・CV D (Ckmical
 Vapor  Deposition )法、スパッ
タリング法等による薄膜形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to electron cyclotron resonance (E 1 ectron resonance).
Cyclotron Re5onance) excited plasma or RF (Radio Frequency)
) Using excited plasma・CV D (Ckmical
The present invention relates to a thin film forming method using a vapor deposition method, a sputtering method, or the like.

〔従来の技術〕[Conventional technology]

写真製版技術の向上、反応性イオンエツチング技術の改
良等により、プラズマ放電を利用するCVD法、スパッ
タリング法等を用いて超LSIの製造が可能になった。
Improvements in photolithography technology, reactive ion etching technology, etc. have made it possible to manufacture VLSIs using CVD methods that utilize plasma discharge, sputtering methods, and the like.

シリコン基板等の試料にCVD法又はスパッタリング法
により薄膜を形成する際に、該薄膜のステップカバリッ
ジ(段差被覆性)を改善し、或いは平坦度を向上させる
ため、試料をvi置する支持台に高周波を印加してセル
フバイアスを誘起する方法も、その改良技術の一つであ
る。
When forming a thin film on a sample such as a silicon substrate by CVD or sputtering, in order to improve the step coverage or flatness of the thin film, it is necessary to use a support stand on which the sample is placed. One of the improved techniques is to apply a high frequency to induce self-bias.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、支持台にセルフバイアスを誘起すると平坦化の
過程において試料自体がスパッタ用ガスにより損傷を受
けるという問題がある。この問題は、セルフバイアス電
圧を低くすれば解消されるが、これではステップカバレ
ンジ及び平坦度の低下が起こる。また、素子が受けるt
負傷を小さくするため、スパッタ用ガスの使用量を少な
くした場合も、同様にステップカバレッジ・平坦度が低
下する。
However, when self-bias is induced in the support, there is a problem that the sample itself is damaged by the sputtering gas during the planarization process. This problem can be solved by lowering the self-bias voltage, but this results in a decrease in step coverage and flatness. Also, the t that the element receives
Even when the amount of sputtering gas used is reduced in order to reduce damage, the step coverage and flatness are similarly reduced.

本発明は以上の事情に鑑みてなされたものであって、ス
テップカバレッジ・平坦度を低下させず、しかも、素子
が受ける損傷を小さくすることができる3膜形成方法を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a three-layer forming method that does not reduce step coverage and flatness and can reduce damage to elements. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するためになされたものであっ
て、請求項1記載の発明の薄膜形成方法は、プラズマ放
電により反応ガス及びスパッタ用ガスをプラズマ化して
励起種を生成し、高周波を印加してセルフバイアスを誘
起した支持台上の試料に薄膜を形成する薄膜形成方法に
おいて、前記反応ガス及び前記スパッタ用ガスにエツチ
ング用ガスを添加することを特徴とし、また請求項2記
載の発明の薄膜形成方法は、プラズマ放電によりスパッ
タ用ガスをプラズマ化して励起種を生成し、高周波を印
加してセルフバイアスを誘起した支持台上の試料に薄膜
を形成する薄膜形成方法において、前記スパッタ用ガス
にエツチング用ガスを添加することを特徴とする。
The present invention has been made to achieve the above-mentioned object, and the thin film forming method according to the invention described in claim 1 is characterized in that a reactive gas and a sputtering gas are turned into plasma by plasma discharge to generate excited species, and a high frequency wave is generated. A method for forming a thin film in which a thin film is formed on a sample on a support base by applying a self-bias to induce a self-bias, characterized in that an etching gas is added to the reaction gas and the sputtering gas, and the invention according to claim 2 The thin film forming method is a thin film forming method in which a sputtering gas is turned into plasma by plasma discharge to generate excited species, and a thin film is formed on a sample on a support base on which a self-bias is induced by applying a high frequency. A feature of this method is that an etching gas is added to the gas.

〔作用〕[Effect]

プラズマ放電によりスパッタ用及びエツチング用ガス又
は反応ガス、スパッタ用ガス及びエツチング用ガスを励
起すると励起種が生成し、このうち反応ガスの励起種又
はスパッタ用ガスの励起種によるターゲットのスパッタ
リングにより発生した反応種により試料に薄膜が形成さ
れると共に、試料を載置した支持台に高周波を印加して
セルフバイアスを誘起し、スパッタ用ガス及びエツチン
グ用ガスの励起種により薄膜の凸部が優先的にエツチン
グされ、ステップカバレッジ及び平坦度に優れ、しかも
、損傷の少ない薄膜が試料上に形成される。
Exciting sputtering and etching gases or reactive gases, sputtering gases, and etching gases by plasma discharge generates excited species. A thin film is formed on the sample by the reactive species, and a self-bias is induced by applying high frequency to the support base on which the sample is placed, and the excited species of the sputtering gas and etching gas preferentially form the convex parts of the thin film. By etching, a thin film with excellent step coverage and flatness and less damage is formed on the sample.

