JPH01236661A - Manufacture of thin film solar cell - Google Patents

Manufacture of thin film solar cell

Info

Publication number
JPH01236661A
JPH01236661A JP63064388A JP6438888A JPH01236661A JP H01236661 A JPH01236661 A JP H01236661A JP 63064388 A JP63064388 A JP 63064388A JP 6438888 A JP6438888 A JP 6438888A JP H01236661 A JPH01236661 A JP H01236661A
Authority
JP
Japan
Prior art keywords
substrate
translucent insulating
film
photoelectric conversion
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63064388A
Other languages
Japanese (ja)
Inventor
Kazuo Takemura
和夫 竹村
Masao Misonoo
雅郎 御園生
Hideo Kawahara
秀夫 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP63064388A priority Critical patent/JPH01236661A/en
Publication of JPH01236661A publication Critical patent/JPH01236661A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enhance photoelectric conversion efficiency without an increase in the manufacturing steps by a method wherein an anti-reflection layer is formed on the incident side of a translucent insulating substrate and a layer for preventing diffusion of alkaline ions from the opposite side of the substrate is formed of the same material. CONSTITUTION:Translucent insulating films 2 and 7, lower than the translucent insulating substrate 1 in refraction index, are simultaneously formed on both sides of a translucent insulating substrate 1, respectively. Further, a semiconductor photoelectric conversion layer 4 is formed on a translucent insulating film 2, with a transparent conductive film 3 between the transparent insulating film 2 and semiconductor photoelectric conversion layer 4. An incident light beam 6 is guided to the semiconductor photoelectric conversion layer 4 without a loss thanks to the anti-reflection effect of the low refraction index translucent insulating film 2. The resultant current is efficiently taken out after passing through the transparent conductive film, which is adequately reduced in resistance thanks to the alkaline ion diffusion prevention effect of the low refraction index translucent insulating film 2 formed on the rear side, where it experiences no undesired consumption. This design increases the photoelectric conversion efficiency without any new manufacturing steps.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は薄膜太陽電池の製造力°法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing thin film solar cells.

[従来の技術] 薄膜太陽電池は省資源、省エネルギーの点で結晶系太陽
電池よりも優れており、特に非晶質シリコン(a−3L
)を充電変換層に用いたものは、低価格太陽電池の中心
的な存在となっている。その中でも基板にガラスを用い
たものが取扱の容易さの点から一般的となっている。第
2図に一般的な非晶質シリコン太陽電池の断面図を示す
。従来の技術によれば、ガラス上に非晶質シリコン太陽
電池を製造するにあたり、まずソーダライムガラス基板
1の少なくとも片側に酸化珪素膜に代表される透光性絶
縁(拡散防止)膜、2を形成し、基板からのアルカリイ
オンが拡散しないようにする。
[Conventional technology] Thin-film solar cells are superior to crystalline solar cells in terms of resource and energy savings, and are especially superior to crystalline solar cells in terms of resource and energy savings.
) in the charge conversion layer are the mainstay of low-cost solar cells. Among these, those using glass for the substrate are common because of ease of handling. FIG. 2 shows a cross-sectional view of a typical amorphous silicon solar cell. According to the conventional technology, in manufacturing an amorphous silicon solar cell on glass, first a light-transmitting insulating (diffusion prevention) film 2, typically a silicon oxide film, is coated on at least one side of a soda lime glass substrate 1. to prevent alkali ions from diffusing from the substrate.

ついでその透光性絶縁膜の上に透明導電膜3、非晶質シ
リコン膜4、金属電極膜5を順次形成して太陽電池とし
ている。しかしながら、このようにして作製した非晶質
シリコン太陽電池はその充電変換効率が低いことが問題
であった。そこで近年、非晶質シリコン太陽電池の充電
変換効率を向上させるために、上記の工程に加えて、入
射面側に反射防止膜を施したり、透明導電膜の表面を凹
凸化して入射光を閉じ込めたり、さらには分光感度が非
晶質シリコンとは異なる非晶質ゲルマニウムを積層させ
る等、入射光の効率よい利用方法が種々検討実施されて
いる。
Next, a transparent conductive film 3, an amorphous silicon film 4, and a metal electrode film 5 are sequentially formed on the transparent insulating film to form a solar cell. However, the amorphous silicon solar cell produced in this manner has a problem in that its charge conversion efficiency is low. Therefore, in recent years, in order to improve the charge conversion efficiency of amorphous silicon solar cells, in addition to the above steps, an anti-reflection film is applied to the incident surface side, and the surface of the transparent conductive film is made uneven to trap the incident light. Various methods of efficiently utilizing incident light are being investigated, such as stacking amorphous germanium, which has a spectral sensitivity different from that of amorphous silicon.

[発明が解決しようとする問題点] ところが、通常の非晶質シリコン太陽電池の製造工程に
、新たな工程を追加することは、太陽電池の価格を高め
ることになり、価格競争力を著しく低下させてしまう、
このため、安価で合理的な高効率薄膜太陽電池、の製造
方法が求められていた。
[Problems to be solved by the invention] However, adding a new process to the normal manufacturing process of amorphous silicon solar cells increases the price of the solar cells, significantly reducing price competitiveness. I will let you
For this reason, there has been a need for an inexpensive and rational method for manufacturing highly efficient thin film solar cells.

