JPH01242478A - Method of stabilizing oxygen lack type superconductor - Google Patents

Method of stabilizing oxygen lack type superconductor

Info

Publication number
JPH01242478A
JPH01242478A JP63068744A JP6874488A JPH01242478A JP H01242478 A JPH01242478 A JP H01242478A JP 63068744 A JP63068744 A JP 63068744A JP 6874488 A JP6874488 A JP 6874488A JP H01242478 A JPH01242478 A JP H01242478A
Authority
JP
Japan
Prior art keywords
oxygen
superconductor
deficient
crystal structure
fluorine ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63068744A
Other languages
Japanese (ja)
Inventor
Kota Yoshikawa
浩太 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63068744A priority Critical patent/JPH01242478A/en
Publication of JPH01242478A publication Critical patent/JPH01242478A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To stabilize an oxygen lack type superconductor of an alkaline earth metal-rare earth-copper-oxygen system and to prevent the lack of oxygen with time, etc., by implanting fluorine ions to the oxygen lack type superconductor and annealing the superconductor under prescribed conditions. CONSTITUTION:The oxygen lack type superconductor (e.g.; Ba2YCu3O) expressed by the formula (A is Ca, Sr, Ba; R is a rare earth element; 0<=x<3; n is a natural number; 0<=y<n) is prepd. This superconductor 3 is disposed in a sample system 16 of an ion implanting device and the ions generated from an ion source 11 are accelerated by an ion acceleration system 12. The fluorine ions are fractionated by a magnetic field in a mass analysis system 13 and are implanted to the point in the superconductor 3 where the oxygen is lacked, the point where the oxygen lack is liable to arise, etc. Such superconductor 3 is annealed for 1-3 hours at 850-950 deg.C, by which the oxygen lack type superconductor having the stable superconducting characteristics is obtd.

Description

【発明の詳細な説明】 〔概要〕 ペロブスカイト型結晶構造を有する酸素欠損型超伝導体
の結晶構造を安定化する方法に関し、ペロブスカイト型
結晶構造を有する酸素欠損型超伝導体にフッ素イオンを
打ち込み超伝導特性の安定化を図ることを目的とし、 
 ′ −一般式 ARCuO(式中Aは 2   3−x  n−y Ca、Sr又はBaのいずれか1種、Rは希土類金属元
素のいずれか1種、Xは0≦x<3で表わされる数、n
は自然数、yは0≦y<nで表わされる数を表わす)で
表わされる酸素欠損型超伝導体にフッ素イオンを打ち込
む工程と、該酸素欠損型超伝導体を850〜950℃で
1〜3時間アニールする工程とを含み構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for stabilizing the crystal structure of an oxygen-deficient superconductor having a perovskite-type crystal structure, fluorine ions are implanted into an oxygen-deficient superconductor having a perovskite-type crystal structure. The purpose is to stabilize the conduction characteristics,
' - General formula ARCuO (in the formula, A is any one of 2 3-x n-y Ca, Sr, or Ba, R is any one of rare earth metal elements, and X is a number represented by 0≦x<3 ,n
is a natural number, y is a number expressed as 0≦y<n), and the step of implanting fluorine ions into an oxygen-deficient superconductor, where y is a natural number and y is a number expressed as 0≦y<n; The method includes a step of time annealing.

5産業上の利用分野〕 本発明は、ペロブスカイト型結晶構造を有する酸素欠損
型超伝導体の結晶構造を安定化する方法に関する。
5. Field of Industrial Application] The present invention relates to a method for stabilizing the crystal structure of an oxygen-deficient superconductor having a perovskite crystal structure.

現在、高い転移温度(Tc)を示す高温超伝導体として
B a  Y Cu 30等のようなベロブスカイト型
構造を有する化合物が注目されている。前記B a  
Y Cu 30のような一般式ARCuO(式中AはC
a、Sr又は 2     3−x   n−y Baのいずれか1種、Rは希土類金属元素のいずれか1
種、Xは0≦x<3で表わされる数、nは自然数、yは
O≦y<nで表わされる数を表わす)で表わされるペロ
ブスカイト型超伝導体は転移温度が90Kを示し、すぐ
れた超伝導特性を有する。
Currently, compounds having a berovskite structure such as B a Y Cu 30 are attracting attention as high-temperature superconductors exhibiting a high transition temperature (Tc). Said B a
General formula ARCuO such as Y Cu 30 (wherein A is C
a, Sr or 2 3-x n-y Ba, R is any one of rare earth metal elements
The perovskite superconductor represented by the species (X is a number expressed by 0≦x<3, n is a natural number, and y is a number expressed by O≦y<n) exhibits a transition temperature of 90 K and is an excellent material. Has superconducting properties.