〔実施例〕〔Example〕

以下、本発明の実施911をプラズマCVD法を一例と
して図に基づいて説明する。
Hereinafter, an embodiment 911 of the present invention will be explained based on the drawings, taking a plasma CVD method as an example.

第3図はプラズマCVD装置であり、該装置自体は公知
の装置である。図において、6は反応室であり、該反応
室6の中央に試料基板2を載置する試料台1が載置面を
水平にして配されている。
FIG. 3 shows a plasma CVD apparatus, which itself is a known apparatus. In the figure, 6 is a reaction chamber, and a sample stage 1 on which a sample substrate 2 is placed is placed in the center of the reaction chamber 6 with its placement surface being horizontal.

反応室6の上部にはプラズマ取り出し用窓口が開設され
、上方に位置するプラズマ室7において発生したプラズ
マが反応室6に導入されるようになっている。プラズマ
室7の上部壁には、マイクロ波導入用窓口が開設され、
導波管8を介して、プラズマ室7と図示しないマイクロ
波発振源とが接続されている。また、プラズマ室7の周
囲には磁気コイル3が巻回されている。一方、試料台1
は、出力の実効値を大きくするためにマッチングボ・ン
クス4を介して高周波電源5に接続され、セルフバイア
スが誘起されるようになっている。
A plasma extraction window is provided in the upper part of the reaction chamber 6, so that the plasma generated in the plasma chamber 7 located above is introduced into the reaction chamber 6. A microwave introduction window is set up on the upper wall of the plasma chamber 7.
The plasma chamber 7 and a microwave oscillation source (not shown) are connected via a waveguide 8 . Further, a magnetic coil 3 is wound around the plasma chamber 7. On the other hand, sample stage 1
is connected to a high frequency power source 5 via a matching box 4 in order to increase the effective value of the output, so that a self-bias is induced.

かかるプラズマ装置において、磁気コイル3に通電して
プラズマ室7に磁場を発生させ、図示しないマイクロ波
発振源にてマイクロ波を発振し、該マイクロ波を導波管
8を介してプラズマ室7に導入すると共に、プラズマ室
7内に図示しない導入口より反応ガスのうちシリコン供
給源としてSiH4,5iJ6等を、反応ガスのうち酸
素供給源として0□、HzO、COt等を、また、スパ
ッタ用ガスとして^rガスを、さらに、エツチング用ガ
スとしてSFb 、CF4、CHF4等をプラズマ室7
に導入する。
In such a plasma device, the magnetic coil 3 is energized to generate a magnetic field in the plasma chamber 7, a microwave oscillation source (not shown) oscillates microwaves, and the microwaves are transmitted to the plasma chamber 7 via a waveguide 8. At the same time, SiH4, 5iJ6, etc. are introduced into the plasma chamber 7 through an inlet (not shown) as a silicon supply source among the reaction gases, 0□, HzO, COt, etc. as an oxygen supply source among the reaction gases, and a sputtering gas is also introduced into the plasma chamber 7. In addition, SFb, CF4, CHF4, etc. are added to the plasma chamber 7 as an etching gas.
to be introduced.

そうすると、SiH4,0□等がプラズマ放電により解
離して、イオン、ラジカル等の励起種が発生し、これら
の励起種が反応して基板上に薄膜が形成されると共に、
高周波電源5により試料台1にRF高周波(13,56
MHz )を印加して負のセルフバイアスを誘起すると
プラズマ流に方向性が生じ、ステップカバレッジ及び平
坦度に優れた薄膜が形成される。また、スパッタ用ガス
及びエツチング用ガスの励起種により形成された薄膜の
凸部が優先的にスパッタ・エツチングされる。なお、本
実施例においては、マイクロ波エネルギー800(ロ)
、RFエネルギー300(ロ)を使用した。
Then, SiH4,0□, etc. are dissociated by plasma discharge, and excited species such as ions and radicals are generated, and these excited species react to form a thin film on the substrate.
RF high frequency (13, 56
When a negative self-bias is induced by applying a negative self-bias (MHz), directionality is generated in the plasma flow, and a thin film with excellent step coverage and flatness is formed. Further, the convex portions of the thin film formed by the excited species of the sputtering gas and the etching gas are preferentially sputtered and etched. In addition, in this example, microwave energy of 800 (b)
, RF energy 300 (b) was used.

