JPH01238166A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01238166A
JPH01238166A JP6611888A JP6611888A JPH01238166A JP H01238166 A JPH01238166 A JP H01238166A JP 6611888 A JP6611888 A JP 6611888A JP 6611888 A JP6611888 A JP 6611888A JP H01238166 A JPH01238166 A JP H01238166A
Authority
JP
Japan
Prior art keywords
region
base
electrode
emitter
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6611888A
Other languages
Japanese (ja)
Inventor
Taiji Ema
泰示 江間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6611888A priority Critical patent/JPH01238166A/en
Publication of JPH01238166A publication Critical patent/JPH01238166A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce a parasitic resistance component between a base and an emitter in a bipolar transistor of a BiCMOS by providing a gate electrode made of a conductive material layer formed through an insulating film on a semiconductor substrate between an emitter region and a base contact. CONSTITUTION:An insulating film 6 is formed on a gate electrode G except an electrode lead. With the electrode G and the film 6 covering the electrode as masks an N<+> type layer (or P<+> type layer) to become an emitter region 4 and a P<+> type layer (or N<+> type layer) to become a base contact region 3 are formed. Accordingly, the regions 4, 3 are aligned to the gate electrode to be formed. A margin for positioning to absorb an aligning error is not necessarily presumed to be formed between the regions 4 and 3 to reduce its parasitic resistance component, and the irregularities in the size and pattern due to the alignment can be suppressed.

Description

【発明の詳細な説明】 〔概 要〕 半導体装置の製造方法に関し、 B i CMO3素子におけるバイポーラ型トランジス
タのベース・エミッタ間の寄生抵抗成分を、製造工程を
複雑化することなく低減することを目的とし、 一導電型の半導体基板表面に、逆導電型領域からなるベ
ース領域と、該ベース領域の端部に接続する逆導電型高
濃度領域からなるベースコンタクト領域と、前記ベース
領域内に一導電型領域からなるエミッタ領域ど、該エミ
ッタ領域および前記ベースコンタクト領域にオーミック
接触するエミッタ電極およびベース電極とを具備すると
ともに、該エミッタ電極およびベース電極との間の半導
体基板上に絶縁膜を介して形成された導電性材料層から
なるゲート電極とを具備する構成とした。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing a semiconductor device, the objective is to reduce the parasitic resistance component between the base and emitter of a bipolar transistor in a B i CMO3 element without complicating the manufacturing process. A base region consisting of an opposite conductivity type region, a base contact region consisting of an opposite conductivity type high concentration region connected to an end of the base region, and a one conductivity type semiconductor substrate surface in the base region. An emitter region consisting of a mold region is provided with an emitter electrode and a base electrode that are in ohmic contact with the emitter region and the base contact region, and an insulating film is provided on the semiconductor substrate between the emitter electrode and the base electrode. The structure includes a gate electrode made of a conductive material layer formed thereon.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor device.

〔従来の技術〕[Conventional technology]

バイポーラ素子とCMO3素子とを一個のチップ上に集
積したBiCMO3は、バイポーラ型トランジスタの持
つ高速性と、CMO3素子が高集積化可能で且つ消費電
力が少ないという、両者の利点を併せ持つことから近年
注目を集めている。
BiCMO3, which integrates a bipolar element and a CMO3 element on a single chip, has attracted attention in recent years because it combines the advantages of both the high speed of bipolar transistors and the high integration of CMO3 elements and low power consumption. are collecting.

第4図に示すバイポーラ型トランジスタは、抵抗値の低
いベースコンタクト部BCとエミッタ領域Eとの間隔が
広いと、両者の間の高抵抗領域Rの抵抗rが高くなり、
これが寄生抵抗としてトランジスタ特性に悪影響を及ぼ
す。そこでこの抵抗成分を低減するために色々な工夫が
なされているが、これは必ずしも容易ではない。
In the bipolar transistor shown in FIG. 4, when the distance between the base contact portion BC, which has a low resistance value, and the emitter region E is wide, the resistance r of the high resistance region R between the two becomes high.
This adversely affects transistor characteristics as a parasitic resistance. Various efforts have been made to reduce this resistance component, but this is not always easy.

