JPH0124205B2 - - Google Patents

Info

Publication number
JPH0124205B2
JPH0124205B2 JP59235230A JP23523084A JPH0124205B2 JP H0124205 B2 JPH0124205 B2 JP H0124205B2 JP 59235230 A JP59235230 A JP 59235230A JP 23523084 A JP23523084 A JP 23523084A JP H0124205 B2 JPH0124205 B2 JP H0124205B2
Authority
JP
Japan
Prior art keywords
steel
toughness
heat input
tin
high heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59235230A
Other languages
Japanese (ja)
Other versions
JPS61113714A (en
Inventor
Kenichi Amano
Munetaka Oda
Chiaki Shiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23523084A priority Critical patent/JPS61113714A/en
Publication of JPS61113714A publication Critical patent/JPS61113714A/en
Publication of JPH0124205B2 publication Critical patent/JPH0124205B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 鋼スラブを特定の熱処理を施した後にあらため
て圧延することにより、大入熱溶接による継手の
低温じん性が優れるものとなるようにした大入熱
溶接用鋼の製造方法を提案し、この種の鋼材の用
途拡大を図ろうとするものである。 (従来の技術) 近年溶接構造物の製作にあたつて、溶接工数を
減らし、溶接コストの低減を図るため、片面一層
サブマージアーク溶接(SAW)や、エレクトロ
ガス溶接(EGW)又はエレクトロスラグ溶接
(ESW)など、大入熱を用いる自動溶接を採用す
る機運が高まつてきている。 しかしながら従来、溶接構造用として用いられ
てきた40Kgf/mm2級以上の鋼は、大入熱溶接を行
うと溶接熱影響部(HAZ)とくに溶接ボンド部
の組織が粗大な上部ベイナイトを主体とする組織
になつてじん性が著しく劣るようになるため、大
入熱溶接の実施が困難であつた。 その後大入熱溶接に適した鋼が種々開発されつ
つあり、その一部は現在実用に供され始めてい
る。 一方最近になつて制御圧延や、圧延後の制御冷
却、又は直接焼入などいわゆる加工熱処理に関連
した技術が発達するに至り、大入熱溶接鋼もこれ
らの手法にて製造可能であつて、このような加工
熱処理技術を採用すると大入熱溶接部のじん性に
悪いとされるCやMnや、その他の合金元素の量
を従来よりも低下させることが可能になるためで
あり、ここに大入熱下の溶接特性に優れる鋼材の
製造として期待されるゆえんである。 ところで前述した大入熱溶接に適した鋼として
溶接熱サイクル時のオーステナイト粒微細化を目
的としてTiNを利用した例が多い。発明者らの
研究によれば、大入熱溶接した継手部の低温じん
性を向上させるには、圧延前の鋼スラブの状態で
0.05μm以下のTiNを多量に存在させることが有
用である。 この点従来、たとえば特公昭57−11944号や特
公昭58−14848号各公報のように、Ti添加鋼を連
続鋳造し、その注入時の溶鋼温度から1100℃まで
の冷却速度を制御し(0.1μm以下のTiNを分散さ
せるように)大入熱溶接部のじん性を改善した例
がある。しかしながらこれらの何れにおいても−
40℃や−60℃のじん性を満足し得るものはない。 発明者らはさきにTi添加鋼を連続鋳造するに
あたつて従来とはまつたく異なる方法を提案した
が、その方法は分塊鋼片には適用不可であり、ま
た連続鋳造法にあつてもときに連鋳機の如何によ
つては実施できない場合もあつた。 (発明が解決しようとする問題点) 鋼片や鋳片内のTiNを0.05μmに微細に分散さ
せて、該片から製造した鋼板の大入熱溶接部のじ
ん性を飛躍的に向上させることがこの発明の目的
である。 なおちなみに、特公51−16890号公報にみられ
るごとく鋼塊から鋼板までの工程中の加熱条件を
特定する試みはあつたが、発明者らの研究による
と、TiNを0.05μm以下に分散させるには単に加
熱条件を特定するだけでは不十分であり、とくに
加熱後の冷却条件が重要であつてこの点の究明に
よりこの発明の完成に至つたのである。 (問題点を解決するための手段) この発明はC:0.01〜0.12wt%、Ti:0.005〜
0.015wt%、N:0.001〜0.006wt% を含有する鋼スラブを1400〜1200℃に加熱した後
の冷却にあたつて スラブ厚み方向中心部の平均冷却速度で、1100
℃までは10℃/min以上、ついで1100℃以下800
℃までは5℃/min以下とし、 その後、該スラブを1200℃〜Ac3の温度に再加
熱して圧延する ことにより低温じん性に優れることを特徴とする
大入熱溶接用鋼の製造方法である。 (作用) この発明の目的を達成するために、鋼スラブを
まず1400〜1200℃に加熱する。この加熱は、分塊
鋼片または鋳片の製造時にできたTiNを溶解さ
せるためである。ここに従来1200℃以上では
TiNは溶解しないとされて来たが、この発明に
従いCとN量を低下させた場合には1200℃以上に
加熱すれば多くのTiNが溶解することがあらた
に見出されてのである。 しかし1200℃以下ではやはりTiNは溶解せず
したがつて加熱温度を1200℃以上に限定した。 また上限はその鋼片が溶解しはじめる温度以下
であれば良いが、加熱炉の経済性から1400℃とな
る。 かくして1400〜1200℃に加熱し鋼スラブはまず
1100℃までを10℃/min以上で急冷し、次に1100
℃から800℃までは5℃/min以下で徐冷する。 つまり溶解させたTiNを1100℃以下の低温領
域で微細に分散析出させるためであつて、以下の
実験事実に基いている。 表1に示した供試鋼への成分に成る鋼片を用い
1250℃に加熱した後、1100℃までの冷却速度と、
1100℃から800℃までの冷却速度を種々変化させ
てTiNの粒径r(μm)と体積率fを測定した結
果を表2に示す。
(Industrial Application Field) A method for producing steel for high heat input welding, in which a steel slab is subjected to a specific heat treatment and then rolled again, so that the low-temperature toughness of the joint produced by high heat input welding is excellent. This proposal aims to expand the uses of this type of steel. (Prior art) In recent years, when manufacturing welded structures, in order to reduce welding man-hours and welding costs, single-sided single-layer submerged arc welding (SAW), electrogas welding (EGW), or electroslag welding ( There is a growing momentum to adopt automatic welding that uses large heat input, such as ESW). However, when high heat input welding is performed on steels of 40Kgf/mm 2 or higher, which have been conventionally used for welded structures, the structure of the weld heat affected zone (HAZ), especially at the weld bond, is mainly composed of coarse upper bainite. As the structure deteriorates, the toughness becomes extremely poor, making it difficult to carry out high heat input welding. Since then, various steels suitable for high heat input welding have been developed, and some of them are now being put into practical use. On the other hand, recently, technologies related to so-called processing heat treatment such as controlled rolling, controlled cooling after rolling, and direct quenching have been developed, and