そして、経時変化を生ぜず安定した転移温度を維持する
超伝導体について種々の研究が行なわれている。
Various studies are being conducted on superconductors that do not change over time and maintain a stable transition temperature.

〔従来の技術〕[Conventional technology]

上述のARCuO系のベロブスカイ 2   3−x  n−y ト型超伝導体は比較的容易に作成され、その作成方法は
種々存在し、例えばラバープレス法等によってバルクと
して製造したり、エレクトロビーム(EB)蒸着法、ス
パッタリング法あるいはモレキュラビームエビタクシ(
MBE)法等によりSrTiO3、層203あるV′)
はMgO等の基板上に薄膜として形成する方法がある。
The ARCuO-based Belovsky 2 3-x n-y type superconductor described above is relatively easily produced, and there are various methods for producing it. For example, it can be produced in bulk by a rubber press method, ) Vapor deposition method, sputtering method or molecular beam ebitaxi method (
SrTiO3, layer 203 V') by MBE) method etc.
There is a method of forming a thin film on a substrate such as MgO.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のARCuO系のベロブスカイ 2   3−x  n−y ト型超伝導体は、一般にバルク状のもの又は薄膜状のい
ずれのものも、製造直後に一定の転移温度を有している
が、!!!造後時間の経過とともに転移温度が低下し、
安定した超伝導特性が得られないという欠点がある。こ
れは、 A2RCu3−x oo、系のペロブスカイト型超伝導
体が結晶構造中の酸素が抜は易い、いわゆる酸素欠損型
の超伝導体であり、酸素の欠損量の増大とともに構造的
に不安定となり、超伝導特性か低下し、一定量の酸素の
欠損が生じると通常の半導体としての性質を示すことに
起因する。
The ARCuO-based Belovsky 2 3-x ny type superconductor described above generally has a certain transition temperature immediately after production, whether it is in the form of a bulk or a thin film. ! ! The transition temperature decreases with the passage of time after formation,
The drawback is that stable superconducting properties cannot be obtained. This is because the perovskite superconductor of the A2RCu3-xoo system is a so-called oxygen-deficient superconductor in which oxygen in the crystal structure is easily removed, and as the amount of oxygen vacancies increases, it becomes structurally unstable. This is because when the superconducting properties deteriorate and a certain amount of oxygen vacancies occur, the material exhibits the properties of a normal semiconductor.

上述の欠点を解決するため、酸素イオンとイオン半径の
近いフッ素イオンを構造中に組み込み酸素の欠損を防止
して結晶構造の安定化を図る方法として、フッ化物を予
め混入した原料粉体を用いてバルク状のペロブスカイト
型超伝導体を製造する方法、又は前記のバルク状のペロ
ブスカイト型超伝導体を用いて薄膜状のペロブスカイト
型超伝導体を製造する方法が提案されている。しかし、
上記の方法では、バルク状のペロブスカイト型超伝導体
においてはある程度酸素欠損の防止効果がみられるが、
薄膜状のペロブスカイト型超伝導体においては結晶構造
中に抜は易い酸素が相当量存在しており酸素欠損の防止
が充分に図れないという問題がある。
In order to solve the above-mentioned drawbacks, a raw material powder pre-mixed with fluoride was used as a method to incorporate fluorine ions, which have a similar ionic radius to oxygen ions, into the structure to prevent oxygen vacancies and stabilize the crystal structure. A method of manufacturing a bulk perovskite superconductor using the above-mentioned bulk perovskite superconductor, or a method of manufacturing a thin perovskite superconductor using the bulk perovskite superconductor described above has been proposed. but,
The above method is effective in preventing oxygen vacancies to some extent in bulk perovskite superconductors, but
In thin-film perovskite superconductors, there is a problem in that a considerable amount of oxygen, which is easily removed, is present in the crystal structure, and oxygen vacancies cannot be sufficiently prevented.