しかも上記ベースコンタクト領域BCおよびエミッタ領
域8表面に形成されるベース電極B゛やエミッタ電極E
” の位置、およびこれらパターンの画定は、一般に位
置合わせによって行なっている。そのため」二記高抵抗
部の長さには、位置合わせのバラツキを吸収するための
、位置合わせ余裕を見込まねばならないことから必要以
上に大きくなり、しかもその寸法は一定せず、トランジ
スタの性能向上を妨げている。
Moreover, the base electrode B' and the emitter electrode E formed on the surface of the base contact region BC and the emitter region 8 are
The position of `` and the definition of these patterns are generally performed by alignment. Therefore, the length of the high resistance part mentioned in ``2'' must include alignment margin to absorb alignment variations. The size of the transistor becomes larger than necessary, and its dimensions are not constant, which hinders improvements in transistor performance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記問題はセルファライン(自己整合)法を用いること
ができれば、位置合わせ余裕を見込む必要もなくなり、
且つ製造工程が簡単化されるが、−個のチップ上にバイ
ポーラ型素子とCMO3素子の双方を形成する必要があ
るため、一方に対する改善手段が他方に悪影響を及ぼさ
ないようにする必要があり、実際には必ずしも容易では
ない。
If the above problem could be solved using the self-alignment method, there would be no need to allow for alignment margin.
In addition, the manufacturing process is simplified, but since it is necessary to form both a bipolar element and a CMO3 element on one chip, it is necessary to ensure that improvement measures for one do not have a negative effect on the other. In reality, it's not always easy.

本発明はB i CMO3素子におけるバイポーラ型ト
ランジスタのベース・エミッタ間の寄生抵抗成分を、製
造工程を複雑化することなく低減することを目的とする
An object of the present invention is to reduce the parasitic resistance component between the base and emitter of a bipolar transistor in a B i CMO3 element without complicating the manufacturing process.

〔課題を解決するための手段〕[Means to solve the problem]

本発明においては、第1図に示す如く、BiCMO3に
おけるバイポーラトランジスタを、エミッタ領域4とベ
ースコンタクト部3の間の半導体基板表面に、絶縁膜5
を介して形成された導電材料層からなるゲート電極Gを
設けた構成とした。
In the present invention, as shown in FIG.
The structure includes a gate electrode G made of a conductive material layer formed through a conductive material layer.

このゲート電極Gは、MOS  FETのゲート電極と
同様に働くものである。
This gate electrode G functions similarly to the gate electrode of a MOS FET.

〔作 用〕[For production]

上記ゲート電極Gの表面には、電掻取り出し部を除いて
絶縁膜6が形成される。そこでゲート電極Gおよびその
表面を被覆する絶縁膜6をマスクとして、エミッタ領域
4となるn″層(またはp゛層)とベースコンタクト領
域3となるp゛層(またはn0層)を形成できる。
An insulating film 6 is formed on the surface of the gate electrode G except for the electrode scraping portion. Therefore, using the gate electrode G and the insulating film 6 covering its surface as a mask, an n'' layer (or p' layer) which will become the emitter region 4 and a p' layer (or n0 layer) which will become the base contact region 3 can be formed.

従ってエミッタ領域4およびベースコンタクト領域3は
、ゲート電極と位置整合して形成できる。
Therefore, emitter region 4 and base contact region 3 can be formed in alignment with the gate electrode.

そのため本発明に係るバイポーラトランジスタでは、エ
ミッタ領域4とベースコンタクト領域3との間に、位置
合わせ誤差を吸収するための位置合わせ余裕を見込む必
要がなく、従って寄生抵抗成分が小さくなるとともに、
位置合わせによる寸法やパターンのバラツキが抑制され
る。
Therefore, in the bipolar transistor according to the present invention, there is no need to provide an alignment margin between the emitter region 4 and the base contact region 3 to absorb alignment errors, and therefore, the parasitic resistance component is reduced, and
Variations in dimensions and patterns due to alignment are suppressed.

更に、上記ゲート電極Gに適当な電圧を印加することに
より、このゲート電極G直下部にチャネル層が形成され
るので、ベース高抵抗部の抵抗を低(できる。
Furthermore, by applying an appropriate voltage to the gate electrode G, a channel layer is formed directly under the gate electrode G, so that the resistance of the high resistance portion of the base can be reduced.