high heat input welded steel can also be manufactured using these methods. This is because by adopting such processing heat treatment technology, it is possible to reduce the amount of C, Mn, and other alloying elements that are considered to be bad for the toughness of high heat input welds. This is why it is expected to produce steel materials with excellent welding properties under large heat input. Incidentally, as a steel suitable for the aforementioned high heat input welding, TiN is often used for the purpose of refining austenite grains during welding thermal cycles. According to the inventors' research, in order to improve the low-temperature toughness of joints welded with high heat input, it is necessary to
It is useful to have a large amount of TiN with a diameter of 0.05 μm or less. In this regard, in the past, as in Japanese Patent Publication No. 57-11944 and Japanese Patent Publication No. 58-14848, Ti-added steel was continuously cast and the cooling rate from the molten steel temperature at the time of pouring to 1100°C was controlled (0.1 There is an example of improving the toughness of a high heat input weld (by dispersing TiN of less than μm). However, in any of these -
There is nothing that can satisfy the toughness at 40℃ or -60℃. The inventors previously proposed a method that is completely different from the conventional method for continuous casting of Ti-added steel, but this method cannot be applied to blooming slabs, and it is difficult to continuously cast Ti-added steel. In some cases, it was not possible to carry out the process depending on the continuous casting machine. (Problem to be solved by the invention) To dramatically improve the toughness of high heat input welded parts of steel plates manufactured from steel slabs or cast slabs by finely dispersing TiN to 0.05 μm. is the purpose of this invention. Incidentally, as seen in Japanese Patent Publication No. 51-16890, there have been attempts to specify the heating conditions during the process from steel ingot to steel plate, but according to the inventors' research, it was found that TiN could be dispersed to a size of 0.05 μm or less. It is not enough to simply specify the heating conditions; in particular, the cooling conditions after heating are important, and the investigation of this point led to the completion of the present invention. (Means for solving the problem) This invention has C: 0.01~0.12wt%, Ti: 0.005~
When cooling a steel slab containing 0.015 wt% and N: 0.001 to 0.006 wt% after heating it to 1400 to 1200°C, the average cooling rate at the center in the thickness direction of the slab is 1100°C.
℃ up to 10℃/min or more, then 1100℃ or less 800
℃ to 5℃/min or less, and then the slab is reheated to a temperature of 1200℃ to Ac 3 and rolled, thereby producing a steel for high heat input welding characterized by excellent low-temperature toughness. It is. (Operation) To achieve the purpose of this invention, a steel slab is first heated to 1400-1200°C. This heating is to melt the TiN produced during the production of the bloomed steel slab or cast slab. Conventionally, at temperatures above 1200℃,
Although it has been believed that TiN does not dissolve, it has been newly discovered that when the amounts of C and N are reduced according to the present invention, a large amount of TiN can be dissolved by heating to 1200° C. or higher. However, TiN did not dissolve at temperatures below 1200°C, so the heating temperature was limited to 1200°C or higher. The upper limit should be below the temperature at which the steel slab begins to melt, but it is set at 1400°C from the economical point of view of the heating furnace. Thus, the steel slab is heated to 1400-1200℃ and the
Rapid cooling up to 1100℃ at 10℃/min or more, then 1100℃
From ℃ to 800℃, slowly cool at a rate of 5℃/min or less. In other words, the purpose is to finely disperse and precipitate dissolved TiN at a low temperature of 1100° C. or lower, and this is based on the following experimental facts. Using steel pieces with the composition of the test steel shown in Table 1,
After heating to 1250℃, cooling rate up to 1100℃,
Table 2 shows the results of measuring the particle size r (μm) and volume fraction f of TiN while varying the cooling rate from 1100°C to 800°C.