そこで本発明は、ARCuO系のべ 2   3−x  n−y ロブスカイト型結晶構造を有する酸素欠損型超伝導体に
フッ素イオンを打ち込み超伝導特性の安定化を図ること
を目的とするものである。
Therefore, the present invention aims to stabilize the superconducting properties by implanting fluorine ions into an ARCuO-based oxygen-deficient superconductor having a 23-xny lobskite crystal structure.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、 一般式 ARCu   O(式中Aは 2   3−x  n−y Ca、Sr又はBaのいずれか1種、Rは希土類金属元
素のいずれか1種、XはO≦x<3で表わされる数、n
は自然数、yは0≦y<nで表わされる数を表わす)で
表わされる酸素欠損型超伝導体にフッ素イオンを打ち込
む工程と、該酸素欠損型超伝導体を850〜950℃で
1〜3時間アニールする工程とを含むことによって達成
される。
The above problem is solved by the general formula ARCu O (where A is any one of 2 3-x n-y Ca, Sr, or Ba, R is any one of rare earth metal elements, and X is O≦x<3 The number represented by n
is a natural number, y is a number expressed as 0≦y<n), and a step of implanting fluorine ions into the oxygen-deficient superconductor, where y is a natural number and y is a number expressed as 0≦y<n; This is accomplished by including a step of time annealing.

〔作用〕[Effect]

本発明は、一般式ARCuO(式中 2   3−x  n−y AはCa、Sr又はBaのいずれか1種、Rは希土類金
属元素のいずれか1種、Xは0≦x<3で表わされる数
、nは自然数、yは0≦y<nで表わされる数を表わす
)で表わされる酸素欠損型超伝導体のペロブスカイト型
結晶構造中の酸素が欠損した箇所および酸素が抜は易く
酸素欠損の生じ易い箇所にイオン打ち込み法によって酸
素イオンとイオン半径がほぼ等しいフッ素イオンを積極
的に打ち込んでペロブスカイト型の結晶構造を安定化す
るとともに、結晶構造中の抜は易い酸素の存在を低減せ
しめ、その後前記酸素欠損型超伝導体を850〜950
°Cで1〜3時間アニールすることにより、酸素の欠損
によって乱されたペロブスカイト型結晶構造を元の状態
に回復するものである。
The present invention has the general formula ARCuO (2 3-x n-y A is any one of Ca, Sr, or Ba, R is any one of rare earth metal elements, and X is represented by 0≦x<3). where n is a natural number and y is a number expressed as 0≦y<n). In order to stabilize the perovskite-type crystal structure by actively implanting fluorine ions, which have an ionic radius approximately equal to that of oxygen ions, into areas where oxidation is likely to occur, we also reduce the presence of oxygen in the crystal structure, which is easily removed. After that, the oxygen deficient superconductor was heated to 850 to 950
By annealing at °C for 1 to 3 hours, the perovskite crystal structure disturbed by oxygen vacancies is restored to its original state.

これによって該酸素欠損型超伝導体は経時による酸素の
欠損がほとんどなく、高温超伝導体として安定した超伝
導特性を示す。
As a result, the oxygen-deficient superconductor has almost no oxygen deficiency over time and exhibits stable superconducting properties as a high-temperature superconductor.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例について説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は基板にエレクトロンビーム(EB)蒸着法によ
って超伝導体薄膜を形成する装置の概略構成図である。
FIG. 1 is a schematic diagram of an apparatus for forming a superconductor thin film on a substrate by electron beam (EB) evaporation.

第1図においてフィラメント5から発せられたエレクト
ロンビーム6はルツボ2内に配設された超伝導体である
蒸着源1に誘導して当てられ前記蒸着源1が加熱される
。加熱された蒸着源1から蒸発した超伝導体の蒸気は基
板4に達し、超伝導体薄膜3が形成される。
In FIG. 1, an electron beam 6 emitted from a filament 5 is guided and applied to a vapor deposition source 1, which is a superconductor, disposed within a crucible 2, and the vapor deposition source 1 is heated. The superconductor vapor evaporated from the heated deposition source 1 reaches the substrate 4, and a superconductor thin film 3 is formed.

前記蒸着源1は下記式(1)で表わされるペロブスカイ
ト型結晶構造を有する酸素欠損型超伝導体のバルクであ
る。
The vapor deposition source 1 is a bulk of an oxygen-deficient superconductor having a perovskite crystal structure represented by the following formula (1).

