JPS63245827A - Forming method for oxide group superconductive thin film - Google Patents

Forming method for oxide group superconductive thin film

Info

Publication number
JPS63245827A
JPS63245827A JP62078598A JP7859887A JPS63245827A JP S63245827 A JPS63245827 A JP S63245827A JP 62078598 A JP62078598 A JP 62078598A JP 7859887 A JP7859887 A JP 7859887A JP S63245827 A JPS63245827 A JP S63245827A
Authority
JP
Japan
Prior art keywords
thin film
oxide
oxide group
sample
superconductive thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62078598A
Other languages
Japanese (ja)
Inventor
Minoru Yamada
穣 山田
Akira Murase
村瀬 暁
Hisashi Yoshino
芳野 久士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62078598A priority Critical patent/JPS63245827A/en
Publication of JPS63245827A publication Critical patent/JPS63245827A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain an oxide group superconductive thin film whose critical temperature is high by forming an oxide film made of elements L, Cu, and O and next implanting an element M by an ion implantation or gas diffusion method. CONSTITUTION:When an oxide group superconductive thin film made of L-M-Cu- O (where L=Y, Sc, La, and M=Ba, Sr, Ca) is formed, sputter equipment 4 composed of a sputter chamber 1, a high frequency power source 2, and an evacuation device 3 is prepared and used. A Y2O3 block 11 and a CuO block 12 are combined to form a target 13 in a disc shape so that their area ratio is 1 : 1, and then Y-Cu-O oxide is formed on a Si substrate 14. In succession, this sample is taken out from the sputter equipment 4 and an ion implantation device is used to accelerate ionized Ba elements and implant them inside from the surface of the sample and next heat treatment is performed for this sample. An oxide group superconductive thin film which has a high critical temperature Tc can be easily formed accordingly.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、超電導トランジスタを製造するときなどに適
用可能な酸化物系超電導薄膜の作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Field of Industrial Application) The present invention relates to a method for producing an oxide-based superconducting thin film that can be applied to the production of superconducting transistors.

(従来の技術) 現在、 StやGaAsなどを用いて高密度、高速度の
半導体素子の開発が行われている。しかし、たとえばS
i素子における発熱は数ff1wにも達するため。
(Prior Art) Currently, high-density, high-speed semiconductor devices are being developed using St, GaAs, and the like. However, for example, S
This is because the heat generation in the i-element reaches several ff1w.

集積度が4メガビツト、16メガビツトへと進むにつれ
て、素子の発熱を如何にして処理するかと言う点が大き
な障壁となっている。
As the degree of integration advances to 4 megabits and 16 megabits, the issue of how to deal with the heat generated by the elements has become a major hurdle.

発熱の問題を解決した素子としては、従来、超電導現象
の1つであるジョセフソン効果を利用したジョセフソン
素子がある。このジョセフソン素子の発熱量は、Si素
子に比べて3〜4桁と小さく約1μWである。しかも、
スイッチング速度も数p −10psecと、 Si素
子に比べて3〜4桁速い。ジョセフソン素子を構成する
材料としては、現在。
As an element that has solved the problem of heat generation, there is a Josephson element that utilizes the Josephson effect, which is one of the superconducting phenomena. The amount of heat generated by this Josephson element is about 1 μW, which is three to four orders of magnitude smaller than that of a Si element. Moreover,
The switching speed is also several p-10 psec, three to four orders of magnitude faster than Si devices. Currently, the materials used to construct Josephson elements are:

Nb、 NbNなどが使用されている。しかし、 Nb
やNbN膜は、活性に富んでいるため酸素と結びつき易
<、大気中では不安定で、しかもジョセフソン素子に必
要な数10人の厚さの絶縁膜(障壁膜)を均質に作るこ
とが非常に困難である。また、これらの材料では臨界温
度Tcが低いため、冷媒として高価で扱い難い液体ヘリ
ウムを使用しなければならない問題があった。また、ジ
ョセフソン素子は。
Nb, NbN, etc. are used. However, Nb
Because NbN films are highly active, they easily combine with oxygen, and are unstable in the atmosphere. Furthermore, it is difficult to homogeneously produce an insulating film (barrier film) several tens of times thick, which is required for Josephson devices. Very difficult. Furthermore, since these materials have a low critical temperature Tc, there is a problem in that liquid helium, which is expensive and difficult to handle, must be used as a refrigerant. Also, the Josephson element.

2端子素子であるため、 81素子の3端子方式(電界
制御方式)に比べて使い難い等の問題もあった。
Since it is a two-terminal element, there are also problems such as it being difficult to use compared to the three-terminal system (electric field control system) with 81 elements.