【表】【table】

【表】【table】

【表】 前述のように鋼板製造前のスラブにおいて
0.05μm以下のTiNを多量に分散させることが大
入熱溶接部の低温じん性向上に役立つので表2に
示したTiNの粒径rが小さく体積率fの大きい
ほど大入熱溶接部のじん性は優れているわけであ
る。 ここに鋼塊−分塊ままのTiNの状態をεにて
示してあり、平均で粒径rが1.5μmのきわめて大
きいTiNが少なく分散している。 これに対し、条件γ〜εの比較から1250〜1100
℃の冷却速度がはやく、そして1100℃〜800℃の
冷却速度の遅いほどγは小さくfは大となること
がわかる。 多くの鋼について実験を繰返したところ1400〜
1200℃の加熱温度から1100℃までは10℃/min以
上、1100℃から800℃の間は5℃/min以下にす
れば0.05μm以下のTiNが多量に分散することが
判明した。 また、上記処理を受けたスラブは圧延の為再加
熱されるが、この温度範囲は1200〜Ac3に限定す
る。その理由は、下限は鋼をオーステナイト化で
きる最低の温度である。一方上限は1200℃を越え
て加熱すると0.05μm以下に微細に析出したTiN
が再溶解−再析出をおこし粗大化して効果がなく
なるからである。 Cはこの種の溶接構造用鋼として必要な強度を
得るには最低0.01wt%以上必要であり、一方
0.12wt%を越えると大入熱溶接部のじん性に悪影
響がでるばかりか、とくにこの発明の加熱の際に
TiNが溶解し難くなり、その目的が達成できな
くなる。 Nは通常の製鋼工程で含有されるが、0.006wt
%を越えると大入熱溶接部のじん性を損い、一方
0.001wt%以下ではTiNが充分析出しないので下
限は0.001wt%とした。 Tiは鋼中に微細に分散したTiNによつて溶接
部ボンドじん性を向上させるばかりでなく、スラ
ブ加熱時においてもオーステナイト粒の粗大化を
阻止し母材のじん性を向上させる。これらの効果
を発揮するTiは最低0.005wt%であり、また
0.015wt%をこえるTiは逆に母材のじん性を劣化
させる。 上記以外の成分については特に限定しないが好
適な具体例として、Si:1wt%以下、Mn:2wt%
以下、Al:0.1wt%以下を含み、残部Feの化学成
分を有するものが挙げられる。さらにこの基本成
分系に、高強度化、高じん性化などの目的のため
に0.1wt%以下のNb、0.1wt%以下のV、の一種
または二種及び/又はNi,Cr,Mo,Cuの各2wt
%以下あるいは0.005wt%以下のBあるいは
0.01et%のCa及び/又はREMの一種または二種
以上を含有してもよい。 (実施例) この発明の効果をさらに明らかにするために次
に実施例により説明する。 表1に示す各種成分の鋼を溶製したのち造塊−
分塊工程または連続鋳造工程により鋼スラブを作
成し、その後の加熱、冷却条件を変えた熱処理を
行いその後通常の工程で鋼板を製造した。 それら鋼板にいわゆる大入熱溶接を実施し、そ
のボンド部のシヤルビー衝撃試験のじん性を測定
した。それらの条件およびじん性値を表3にまと
めて示す。なお、表3の記号たとえば1Aは数字
が表1における鋼1を用いたことを示す。 この発明の方法で圧延前に熱処理を行つた鋼板
は大入熱溶接ボンド部のじん性がすぐれているの
に対し、比較例では何れもじん性が充分ない。 鋼1Aおよび4Aは造塊−分塊工程で作られたス
ラブにより鋼板を製造した例で大入熱溶接ボンド
部じん性が低い。 また鋼3Aは連鋳工程で作られたスラブにより
鋼板を製造した例で、大入熱溶接ボンド部じん性
は造塊−分塊工程のものに比べて優れているもの
の値は低い。 次に鋼5A,5BについてはCがまたは鋼6A,
6BはTiがこの発明の成分範囲でないため5Aと5B
および6Aと6Bの比較であきらかなように、この
発明の方法の処理を行うと否とに拘らずじん性は
改善されていない。 次に鋼1Cは1100〜800度の冷却速度、鋼1Dは加
熱温度から100度までの冷却速度、そして鋼1Eは
加熱温度、さらに鋼1Fは圧延の為の再加熱温度
において、何れもこの発明の範囲をはずれている
ため、鋼1Aに比べてじん性がはるかに劣つてい
る。 これらに対し、この発明に従う1B,2A,3B,
4Bは大入熱溶接部のじん性がきわめて高く、こ
の発明の効果が明らかである。 (発明の効果) この発明の方法によれば大入熱溶接部じん性に
優れた鋼板が確実に得られる。とくに従来優れた
じん性が得られにくい造塊工程を含む鋼板の大入
熱溶接部じん性を顕著に改善することが可能にな
る。
[Table] As mentioned above, in the slab before manufacturing the steel plate
Dispersing a large amount of TiN with a diameter of 0.05 μm or less is useful for improving the low-temperature toughness of high heat input welds. The nature is excellent. Here, the state of TiN in the form of a steel ingot and bloom is indicated by ε, and a small amount of very large TiN with an average grain size r of 1.5 μm is dispersed. On the other hand, from the comparison of conditions γ to ε, 1250 to 1100
It can be seen that the faster the cooling rate at 1100°C to 800°C is, the smaller γ becomes and the larger f becomes. After repeated experiments with many steels, the result was 1400~