また、本発明では、位置合わせ余裕を見込む必要がない
ためベース領域およびエミッタ領域とも小さくできるの
で、寄生容量が減少する。
Further, in the present invention, since there is no need to allow for alignment margin, both the base region and the emitter region can be made small, thereby reducing parasitic capacitance.

〔実 施 例〕〔Example〕

以下本発明の一実施例を第2図(a)〜(f)により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 2(a) to 2(f).

第2図(a)に見られる如く、サブストレー■−1上に
n型高濃度(n゛)の埋込み層1−2.その上にn−層
からなるコレクタ層1−3が形成された半導体ウェーハ
上に、通常の選択酸化法によりフィールド酸化膜7を形
成して、素子領域8を画定し、この素子領域8表面にp
型低濃度層(p−層)2′と、その表面にシリコン酸化
膜のような絶縁膜5゜を形成する。
As seen in FIG. 2(a), a buried layer 1-2 of n-type high concentration (n゛) is formed on the substrate 1-1. A field oxide film 7 is formed by a normal selective oxidation method on a semiconductor wafer on which a collector layer 1-3 consisting of an n-layer is formed to define an element region 8. p
A type low concentration layer (p-layer) 2' and an insulating film 5° such as a silicon oxide film are formed on the surface thereof.

本実施例では、上記コレクタ層1−3が半導体基板また
は層1に相当する。従って本実施例ではn型が一導電型
、p型が逆導電型となる。
In this embodiment, the collector layer 1-3 corresponds to the semiconductor substrate or layer 1. Therefore, in this embodiment, the n-type is of one conductivity type, and the p-type is of the opposite conductivity type.

以下説明の便宜のため第2図(b)〜(e)には、サブ
ストレー)1−1.埋込み層1−2は図示しない。
For convenience of explanation below, FIGS. 2(b) to (e) show sub-strata) 1-1. The buried layer 1-2 is not shown.

次いで(b)に示す如く上記絶縁膜5”上に、多結晶シ
リコン層とその上にS i Oz層を堆積し、これの不
要部を除去して、多結晶シリコン(poly Si)か
らなるゲート電極G、およびその上面を被覆する絶縁膜
6を形成する。
Next, as shown in (b), a polycrystalline silicon layer and a SiOz layer are deposited on the insulating film 5'', and unnecessary portions of this are removed to form a gate made of polycrystalline silicon (polySi). An electrode G and an insulating film 6 covering the upper surface thereof are formed.

次いで(C)に示す如く、上記絶縁膜6.ゲート電極G
と図示はしていないがレジスト膜とを併用して、イオン
注入法により砒素(As)や燐(P)のようなn型不純
物を導入してn゛層(エミッタ領域)4を形成し、次い
でボロン(B)のようなn型不純物を導入してp°層3
°を形成する。
Next, as shown in (C), the insulating film 6. Gate electrode G
Although not shown, an n-type impurity such as arsenic (As) or phosphorus (P) is introduced by ion implantation using a resist film to form an n layer (emitter region) 4. Next, an n-type impurity such as boron (B) is introduced to form the p° layer 3.
Form a °.

次いで(d)に示す如く、半導体基板上全面に5i02
層を堆積し、これの不要部をリアクティブイオンエツチ
ング(RIE)法により除去して、素子領域8の表面を
露呈させる。これによってゲート電極Gの側壁部に側壁
SiO□層6°が形成され、ゲート電極Gの要部がすべ
て被覆される。この側壁5iOz層6゛とゲート電極G
上面のSiO□からなる絶縁膜6は同じ材質であるので
、この両者は一体化し、ゲート電極Gは絶縁膜6,6゜
に埋め込まれた形となる。
Next, as shown in (d), 5i02 was applied all over the semiconductor substrate.
A layer is deposited and unnecessary portions thereof are removed by reactive ion etching (RIE) to expose the surface of device region 8. As a result, a sidewall SiO□ layer 6° is formed on the sidewall portion of the gate electrode G, and the main portion of the gate electrode G is entirely covered. This sidewall 5iOz layer 6' and the gate electrode G
Since the insulating film 6 made of SiO□ on the upper surface is made of the same material, the two are integrated, and the gate electrode G is embedded in the insulating films 6, 6°.