式(1)  A  RCu   0 2   3−x  n−1/ (式中AはCa、Sr又はBaのいずれか1種、Rは希
土類金属元素のいずれか1種、Xは0≦X〈3で表わさ
れる数、nは自然数、yは0≦y〈nで表わされる数を
表わす) 通常、前記蒸着源1には、約800℃で焼成されペロブ
スカイト型結晶構造が形成されたバルクを使用する。
Formula (1) A RCu 0 2 3-x n-1/ (wherein A is any one of Ca, Sr or Ba, R is any one of rare earth metal elements, and X is 0≦X<3) (n is a natural number, y is a number expressed as 0≦y<n) Usually, for the vapor deposition source 1, a bulk fired at about 800° C. to form a perovskite crystal structure is used.

また前記基板4は、SrTiO3、AfJ203あるい
はMgO等の公知の組成を有する基板でよい。
Further, the substrate 4 may be a substrate having a known composition such as SrTiO3, AfJ203, or MgO.

さらに、前記EB蒸着装置は公知のEB蒸着装置でよく
、また蒸着は公知の蒸着条件に従えばよい。
Furthermore, the EB evaporation apparatus may be a known EB evaporation apparatus, and the evaporation may be performed under known evaporation conditions.

次に、第1図に示されたEB蒸着装置により基板4に形
成された超伝導体薄膜3は、850〜900℃で1〜2
時間アニール処理か施される。
Next, the superconductor thin film 3 formed on the substrate 4 by the EB evaporation apparatus shown in FIG.
A time annealing process is applied.

このアニール処理により前記超伝導体薄膜3はへロブス
カイト型結晶構造を有する ARCuO系の超伝導体薄膜となる。
Through this annealing treatment, the superconductor thin film 3 becomes an ARCuO-based superconductor thin film having a herovskite crystal structure.

2   3−x  n−Y しかし、このペロブスカイト型結晶構造を有する造中の
酸素前記ARCu   O系の超伝導2   3−x 
 n−y 体の結晶梢の中には、結晶構造中からきわめて抜は易い
ものがあり、時間の経過とともに前記酸素が抜は出して
酸素欠損が生じ、この酸素欠損によってペロブスカイト
型結晶構造が次第に乱されることになる。 そこで本発
明では、前記酸素欠損型の超伝導体薄膜3へのフッ素イ
オンの打ち込みが行なわれる。第2図はイオン打ち込み
装置の概略構成図であり、イオン源11から発せられた
イオンはイオン加速系12で加速され、質量分析系13
で磁界によってフッ素イオンのみが曲げられて分別され
集束系14に送られ、偏向系15によって所定方向に偏
向されて試料系15内に設置されな試料に打ち込まれる
2 3-x n-Y However, the oxygen under construction with this perovskite crystal structure
Some of the crystalline tops of the n-y body are extremely easy to extract from the crystal structure, and as time passes, the oxygen is extracted and oxygen vacancies occur, and these oxygen vacancies gradually change the perovskite crystal structure. It will be disturbed. Therefore, in the present invention, fluorine ions are implanted into the oxygen-deficient superconductor thin film 3. FIG. 2 is a schematic diagram of the ion implantation device, in which ions emitted from the ion source 11 are accelerated by the ion acceleration system 12, and the mass spectrometer 13 is accelerated by the ion acceleration system 12.
Only fluorine ions are bent and separated by the magnetic field and sent to the focusing system 14, deflected in a predetermined direction by the deflection system 15, and implanted into a sample placed within the sample system 15.

前記イオン源11としては、三フッ化ホウ素(BP  
>、四フッ化ニホウ素(82F4)等のフッ化物が用い
られる。
As the ion source 11, boron trifluoride (BP
>, fluoride such as diboron tetrafluoride (82F4) is used.

前記試料系15には前記酸素欠損型の超伝導体薄膜3を
上にして基板4が設置される。
A substrate 4 is placed in the sample system 15 with the oxygen-deficient superconductor thin film 3 facing upward.

上述のイオン打ち込み装置により前記酸素欠損型の超伝
導体薄膜3に打ち込まれたフッ素イオンは、ペロプスカ
イト型結晶#I遣中の酸素が欠損した箇所および酸素が
抜は易く酸素欠損の生じ易い箇所に入り込む、そして、
前記フッ素イオンが活性な状態であり、かつ酸素イオン
とイオン半径がほぼ等しい゛ことより、ペロブスカイト
型結晶構造中の酸素の位置する箇所に位置して結晶構造
を安定化するとともに結晶構造中の抜は易い酸素の数を
大巾に低減する。
The fluorine ions implanted into the oxygen-deficient superconductor thin film 3 by the above-mentioned ion implantation device are applied to locations where oxygen is deficient in the perovskite crystal #I and locations where oxygen is easily removed and oxygen vacancies are likely to occur. enter into, and
Since the fluorine ions are in an active state and have approximately the same ionic radius as oxygen ions, they are located at the location where oxygen is located in the perovskite crystal structure, stabilizing the crystal structure, and eliminating the ions in the crystal structure. This greatly reduces the amount of oxygen available.