It was found that a large amount of TiN of 0.05 μm or less can be dispersed if the heating rate is 10°C/min or more from 1200°C to 1100°C, and 5°C/min or less from 1100°C to 800°C. Further, the slab subjected to the above treatment is reheated for rolling, but this temperature range is limited to 1200~ Ac3 . The reason is that the lower limit is the lowest temperature at which the steel can be austenitized. On the other hand, the upper limit is TiN, which finely precipitates below 0.05μm when heated above 1200℃.
This is because the particles undergo re-dissolution and reprecipitation, becoming coarse and ineffective. C is required to be at least 0.01wt% in order to obtain the strength required for this type of welded structural steel;
If it exceeds 0.12wt%, not only will it have a negative effect on the toughness of the high heat input welded part, but especially during the heating of this invention.
TiN becomes difficult to dissolve and its purpose cannot be achieved. N is contained in the normal steelmaking process, but 0.006wt
If it exceeds %, the toughness of the high heat input weld will be impaired;
If TiN is less than 0.001wt%, sufficient TiN will not be released, so the lower limit was set at 0.001wt%. Ti not only improves the bond toughness of the weld joint through the finely dispersed TiN in the steel, but also prevents austenite grains from coarsening during slab heating and improves the toughness of the base metal. The minimum amount of Ti that exhibits these effects is 0.005wt%, and
On the contrary, Ti exceeding 0.015wt% deteriorates the toughness of the base material. Components other than the above are not particularly limited, but suitable specific examples include Si: 1wt% or less, Mn: 2wt%
The following examples include those containing Al: 0.1 wt% or less, with the balance being Fe. In addition, to this basic component system, one or two types of Nb of 0.1wt% or less, V of 0.1wt% or less and/or Ni, Cr, Mo, Cu, etc. are added for the purpose of increasing strength and toughness. 2wt each
% or less or 0.005wt% or less B or
It may contain 0.01et% of Ca and/or one or more of REM. (Example) In order to further clarify the effects of the present invention, an example will be described below. After melting steel with various components shown in Table 1, ingots are formed.
A steel slab was created by a blooming process or a continuous casting process, followed by heat treatment with varying heating and cooling conditions, and then a steel plate was manufactured by a normal process. So-called high heat input welding was performed on these steel plates, and the toughness of the bonded portion was measured in a Shalby impact test. The conditions and toughness values are summarized in Table 3. Note that the symbol 1A in Table 3, for example, indicates that steel 1 in Table 1 was used. The steel sheets heat-treated before rolling by the method of the present invention have excellent toughness at the high heat