そこで、最近では上述したジョセフソン素子の欠点の多
くを解消した素子、すなわち、超電導体と半導体とを組
み合わせた超電導トランジスタが提案されるに至ってい
る。この超電導トランジスタは、3端子方式を採用して
おり、しかもジョセフソン素子と同程度の消費電力、ス
イッチング特性を有している。しかし、超電導トランジ
スタにあっても、冷媒とし高価で扱い難い液体ヘリウム
を使用しなければならないこと、超電導体部分が酸化さ
れ易く不安定であることなどの理由で、未だに実用には
至っていないのが実状である。
Therefore, recently, an element that eliminates many of the drawbacks of the above-mentioned Josephson element, ie, a superconducting transistor that combines a superconductor and a semiconductor, has been proposed. This superconducting transistor uses a three-terminal system and has power consumption and switching characteristics comparable to those of a Josephson element. However, even with superconducting transistors, they have not yet been put into practical use because they require the use of liquid helium, which is expensive and difficult to handle, as a coolant, and the superconducting part is easily oxidized and unstable. This is the actual situation.

ところで、最近、 90に捏度、つまり臨界温度Tcが
液体窒素温度以上である。たとえばY−Ba−Cu−0
で代表される酸化物系超電導体が開発された。この酸化
物系超電導体を超電導トランジスタに組み込めば、上述
した問題点、つまり酸化され易いこと、液体ヘリウムを
使用しなければならないこと等の問題を解消できる。
By the way, recently, the degree of kneading, that is, the critical temperature Tc, has been found to be higher than the liquid nitrogen temperature. For example, Y-Ba-Cu-0
Oxide-based superconductors, represented by , have been developed. If this oxide-based superconductor is incorporated into a superconducting transistor, the above-mentioned problems such as easy oxidation and the necessity to use liquid helium can be solved.

しかしながら、現在提案されている酸化物系超電導体は
、いずれも粉末を焼き固めて得た焼結体であり、このま
までは超電導素子への応用が困難であった。
However, the oxide-based superconductors currently proposed are all sintered bodies obtained by baking and solidifying powder, and it has been difficult to apply them to superconducting elements as they are.

(発明が解決しようとする問題点) 上述の如< 、 Y−Ba−Cu−0で代表される酸化
物系超電導体は、従来のNbやNbNに比べて種々の面
において優れた超電導体である。しかし、この酸化物系
超電導体の薄膜を作製する技術が確立されてはおらず、
このために超電導トランジスタ等に適用することができ
ない問題があった。
(Problems to be Solved by the Invention) As mentioned above, oxide-based superconductors represented by Y-Ba-Cu-0 are superior superconductors in various aspects compared to conventional Nb and NbN. be. However, the technology for producing thin films of this oxide-based superconductor has not been established.
For this reason, there was a problem that it could not be applied to superconducting transistors and the like.

そこで本発明は、超電導トランジスタ等の超電導素子の
製造に適用できる酸化物系超電導薄膜の作製方法を提供
することを目的としている。
Therefore, an object of the present invention is to provide a method for manufacturing an oxide-based superconducting thin film that can be applied to manufacturing superconducting elements such as superconducting transistors.

[発明の構成] (問題点を解決するための手段) 本発明では2組成がL−H−Cu−0(ただし、 L−
Y。
[Structure of the invention] (Means for solving the problem) In the present invention, two compositions are L-H-Cu-0 (however, L-
Y.

Sc、La 、 M=Ba、Sr、Ca)からなる酸化
物系超電導薄膜を作製するに当り1元素りとCuとOと
からなる酸化物の膜を作製した後、この膜にイオンイン
プランテーションもしくはガス拡散により元素Mを注入
するようにしている。
To produce an oxide-based superconducting thin film consisting of Sc, La, M=Ba, Sr, Ca), an oxide film consisting of one element, Cu, and O is fabricated, and then this film is subjected to ion implantation or The element M is implanted by gas diffusion.

(作用) L−M−Cu−0系酸化物が超電導体になる必須要件は
1M元素の存在である。これは、 Y−Ba−Cu−0
系ではBaに相当する。Y−Cu−0では超電導体には
ならないが、 Baの添加によって、格子不安定性が抑
えられ、またCu3+の3価イオンの量が増やされて高
い臨界温度Tcを持ったものとなる。焼結法では。
(Function) An essential requirement for the LM-Cu-0-based oxide to become a superconductor is the presence of a 1M element. This is Y-Ba-Cu-0
In the system, it corresponds to Ba. Although Y-Cu-0 does not become a superconductor, the addition of Ba suppresses lattice instability and increases the amount of trivalent Cu3+ ions, resulting in a material with a high critical temperature Tc. In the sintering method.

Baの分布を均一化することが容易である。しかし。It is easy to make the distribution of Ba uniform. but.