上記のイオン打ち込み装置は公知のイオン打ち込み装置
でよい。また、イオン打ち込みの条件は、フッ素イオン
に付加されるエネルギーが大きすぎるとペロブスカイト
型結晶構造の破壊を生じることになるので注意を要する
The above-mentioned ion implantation device may be a known ion implantation device. In addition, care must be taken regarding the conditions for ion implantation because if the energy added to the fluorine ions is too large, the perovskite crystal structure will be destroyed.

上述のフッ素イオンの打ち込みが完了した酸素欠損型の
超伝導薄膜3は、次にアニール処理が施される。このア
ニール処理は850〜950°Cで1〜3時間程度行な
われる。前記アニール処理によって酸素の欠損によって
乱されたペロブスカイト型結晶構造は元の状態に回復さ
れる。
The oxygen-deficient superconducting thin film 3 that has been completely implanted with the fluorine ions described above is then subjected to an annealing treatment. This annealing treatment is performed at 850 to 950°C for about 1 to 3 hours. The perovskite crystal structure disturbed by oxygen vacancies is restored to its original state by the annealing treatment.

本発明の酸素欠損型超伝導体の安定化方法における上記
の一連の工程を経ることにより、酸素欠損型の超伝導体
薄膜は経時による酸素の欠損がほとんど発生せず、結晶
構造はきわめて安定しており、このなめ安定した超伝導
特性を示す。
By going through the above-mentioned series of steps in the method for stabilizing an oxygen-deficient superconductor of the present invention, the oxygen-deficient superconductor thin film has almost no oxygen loss over time, and its crystal structure is extremely stable. This layer exhibits stable superconducting properties.

本発明の酸素欠損型超伝導体の安定化方法は、上述のE
B蒸着法により形成された超伝導体薄膜のみでなく、抵
抗加熱蒸着法、スパッタリング法あるいはモレキュラビ
ームエピタクシ(MBB)法等により形成された超伝導
体薄膜にも適用でき、さらにバルク状の酸素欠損型超伝
導体にも適用できる。バルク状の酸素欠損型超伝導体に
本発明の安定化方法を適用した場合、バルクの表面近傍
の結晶構造中にフッ素イオンが打ち込まれることになり
、バルク表面がきわめて安定化することによリバルク内
部における酸素欠損も大巾に低減される。また、フッ化
物を予め混入した原料粉体を用いて製造されたバルク状
の酸素欠損型超伝導体に本発明の安定化方法を適用する
ことにより、さらに安定な超伝導特性を示すバルク状の
酸素欠損型超伝導体を得ることができる。
The method for stabilizing an oxygen-deficient superconductor of the present invention is based on the above-mentioned E
It can be applied not only to superconductor thin films formed by B evaporation method, but also to superconductor thin films formed by resistance heating evaporation method, sputtering method, molecular beam epitaxy (MBB) method, etc. It can also be applied to oxygen-deficient superconductors. When the stabilization method of the present invention is applied to a bulk oxygen-deficient superconductor, fluorine ions are implanted into the crystal structure near the surface of the bulk, and the bulk surface is extremely stabilized, making it difficult to rebulk. Oxygen vacancies inside are also greatly reduced. In addition, by applying the stabilization method of the present invention to bulk oxygen-deficient superconductors manufactured using raw material powder mixed with fluoride in advance, bulk Oxygen-deficient superconductors can be obtained.

(実験例) 次に本発明の酸素欠損型超伝導体の安定化方法を実験例
をもとにさらに詳細に説明する。
(Experimental Example) Next, the method for stabilizing an oxygen-deficient superconductor of the present invention will be explained in more detail based on an experimental example.