input weld bond, whereas the comparative examples do not have sufficient toughness. Steels 1A and 4A are examples in which steel plates were manufactured from slabs made by the ingot-blowing process, and the toughness of the high-heat-input weld bond is low. Steel 3A is an example in which a steel plate was manufactured from a slab made in the continuous casting process, and although the toughness of the high heat input welding bond is superior to that in the ingot-blowing process, the value is low. Next, for Steel 5A and 5B, C is or Steel 6A,
6B is 5A and 5B because Ti is not in the component range of this invention.
And as is clear from the comparison between 6A and 6B, the toughness is not improved regardless of whether or not the method of the present invention is applied. Next, Steel 1C has a cooling rate of 1100 to 800 degrees, Steel 1D has a cooling rate from heating temperature to 100 degrees, Steel 1E has a heating temperature, and Steel 1F has a reheating temperature for rolling. Since it is out of the range, its toughness is far inferior to that of steel 1A. In contrast, 1B, 2A, 3B, and
4B has extremely high toughness in the high heat input welded area, which clearly demonstrates the effectiveness of this invention. (Effects of the Invention) According to the method of the present invention, a steel plate with excellent toughness at a large heat input weld can be reliably obtained. In particular, it is possible to significantly improve the toughness of high heat input welded parts of steel plates, which involve the ingot making process, where it has been difficult to obtain excellent toughness in the past.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 C:0.01〜0.12wt%、Ti:0.005〜0.015wt
%、N:0.001〜0.006wt% を含有する鋼スラブを1400〜1200℃に加熱した後
の冷却にあたつて スラブ厚み方向中心部の平均冷却速度で、1100
℃までは10℃/min以上、ついで1100℃以下800
℃までは5℃/min以下とし、 その後、該スラブを1200℃〜Ac3の温度に再加
熱して圧延する ことにより低温じん性に優れることを特徴とする
大入熱溶接用鋼の製造方法。
[Claims] 1 C: 0.01 to 0.12wt%, Ti: 0.005 to 0.015wt
%, N: When cooling a steel slab containing 0.001 to 0.006wt% after heating it to 1400 to 1200℃, the average cooling rate at the center in the thickness direction of the slab is 1100℃.
℃ up to 10℃/min or more, then 1100℃ or less 800
℃ to 5℃/min or less, and then the slab is reheated to a temperature of 1200℃ to Ac 3 and rolled, thereby producing a steel for high heat input welding characterized by excellent low-temperature toughness. .
JP23523084A 1984-11-09 1984-11-09 Manufacture of steel for large heat input welding Granted JPS61113714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23523084A JPS61113714A (en) 1984-11-09 1984-11-09 Manufacture of steel for large heat input welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23523084A JPS61113714A (en) 1984-11-09 1984-11-09 Manufacture of steel for large heat input welding