なお上記(C)、 (d)で説明した工程は次のように
変形しても良い。
Note that the steps described in (C) and (d) above may be modified as follows.

即ち、(C)の工程で形成したn゛層4び21層3′は
、上記側壁Sin、層を形成した後にイオン注入法によ
り形成しても良い。この場合には、ベースコンタクト領
域とエミッタ領域との間隔が大きくなり、その分抵抗値
が高くなるが、この工程に従えば、図には示していない
MOS)ランジスタ部の形成と、バイポーラトランジス
タの形成とを同一工程で同時に行うことができるという
利点がある。またこの製造工程によれば、エミッタ領域
の幅を小さくできるという効果を生じる。
That is, the n layer 4 and the 21 layer 3' formed in the step (C) may be formed by ion implantation after forming the side wall Sin layer. In this case, the distance between the base contact region and the emitter region becomes larger, and the resistance value increases accordingly, but if you follow this process, you will be able to form a MOS transistor (not shown) and a bipolar transistor. There is an advantage that the formation can be performed simultaneously in the same process. This manufacturing process also has the effect of reducing the width of the emitter region.

次いで(e)に示す如く、素子領域8の露呈している表
面、即ち、ベースコンタクト領域3とエミッタ領域4の
表面と接触するn型不純物およびn型不純物を所定量含
有する多結晶シリコン層を堆積させ、これの不要部を選
択的に除去して、ベース電極B゛およびエミッタ電極E
゛を形成する。
Next, as shown in (e), a polycrystalline silicon layer containing an n-type impurity and a predetermined amount of n-type impurity is formed in contact with the exposed surface of the element region 8, that is, the surfaces of the base contact region 3 and the emitter region 4. The base electrode B' and the emitter electrode E are formed by selectively removing unnecessary parts of the deposited parts.
form.

なお、前述のエミッタ領域であるn“層4は、本工程終
了後にエミッタ電極E”を拡散源とし、エミッタ電極E
°中に含まれるn型の不純物を拡散させて形成してもよ
い。
Note that the n" layer 4, which is the emitter region mentioned above, uses the emitter electrode E" as a diffusion source after this process is completed, and the emitter electrode E"
It may also be formed by diffusing n-type impurities contained in the material.

このあと、PSG (燐シリケートガラス)層9および
Affiからなる引き出し電極10.11を形成して、
第2図(f)に示すような本発明に係るバイポーラトラ
ンジスタが完成する。
After that, a PSG (phosphorus silicate glass) layer 9 and an extraction electrode 10.11 made of Affi are formed.
A bipolar transistor according to the present invention as shown in FIG. 2(f) is completed.

上記本実施例のバイポーラトランジスタは、エミッタ領
域およびベースコンタクト領域l域がゲート電極に自己
整合的に形成されるので、位置合わせ誤差がなく、その
ためベースコンタクト領域とエミッタ領域との間に位置
合わせ余裕を見込む必要がなく、また位置合わせ誤差に
よる寸法のバラツキがない。従って高抵抗部の長さを短
くすることができる。
In the bipolar transistor of this embodiment, the emitter region and the base contact region 1 are formed in a self-aligned manner with the gate electrode, so there is no alignment error, and therefore there is alignment margin between the base contact region and the emitter region. There is no need to take into account the difference in size, and there is no variation in dimensions due to alignment errors. Therefore, the length of the high resistance portion can be shortened.

更に、上記ゲート電極Gに通常のMOS)ランジスタと
同様に、ゲート電圧を印加しておくと、ゲート電極G直
下のp型層内にチャネルが形成されるので、導電率が高
まるという効果がある。
Furthermore, if a gate voltage is applied to the gate electrode G as in a normal MOS transistor, a channel is formed in the p-type layer directly under the gate electrode G, which has the effect of increasing conductivity. .

ゲート電極Gは、ベース電極とは短絡してもよいが、エ
ミッタ電極と短絡すると、エミッタ・ベース間の寄生容
量が増加するので、好ましくない。
Although the gate electrode G may be short-circuited with the base electrode, short-circuiting with the emitter electrode is not preferable because the parasitic capacitance between the emitter and the base increases.