尺凱頂 式(1)においてA=Ba、R=Y  x=Or1−1
、y=oとした酸素欠損型超伝導体B a  Y Cu
 30のバルクを公知の方法で製造しま た。このBa YCu30を蒸発源として第1図に示さ
れるEB蒸着装置にてアルミナ (A、Il□03)基板上に薄膜を形成した。この薄膜
に850°C12時間のアニール処理を施したものを試
料−1とした。
In the Shakukaicho formula (1), A=Ba, R=Y x=Or1-1
, oxygen-deficient superconductor B a Y Cu with y=o
30 bulks were manufactured by known methods. Using this BaYCu30 as an evaporation source, a thin film was formed on an alumina (A, Il□03) substrate using the EB evaporation apparatus shown in FIG. This thin film was annealed at 850° C. for 12 hours and was designated as Sample-1.

次に試料−1に第2図に示されるイオン打ち込み装置に
よって下記の条件でフッ素イオンの打ち込みを行なった
後、900℃、1時間のアニール処理を施したものを試
料−2とした。
Next, Sample-1 was implanted with fluorine ions using the ion implantation apparatus shown in FIG. 2 under the following conditions, and then annealed at 900° C. for 1 hour to prepare Sample-2.

イオン源:  三フッ化ホウ素 イオン打ち込み条件: 70 KeV、 1 x 10
16cn−”また、原料粉体中にフッ化物であるB a
 F 2を予め10wt%混入した他は全て試料−1と
同様の方法により作製した超伝導体薄膜を試料−3とし
た。
Ion source: boron trifluoride Ion implantation conditions: 70 KeV, 1 x 10
16cn-” Also, fluoride B a in the raw material powder
Sample-3 was a superconductor thin film prepared in the same manner as Sample-1 except that 10 wt% of F 2 was mixed in advance.

上記の試料−1、試料−2および試料−3について転移
温度の経時変化を調べた。結果を表1に示す。
Changes in transition temperature over time were investigated for Sample-1, Sample-2, and Sample-3. The results are shown in Table 1.

*試料−1、試料−3は41B!の形成後アニール処理
を施した時からの経過時間を示し、試料−2はイオン打
ち込み後アニール処理を施した時からの経過時間を示す
*Sample-1 and sample-3 are 41B! Sample-2 shows the elapsed time from the time when the annealing treatment was performed after the formation of sample 2, and the time elapsed from the time when the annealing treatment was performed after the ion implantation for sample-2.