Publications (2)

Publication Number Publication Date
JPS61113714A JPS61113714A (en) 1986-05-31
JPH0124205B2 true JPH0124205B2 (en) 1989-05-10

Family

ID=16983004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23523084A Granted JPS61113714A (en) 1984-11-09 1984-11-09 Manufacture of steel for large heat input welding

Country Status (1)

Country Link
JP (1) JPS61113714A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393845A (en) * 1986-10-08 1988-04-25 Nippon Steel Corp High-tensile steel excellent in cod characteristic in weld zone
KR100328059B1 (en) * 1997-12-11 2002-05-10 이구택 A method for manufacturing structural steel plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144088A (en) * 1974-10-12 1976-04-15 Shigeharu Hirohama KANDAIGANETORITSUKE SOCHI
JPS5814848A (en) * 1981-07-20 1983-01-27 Fuji Xerox Co Ltd Controller for electric power economization of electrophotographic copier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144088A (en) * 1974-10-12 1976-04-15 Shigeharu Hirohama KANDAIGANETORITSUKE SOCHI
JPS5814848A (en) * 1981-07-20 1983-01-27 Fuji Xerox Co Ltd Controller for electric power economization of electrophotographic copier

Also Published As

Publication number Publication date
JPS61113714A (en) 1986-05-31

Similar Documents

Publication Publication Date Title
EP1533392A1 (en) Steel product for high heat input welding and method for production thereof
JPH0642979B2 (en) Manufacturing method of high strength steel for welding and low temperature containing titanium oxide
WO2016009595A1 (en) Method of manufacturing steel plate for high-heat input welding
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JPH0757886B2 (en) Process for producing Cu-added steel with excellent weld heat-affected zone toughness
JPH0527703B2 (en)
JPH0765097B2 (en) Method for producing H-section steel excellent in fire resistance and weld toughness
JPH03162522A (en) Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPH0532442B2 (en)
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JP2596853B2 (en) Method for producing intragranular ferrite shaped steel with excellent base metal toughness as welded and excellent weld toughness
JPH0124205B2 (en)
JP4673788B2 (en) Steel excellent in toughness of weld heat-affected zone and method for producing the same
JP3481417B2 (en) Thick steel plate with excellent toughness of weld heat affected zone
JPH0569902B2 (en)
JPH07278736A (en) Steel products having excellent toughness of weld heat affected zone
JP7272471B2 (en) steel plate
JP3502805B2 (en) Method for producing steel with excellent toughness in weld joint
JPH07278653A (en) Production of steel excellent in cold toughness on welding heat affected zone
JPH0543977A (en) Production of low temperature high toughness steel for welding
JPS6256518A (en) Production of high strength steel sheet for high heat input welding
JP2688067B2 (en) Tensile strength for electron beam welding 60 ▲ kg ▼ f / ▲ mm2 ▼ class Mo-added steel manufacturing method
JPH03211251A (en) High strength for welding structure having excellent fracture toughness in heat affected zone
JPS63317623A (en) Production of wear resisting steel plate having excellent delayed cracking resistance