第2図は、かかる装置により基板に薄膜を形成した場合
であって、SF4が無添加(図において◇で示す。) 
、SF、流量が10 (SCCM > (図において○
で示す。)及びSF、流量が20 (SCCM ) (
図においてΔで示す。)の各場合の計ガス流量と平坦度
との関係を、横軸にArガス流量(SCCM)を、また
、縦軸に側壁後退速度を成膜速度で除した値をとって示
したものである。ここで側壁後退速度とは、第2図にそ
の概念図を示すように、側壁後退距離dを成膜時間tで
除した値であり、側壁後退距離dとは、図にみるように
パターンBの周端からパターン上の薄膜へ〇周端までの
距離である。このように平坦度を側壁後退速度を成膜速
度で除した値で表し得るのは、成膜時間tの間に形成さ
れる膜厚をTとすると第2図より明らかなように、平坦
度はd/Tで表され、この分母・分子をして除すると(
d/l) /(T/l)となり、これは側壁後退速度を
成膜速度で除した値に等しくなるからである。
Figure 2 shows a case where a thin film is formed on a substrate using such an apparatus, and SF4 is not added (indicated by ◇ in the figure).
, SF, flow rate is 10 (SCCM > (○ in the figure)
Indicated by ) and SF, the flow rate is 20 (SCCM) (
Indicated by Δ in the figure. ) The relationship between the metered gas flow rate and the flatness in each case is shown with the Ar gas flow rate (SCCM) on the horizontal axis and the value obtained by dividing the sidewall recession rate by the film formation rate on the vertical axis. be. Here, the sidewall retraction speed is the value obtained by dividing the sidewall retraction distance d by the film forming time t, as shown in the conceptual diagram in FIG. This is the distance from the peripheral edge of the thin film on the pattern to the peripheral edge of 〇. In this way, the flatness can be expressed as the value obtained by dividing the sidewall receding speed by the film deposition rate.As is clear from FIG. is expressed as d/T, and dividing this denominator and numerator results in (
d/l)/(T/l), which is equal to the sidewall recession rate divided by the film formation rate.

第3図より明らかなように、A「ガス流量が一定であれ
ば、SF6を使用しない場合に比べSF、を使用した場
合の方が、また、そのSP&流量が多いほど、薄膜の平
坦度が改善される。また、SF、を使用する場合は、使
用しない場合に比べて、同程度の平坦度の薄膜を得るた
めのArガス流量が少量で済み、Arガスによる素子へ
のダメージを低減することができる。
As is clear from Figure 3, A: If the gas flow rate is constant, the flatness of the thin film is better when using SF than when not using SF6, and the higher the SP&flow rate, the better the flatness of the thin film is. In addition, when SF is used, compared to when SF is not used, a smaller amount of Ar gas flow rate is required to obtain a thin film with the same level of flatness, which reduces damage to the element due to Ar gas. be able to.

〔発明の効果〕〔Effect of the invention〕

本発明の薄膜形成方法においては、エンチング用ガスを
添加することとしたので、ステップカバレッジ及び平坦
度に優れ、しがも、比較的低いRFパワーを用いること
ができるため、Arガスによる損傷の少ない薄膜を基板
上に形成することができる。
In the thin film forming method of the present invention, since an etching gas is added, the step coverage and flatness are excellent, and since relatively low RF power can be used, there is less damage caused by Ar gas. A thin film can be formed on the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は平坦度グラフ、第2図は平坦度の説明図、第3
図はバイアス方式のプラズマcV6装置の説明図である
。 1・・・支持台 2・・・試料 6・・・反応室7・・
・プラズマ室 8・・・導波管 時 許 出願人 住友金属工業株式会社代理人 弁理士
 河  野  登  夫OTo   20  30  
40  5OA、使用X(SCCM ) 箕  1  国 算  2 凹 箸 3  閃
Figure 1 is a flatness graph, Figure 2 is an explanatory diagram of flatness, and Figure 3 is a flatness graph.
The figure is an explanatory diagram of a bias type plasma cV6 device. 1...Support stand 2...Sample 6...Reaction chamber 7...
・Plasma chamber 8...Waveguide time Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono OTo 20 30
40 5OA, use X (SCCM) Winnow 1 Kokukan 2 Concave chopsticks 3 Flash