なお上記一実施例ではゲート電極Gを絶縁膜で覆った例
を説明したが、ゲート電極Gは必ずしも絶縁膜で覆う必
要はない。
Although the above embodiment describes an example in which the gate electrode G is covered with an insulating film, the gate electrode G does not necessarily need to be covered with an insulating film.

第3図は本発明の他の実施例を示す図であって、ベース
電極B′およびエミッタ電極E゛をA2で形成した例で
ある。
FIG. 3 is a diagram showing another embodiment of the present invention, in which the base electrode B' and the emitter electrode E' are formed of A2.

このように本発明は、種々変形して実施し得るものであ
って、上記一実施例および他の実施例に限定されるもの
ではない。
As described above, the present invention can be implemented with various modifications, and is not limited to the above embodiment and other embodiments.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、ベース抵抗を安定に
低くすることが可能であり、また、本発明に係るバイポ
ーラトランジスタは、その各部をCMO3素子の各部を
形成する工程で同時に形成できるので、B i CMO
3として工程を増加しないで、Bipミルトランジスタ
能を上げることができる。
As explained above, according to the present invention, it is possible to stably lower the base resistance, and each part of the bipolar transistor according to the present invention can be formed simultaneously in the process of forming each part of the CMO3 element. B i CMO
3, Bip mill transistor performance can be increased without increasing the number of steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成説明図、 第2図(a)〜(f)は、本発明一実施例をその製造工
程とともに示す図、 第3図は本発明の他の実施例説明図、 第4図は従来のB i CMO3の問題点説明図である
。 図において、1は半導体基板または層、2はベース領域
、3はベースコンタクト領域、4はエミッタ領域、6は
絶縁膜、Gはゲート電極、Boはベース電極、BCはベ
ースコンタクト領域、Eはエミッタ領域、Eoはエミッ
タ電極を示す。 4: エミー/7ni戊゛ Bo二  ベース電泳 E’:  Iミ1り’tJa G:  7−)−’を招 7I−発σ月^」〆kTt、O月閏 第1図 不ネg、ff−τ始例ε号の源遣ゴ¥し11:ネTm第
2図
FIG. 1 is an explanatory diagram of the configuration of the present invention; FIGS. 2(a) to (f) are diagrams showing one embodiment of the present invention together with its manufacturing process; FIG. 3 is an explanatory diagram of another embodiment of the present invention; FIG. 4 is an explanatory diagram of problems in the conventional B i CMO3. In the figure, 1 is a semiconductor substrate or layer, 2 is a base region, 3 is a base contact region, 4 is an emitter region, 6 is an insulating film, G is a gate electrode, Bo is a base electrode, BC is a base contact region, and E is an emitter. The region Eo indicates the emitter electrode. 4: Emmy/7ni゛Bo2 Base Electrophoresis E': Imi1ri'tJa G: 7-)-' is invited 7I-departing σ month^'' 〆kTt, O month leap 1st figure non-neg, ff -τ first example ε issue's source code 11: NeTm Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)一導電型の半導体基板または層(1)表面に、逆
導電型領域からなるベース領域(2)と該ベース領域の
端部に接続する逆導電型高濃度領域からなるベースコン
タクト領域(3)と、前記ベース領域内に一導電型領域
からなるエミッタ領域(4)と、該エミッタ領域および
前記ベースコンタクト領域にオーミック接触するエミッ
タ電極(E′)およびベース電極(B′)とを具備する
とともに、該エミッタ電極およびベース電極との間の半
導体基板上に絶縁膜を介して形成された導電性材料層か
らなるゲート電極(G)とを具備することを特徴とする
半導体装置。
(1) On the surface of a semiconductor substrate or layer (1) of one conductivity type, a base region (2) consisting of a region of the opposite conductivity type and a base contact region (2) consisting of a high concentration region of the opposite conductivity type connected to the end of the base region ( 3), an emitter region (4) consisting of a region of one conductivity type in the base region, and an emitter electrode (E') and a base electrode (B') that are in ohmic contact with the emitter region and the base contact region. A semiconductor device comprising: a gate electrode (G) made of a conductive material layer formed on a semiconductor substrate between the emitter electrode and the base electrode with an insulating film interposed therebetween.
(2)前記ゲート電極(G)の上部と側面に絶縁膜(6
)を有し、前記エミッタ領域(4)および前記ベースコ
ンタクト領域(3)が、前記ゲート電極(G)側面の絶
縁膜(6)と、素子領域(8)を画定するフィールド酸
化膜(7)により画定されていることを特徴とする請求
項(1)記載の半導体装置。
(2) An insulating film (6
), in which the emitter region (4) and the base contact region (3) define an insulating film (6) on the side surface of the gate electrode (G) and a field oxide film (7) defining an element region (8). 2. The semiconductor device according to claim 1, wherein the semiconductor device is defined by:
(3)前記ゲート電極(G)によりエミッタ領域(4)
およびベースコンタクト領域(3)が画定されているこ
とを特徴とする請求項(1)記載の半導体装置。
(3) Emitter region (4) by the gate electrode (G)
2. The semiconductor device according to claim 1, further comprising a base contact region (3) and a base contact region (3).
JP6611888A 1988-03-18 1988-03-18 Semiconductor device Pending JPH01238166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6611888A JPH01238166A (en) 1988-03-18 1988-03-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6611888A JPH01238166A (en) 1988-03-18 1988-03-18 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01238166A true JPH01238166A (en) 1989-09-22