先に述べたように、焼結法では薄膜を作製することはで
きない。また、単に、 Y−Ba−Cu−0をターゲッ
トとしたスパッタ法でも、膜中のBaの分布が不均一と
なって高い臨界温度Tcは得られない。
As mentioned above, thin films cannot be produced using the sintering method. Furthermore, even if a sputtering method using Y-Ba-Cu-0 as a target is used, the distribution of Ba in the film becomes non-uniform and a high critical temperature Tc cannot be obtained.

本発明では2元素りとCuとOとからなる酸化物の膜を
作製した後、この膜にイオンインプランテーションもし
くはガス拡散により元素Hを注入しているので2元素M
を均一に注入することができ。
In the present invention, after producing an oxide film consisting of the two elements Cu and O, the element H is injected into this film by ion implantation or gas diffusion.
can be injected evenly.

これによって臨界温度Tcの高い酸化物系超電導薄膜を
作製することができる。
This makes it possible to produce an oxide-based superconducting thin film with a high critical temperature Tc.

(実施例) 以下、実施例を説明する。(Example) Examples will be described below.

実施例1 第1図に示すように、スパッタチャンバ1と。Example 1 As shown in FIG. 1, a sputter chamber 1 is provided.

高周波電源2と、排気装置3とからなるスパッタ装置4
を用意し、このスパッ装置4を用い。
Sputtering device 4 consisting of a high frequency power source 2 and an exhaust device 3
was prepared and this spa treatment device 4 was used.

Y2O3ブロック11とCuOブロック12とが面積比
でl:lの関係となるように円板状に組み合わせられた
ものをターゲット13としてSI基板13上にY−Cu
−0酸化物を1μm厚に作製した。なお。
The target 13 is a Y2O3 block 11 and a CuO block 12 combined in a disk shape with an area ratio of 1:1, and Y-Cu is deposited on the SI substrate 13.
-0 oxide was produced to a thickness of 1 μm. In addition.

このときの条件は、放電パワー200w、ガス組成Ar
−50%02.ガス圧5xlO’ torrであった。
The conditions at this time were: discharge power 200W, gas composition Ar
-50%02. The gas pressure was 5xlO' torr.

次に、この試料をスパッタ装置4内から取出し。Next, this sample is taken out from inside the sputtering apparatus 4.

イオンインプランテーション装置でイオン化したBaを
加速して試料表面から内部へ注入した。その後、試料を
500℃で1日熱処理した。
Ionized Ba was accelerated using an ion implantation device and injected into the sample from the surface. Thereafter, the sample was heat treated at 500°C for one day.

このようにして得られた試料の温度に対する抵抗変化を
調べたところ、第2図に示すように93にで抵抗が下が
り始め、85にで完全に零となった。
When the resistance change with respect to temperature of the sample thus obtained was investigated, as shown in FIG. 2, the resistance began to decrease at 93 and completely became zero at 85.

すなわち、良好なY−Ba−Cu−0超電導薄膜が得ら
れた。
That is, a good Y-Ba-Cu-0 superconducting thin film was obtained.

実施例2 実施例1と同様にして、81基板上に1μm厚のY−C
u−0膜を作製した。この試料を拡散炉中に入れて80
0℃に加熱するとともにBa蒸気で満たして1日熱処理
した。
Example 2 In the same manner as in Example 1, 1 μm thick Y-C was deposited on the 81 substrate.
A u-0 film was prepared. This sample was placed in a diffusion furnace for 80 minutes.
The chamber was heated to 0° C. and filled with Ba vapor for one day of heat treatment.

このようにして得られた試料について、温度に対する抵
抗変化を調べたところ、 100Kで抵抗が下がり始め
、92にで完全に零となり2本発明の作製方法が有効で
あることが確認された。
When the resistance change with respect to temperature was examined for the sample thus obtained, the resistance began to decrease at 100 K and completely became zero at 92 K, confirming that the manufacturing method of the present invention is effective.

なお1本発明は上述した実施例に限定されるものではな
い。すなわち、上述した実施例では、Y(イツトリウム
)とBa (バリウム)とを組み合わせているが9本発
明によれば、YとSr (ストロンチウム)またはCa
 (カルシウム)との組み合わせ。
Note that the present invention is not limited to the embodiments described above. That is, in the above-described embodiment, Y (yttrium) and Ba (barium) are combined, but according to the present invention, Y and Sr (strontium) or Ca
(Calcium) combination.

Sc (スカンジウム)とBa、Sr、Caの何れかと
の組み合わせ、La(ランタン)とBa、Sr、Caの
何れかとの組み合わせの場合でも同様に良好な超電導薄
膜を作製することができる。
Similarly, a good superconducting thin film can be produced using a combination of Sc (scandium) and any one of Ba, Sr, or Ca, or a combination of La (lanthanum) and any one of Ba, Sr, or Ca.