表1に示されるように、試料−1および試料−3は時間
の経過とともに酸素欠損に起因する転移温度の低下が入
られ、超伝導特性の劣化が生じていることが判る。これ
に対し、本発明の安定化処理を施した試料−2は転移温
度がほとんど低下せず安定した超伝導特性を発揮し得る
ものであり、本発明の効果は明らかである。
As shown in Table 1, it can be seen that the transition temperature of Sample-1 and Sample-3 decreased over time due to oxygen vacancies, and the superconducting properties deteriorated. On the other hand, Sample-2 subjected to the stabilization treatment of the present invention exhibits stable superconducting properties with almost no decrease in transition temperature, and the effects of the present invention are clear.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、一般式ARCuO 23−n  n−y で示されるペロブスカイト型結晶構造を有する酸素欠損
型超伝導体にフッ素イオンを打ち込んで酸素が欠損した
箇所あるいは酸素が抜は易く酸素欠損の生じ易い箇所に
フッ素イオンを位置せしめて結晶構造を安定化するとと
もに、結晶構造中の抜は易い酸素の存在を低減し、その
後前記酸素欠損型超伝導体をアニールすることにより酸
素欠損によって乱されたペロブスカイト型結晶構造を元
の状態に回復するので、酸素欠損型超伝導体は経時によ
る酸素の欠損がほとんどなくなり、高温超伝導体として
の超伝導特性の大巾な安定化が図れる。
According to the present invention, fluorine ions are implanted into an oxygen-deficient superconductor having a perovskite-type crystal structure represented by the general formula ARCuO 23-n n-y to remove oxygen-deficient areas or where oxygen is easily removed. In addition to stabilizing the crystal structure by positioning fluorine ions in locations where fluorine ions are likely to occur, the presence of oxygen in the crystal structure, which is easily eliminated, is reduced, and then the oxygen-deficient superconductor is annealed to prevent the disturbance caused by oxygen vacancies. Since the perovskite crystal structure is restored to its original state, the oxygen-deficient superconductor has almost no oxygen loss over time, and its superconducting properties as a high-temperature superconductor can be greatly stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に用いるエレクトロンビーム
蒸着装置の概略構成図、 第2図は本発明の一実施例に用いるイオン打ち込み装置
の概略構成図である。 1・・・蒸着源、 2・・・ルツボ、 3・・・超伝導体薄膜、 4・・・基板、 5・・・フィラメント、 6・・・エレクトロンビーム、 11・・・イオン源、 12・・・イオン加速系、 13・・・質量分析系、 14・・・集中系、 15・・・偏向系、 16・・・試料系。 第  1  図 第  2  図
FIG. 1 is a schematic diagram of an electron beam evaporation device used in an embodiment of the present invention, and FIG. 2 is a schematic diagram of an ion implantation device used in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Evaporation source, 2... Crucible, 3... Superconductor thin film, 4... Substrate, 5... Filament, 6... Electron beam, 11... Ion source, 12. ...Ion acceleration system, 13...Mass spectrometry system, 14...Concentration system, 15...Deflection system, 16...Sample system. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 一般式 A_2RCu_3_−_xO_n_−_y (式中AはCa、Sr又はBaのいずれか1種、Rは希
土類金属元素のいずれか1種、xは0≦x<3で表わさ
れる数、nは自然数、yは0≦y<nで表わされる数を
表わす) で表わされる酸素欠損型超伝導体にフッ素イオンを打ち
込む工程と、 該酸素欠損型超伝導体を850〜950℃で1〜3時間
アニールする工程とを含むことを特徴とする酸素欠損型
超伝導体の安定化方法。
[Claims] General formula A_2RCu_3_-_xO_n_-_y (wherein A is any one of Ca, Sr, or Ba, R is any one of rare earth metal elements, and x is represented by 0≦x<3 (n is a natural number, y is a number expressed as 0≦y<n); a step of implanting fluorine ions into an oxygen-deficient superconductor represented by A method for stabilizing an oxygen-deficient superconductor, comprising the step of annealing for 1 to 3 hours.
JP63068744A 1988-03-23 1988-03-23 Method of stabilizing oxygen lack type superconductor Pending JPH01242478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63068744A JPH01242478A (en) 1988-03-23 1988-03-23 Method of stabilizing oxygen lack type superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63068744A JPH01242478A (en) 1988-03-23 1988-03-23 Method of stabilizing oxygen lack type superconductor

Publications (1)

Publication Number Publication Date
JPH01242478A true JPH01242478A (en) 1989-09-27

Family

ID=13382593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63068744A Pending JPH01242478A (en) 1988-03-23 1988-03-23 Method of stabilizing oxygen lack type superconductor

Country Status (1)

Country Link
JP (1) JPH01242478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259467A (en) * 1988-04-01 1990-02-28 Rhone Poulenc Chim Stable superconductive substance and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259467A (en) * 1988-04-01 1990-02-28 Rhone Poulenc Chim Stable superconductive substance and its production

Similar Documents

Publication Publication Date Title
EP0285030B1 (en) Process for producing superconducting thin films
JPH01242478A (en) Method of stabilizing oxygen lack type superconductor
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JPS63261770A (en) Manufacture of superconducting device
JPS61168530A (en) Superconductive oxide material and production thereof
JP2809553B2 (en) Method for producing oxide superconductor thin film
JP2982964B2 (en) Method for producing Y-Ba-Cu-O-based oxide superconducting thin film
JP2699216B2 (en) Manufacturing method of oxide superconductor
JPH03275504A (en) Oxide superconductor thin film and its production
JP2781331B2 (en) Manufacturing method of thin film superconductor
JP3005434B2 (en) Superconducting device
JP2505849B2 (en) Manufacturing method of superconducting ceramic thin film
JPH01282105A (en) Production of superconducting ceramic film
JPH02170311A (en) Manufacture of oxide superconductor thin film
JPH01105416A (en) Manufacture of thin film superconductor
JPH0446098A (en) Superconducting member
JP2736062B2 (en) Method for producing oxide superconductor thin film
JPS63252319A (en) Deterioration preventing method for superconductor
JPH013001A (en) Method for manufacturing superconducting ceramic thin films
JPS63245827A (en) Forming method for oxide group superconductive thin film
JPH02212306A (en) Oxide superconducting thin film
JPH078760B2 (en) Method for manufacturing superconducting ceramic thin film
JPS63299019A (en) Manufacture of thin film superconductive material
JPH01282122A (en) Production of thin film superconductor
JPH01307283A (en) Manufacture of superconductive thin-film