Family

ID=13306645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6611888A Pending JPH01238166A (en) 1988-03-18 1988-03-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01238166A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179067A (en) * 2001-09-18 2003-06-27 Agere Systems Guardian Corp Bipolar junction transistor compatible with vertical replacement gate transistor
JP2005252158A (en) * 2004-03-08 2005-09-15 Yamaha Corp Bipolar transistor and manufacturing method therefor
JP2009059785A (en) * 2007-08-30 2009-03-19 Seiko Instruments Inc Semiconductor device
JP2017079260A (en) * 2015-10-20 2017-04-27 株式会社リコー Semiconductor device, imaging device, electronic apparatus and method for manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179067A (en) * 2001-09-18 2003-06-27 Agere Systems Guardian Corp Bipolar junction transistor compatible with vertical replacement gate transistor
JP2005252158A (en) * 2004-03-08 2005-09-15 Yamaha Corp Bipolar transistor and manufacturing method therefor
JP2009059785A (en) * 2007-08-30 2009-03-19 Seiko Instruments Inc Semiconductor device
JP2017079260A (en) * 2015-10-20 2017-04-27 株式会社リコー Semiconductor device, imaging device, electronic apparatus and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JPS58210678A (en) Power mosfet structure and method of producing same
JPH0123949B2 (en)
JPS60202965A (en) Method of producing improved oxide defined transistor and structure obtained as its result
JPH01238166A (en) Semiconductor device
JP2712359B2 (en) Method for manufacturing semiconductor device
JP3105237B2 (en) Method for manufacturing DMOS type semiconductor device
JPH01105578A (en) Manufacture of semiconductor device
JP2528559B2 (en) Method for manufacturing lateral bipolar transistor
JPS5928993B2 (en) Semiconductor device and its manufacturing method
JPH05343413A (en) Bipolar transistor and manufacture thereof
JPH0712064B2 (en) Method for manufacturing semiconductor integrated circuit
JPS63211748A (en) Manufacture of semiconductor device
JPS63146466A (en) Bipolar transistor with polycrystalline silicon vertical base contact
JPS6059777A (en) Manufacture of semiconductor device
CN113808950A (en) Manufacturing method for improving depletion type MOSFET device
JPS5966168A (en) Manufacture of semiconductor device
JPH03175669A (en) Structure of semiconductor integrated circuit device
JPS59981B2 (en) Electrostatic induction type semiconductor logic circuit device
JPS5842272A (en) Manufacture of semiconductor device
JPS60223160A (en) Manufacture of bipolar transistor
JPS6223474B2 (en)
JPS61237466A (en) Manufacture of bipolar transistor
JPH06163854A (en) Manufacture of mask rom
JPH06252169A (en) Semiconductor device and its manufacturing thereof
JPS62209858A (en) Semiconductor device