[発明の効果] 以上述べたように本発明方法によれば、高い臨界温度T
cを有する酸化物系超電導薄膜を容易に作製でき、もっ
て超電導トランジスタ等の超電導素子の製造に充分適用
できる酸化物系超電導薄膜の作製方法を提供できる。
[Effect of the invention] As described above, according to the method of the present invention, a high critical temperature T
It is possible to easily produce an oxide-based superconducting thin film having c, thereby providing a method for producing an oxide-based superconducting thin film that can be fully applied to the production of superconducting elements such as superconducting transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明作製方法の実施に使用したスパッタ装置
の概略構成図、第2図は本発明作製方法によって作製さ
れた超電導薄膜の温度に対する抵抗変化特性の一例を示
す図である。 11・・・Y2O3ブロック、12・・・CuOブロッ
ク。 13・・・ターゲット、14・・・81基板。 出願人代理人 弁理士 鈴江武彦 rつ     CSJf−0
FIG. 1 is a schematic configuration diagram of a sputtering apparatus used to carry out the production method of the present invention, and FIG. 2 is a diagram showing an example of resistance change characteristics with respect to temperature of a superconducting thin film produced by the production method of the present invention. 11...Y2O3 block, 12...CuO block. 13...Target, 14...81 board. Applicant's agent Patent attorney Takehiko Suzue CSJf-0

Claims (2)

【特許請求の範囲】[Claims] (1)組成がL−M−Cu−O(ただし、L=Y、Sc
、La、M=Ba、Sr、Ca)からなる酸化物系超電
導薄膜を作製するに当り、元素LとCuとOとからなる
酸化物の膜を作製した後、この膜にイオンインプランテ
ーションもしくはガス拡散により元素Mを注入するよう
にしたことを特徴とする酸化物系超電導薄膜の作製方法
(1) The composition is LM-Cu-O (where L=Y, Sc
, La, M=Ba, Sr, Ca), after producing an oxide film consisting of elements L, Cu, and O, this film is subjected to ion implantation or gas A method for producing an oxide-based superconducting thin film, characterized in that element M is implanted by diffusion.
(2)イオンインプランテーションで元素Mを注入した
ときには、注入後に熱処理を行なうことを特徴とする特
許請求の範囲第1項記載の酸化物系超電導薄膜の作製方
法。
(2) The method for producing an oxide-based superconducting thin film according to claim 1, wherein when the element M is implanted by ion implantation, a heat treatment is performed after the implantation.
JP62078598A 1987-03-31 1987-03-31 Forming method for oxide group superconductive thin film Pending JPS63245827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62078598A JPS63245827A (en) 1987-03-31 1987-03-31 Forming method for oxide group superconductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62078598A JPS63245827A (en) 1987-03-31 1987-03-31 Forming method for oxide group superconductive thin film

Publications (1)

Publication Number Publication Date
JPS63245827A true JPS63245827A (en) 1988-10-12

Family

ID=13666336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62078598A Pending JPS63245827A (en) 1987-03-31 1987-03-31 Forming method for oxide group superconductive thin film

Country Status (1)

Country Link
JP (1) JPS63245827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102975A (en) * 1987-10-16 1989-04-20 Sumitomo Cement Co Ltd Manufacture of superconducting ceramic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102975A (en) * 1987-10-16 1989-04-20 Sumitomo Cement Co Ltd Manufacture of superconducting ceramic

Similar Documents

Publication Publication Date Title
US4925829A (en) Method for preparing thin film of compound oxide superconductor by ion beam techniques
JP2711253B2 (en) Superconducting film and method for forming the same
JP2855614B2 (en) Method of forming superconducting circuit
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JPS63242532A (en) Super conductor and its manufacture
US5219834A (en) Process for producing a superconducting transistor
JPS63245827A (en) Forming method for oxide group superconductive thin film
JPS63239990A (en) Superconducting transistor
JP2713343B2 (en) Superconducting circuit fabrication method
JPH01100022A (en) Preparation of superconducting thin film
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JP2741277B2 (en) Thin film superconductor and method of manufacturing the same
JPH02175613A (en) Production of oxide superconducting thin film
JP2976427B2 (en) Method of manufacturing Josephson device
JP3478543B2 (en) Oxide superconducting thin film and method for producing the same
JPH0316920A (en) Oxide superconductive thin film and its production
JP2523785B2 (en) Method for manufacturing superconductor thin film
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
JPH05170448A (en) Production of thin ceramic film
JPH0446098A (en) Superconducting member
JP2641973B2 (en) Superconducting element and manufacturing method thereof
JP2647245B2 (en) Superconducting element and manufacturing method thereof
JPH01126206A (en) Superconducting thin film
JPH04171872A (en) Josephson device and manufacture thereof
JPH0255208A (en) Production of superconducting thin film of oxide