Claims (1)

【特許請求の範囲】 1、プラズマ放電により反応ガス及びスパッタ用ガスを
プラズマ化して励起種を生成し、高周波を印加してセル
フバイアスを誘起した支持台上の試料に薄膜を形成する
薄膜形成方法において、前記反応ガス及び前記スパッタ
用ガスにエッチング用ガスを添加することを特徴とする
薄膜形成方法。 2、プラズマ放電によりスパッタ用ガスをプラズマ化し
て励起種を生成し、該励起種を用いてスパッタリングに
よりターゲットから反応種を発進させ、高周波を印加し
てセルフバイアスを誘起した支持台上の試料に薄膜を形
成する薄膜形成方法において、前記スパッタ用ガスにエ
ッチング用ガスを添加することを特徴とする薄膜形成方
法。
[Claims] 1. A method for forming a thin film, in which a reactive gas and a sputtering gas are turned into plasma by plasma discharge to generate excited species, and a thin film is formed on a sample on a support base on which self-bias is induced by applying high frequency waves. A thin film forming method characterized in that an etching gas is added to the reaction gas and the sputtering gas. 2. Generate excited species by turning the sputtering gas into plasma by plasma discharge, use the excited species to launch reactive species from the target by sputtering, and apply high frequency to the sample on the support base to induce self-bias. A thin film forming method for forming a thin film, characterized in that an etching gas is added to the sputtering gas.
JP8184688A 1988-04-01 1988-04-01 Formation of thin film Pending JPH01255664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8184688A JPH01255664A (en) 1988-04-01 1988-04-01 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8184688A JPH01255664A (en) 1988-04-01 1988-04-01 Formation of thin film

Publications (1)

Publication Number Publication Date
JPH01255664A true JPH01255664A (en) 1989-10-12

Family

ID=13757841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8184688A Pending JPH01255664A (en) 1988-04-01 1988-04-01 Formation of thin film

Country Status (1)

Country Link
JP (1) JPH01255664A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429995A (en) * 1992-07-17 1995-07-04 Kabushiki Kaisha Toshiba Method of manufacturing silicon oxide film containing fluorine
KR100722847B1 (en) * 2005-11-30 2007-05-30 주식회사 아이피에스 Method and apparatus for depositing thin film using magnetic field

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429995A (en) * 1992-07-17 1995-07-04 Kabushiki Kaisha Toshiba Method of manufacturing silicon oxide film containing fluorine
KR100722847B1 (en) * 2005-11-30 2007-05-30 주식회사 아이피에스 Method and apparatus for depositing thin film using magnetic field

Similar Documents

Publication Publication Date Title
US4579623A (en) Method and apparatus for surface treatment by plasma
US5476182A (en) Etching apparatus and method therefor
JPH08153702A (en) Plasma device and plasma treatment method
JPH10261620A (en) Surface treater
US5332880A (en) Method and apparatus for generating highly dense uniform plasma by use of a high frequency rotating electric field
US20050126711A1 (en) Plasma processing apparatus
JPH0992645A (en) Method and device for manufacturing semiconductor device
US20030203641A1 (en) Plasma treatment apparatus and method of producing semiconductor device using the apparatus
JPH0997786A (en) Plasma processing method and device
JPH104081A (en) Dry etching apparatus and method thereof
JPS61213377A (en) Method and apparatus for plasma deposition
JPH01255664A (en) Formation of thin film
JPH11204297A (en) Plasma treating device and plasma treating method
JP2851765B2 (en) Plasma generation method and apparatus
JP3172340B2 (en) Plasma processing equipment
JP2003309107A (en) Etching method for laminated film
JPS60120525A (en) Method for reactive ion etching
JP2001244250A (en) Method and apparatus for surface treatment
JP2623827B2 (en) Microwave plasma processing equipment
JP2750430B2 (en) Plasma control method
JPH05144773A (en) Plasma etching apparatus
JP3379506B2 (en) Plasma processing method and apparatus
JPH0415921A (en) Method and apparatus for activating plasma
JP2002373883A (en) Plasma etching apparatus, plasma etching method, and semiconductor device
JP2001077085A (en) Surface treatment method of specimen