[問題点を解決する手段]。[Means to solve problems].

本発明では上記の問題点を解決するために、まず透光性
絶縁基板の光の入射側に反射防止層を形成した。そして
同時に、その逆側の基板表面からのアルカリイオンの拡
散防止層を同じ材料の膜で形成することにより、薄膜太
陽電池の製造工程を増やすことなく充電変換効率を高め
ることができた。つまり、透光性基板として安価なソー
ダライムガラスを用いた場合、その屈折率は約1.52
でありそれよりも屈折率の小さな膜を透光性基板の両面
に、同時に形成することにより反射防止効果、とアルカ
リイオンの拡散防止効果を持たせることができたつこの
膜の材料には、フッ化アルミニウム(ALFs)、フッ
化カルシウム(CaFz)、フッ化リチウム(LiF)
、フッ化マグネシウム(MgF、z)、フッ化ナトリウ
ムアルミニウム(N a 5AJI F 6) 、フッ
化ナトリウム(NaF)等が考えられるが、耐久性の点
からフッ化マグネシウムが望ましい、また、この膜の形
成方法としては各種の真空蒸着法、ディッピング法等が
考えられるが、基板の両面に同時に形成するためにはデ
ィッピング法を用いることが安価で有利である。
In the present invention, in order to solve the above problems, an antireflection layer is first formed on the light incident side of a transparent insulating substrate. At the same time, by forming a layer made of the same material to prevent the diffusion of alkali ions from the substrate surface on the opposite side, it was possible to increase charge conversion efficiency without increasing the manufacturing process of thin-film solar cells. In other words, when inexpensive soda lime glass is used as a transparent substrate, its refractive index is approximately 1.52.
By simultaneously forming a film with a smaller refractive index on both sides of a translucent substrate, it is possible to have an antireflection effect and an effect of preventing alkali ion diffusion.The material for this film is fluorine. Aluminum oxides (ALFs), calcium fluoride (CaFz), lithium fluoride (LiF)
, magnesium fluoride (MgF, z), sodium aluminum fluoride (Na 5AJIF 6), sodium fluoride (NaF), etc., but magnesium fluoride is preferable from the viewpoint of durability. Various vacuum deposition methods, dipping methods, etc. can be considered as the forming method, but it is inexpensive and advantageous to use the dipping method in order to form the film on both sides of the substrate at the same time.

なお、この低屈折率層の膜厚は、反射防止効果の大きな
50〜150nmの範囲にすることが望ましい。
Note that the thickness of this low refractive index layer is preferably in the range of 50 to 150 nm, which provides a large antireflection effect.

[作用] 上記の技術的手段を用いることによって、まず太陽電池
への入射光は、表面に形成された低屈折率膜の反射防止
効果により、損失されることなく充電変換層に導かれる
。ついで発生した電流は、裏面にも形成されている低屈
折率膜によるアルカリイオンの拡散防止効果により、充
分に低抵抗となった透明導電膜を通るため、そこで浪費
されることなく効率よく取り出される。
[Function] By using the above-mentioned technical means, first, the incident light on the solar cell is guided to the charge conversion layer without being lost due to the antireflection effect of the low refractive index film formed on the surface. The generated current then passes through the transparent conductive film, which has a sufficiently low resistance due to the low refractive index film formed on the back surface, which prevents the diffusion of alkali ions, and is efficiently extracted without being wasted there. .

[実施例コ 以下、本発明の実施例を図面を用いて説明する。[Example code] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の非晶質シリコン太陽電池の断面図であ
る。
FIG. 1 is a sectional view of an amorphous silicon solar cell of the present invention.

ソーダライムガラス板を充分に洗浄・乾燥して透光性絶
縁基板1として用いた。この基板をディッピング装置に
取り付け、フッ化マグネシウムのゾルを含む溶液に浸漬
した後、緩やかに引き上げて基板の両面にフッ化マグネ
シウム膜7および2を形成した0次にこの基板を充分に
乾燥した後、電気炉を用いて400℃で1時間焼成した
。なお、ディッピングの際に基板の引き上げ速度を調整
して、焼成後のフッ化マグネシウム膜の厚さが両面とも
約1100nになるようにした。
A soda lime glass plate was thoroughly washed and dried and used as a translucent insulating substrate 1. This substrate was attached to a dipping device, immersed in a solution containing magnesium fluoride sol, and then gently pulled up to form magnesium fluoride films 7 and 2 on both sides of the substrate.Next, this substrate was sufficiently dried. , and fired at 400° C. for 1 hour using an electric furnace. Note that during dipping, the pulling speed of the substrate was adjusted so that the thickness of the magnesium fluoride film after firing was approximately 1100 nm on both sides.

次に、この基板上に以下のようにして透明導電1113
を形成した。四塩化i(無水)の蒸気、水蒸気、酸素ガ
ス、1.1−ジフルオロエタンガス及び窒素ガスの調整
された混合気体を用い、CVD法により550℃に加熱
された基板上にフッ素ドープした5n02膜を形成した
。得られた5n02膜の厚さは450nmであった。
Next, a transparent conductive layer 1113 is placed on this substrate as follows.
was formed. A 5N02 film doped with fluorine was deposited on a substrate heated to 550°C by the CVD method using an adjusted gas mixture of i-tetrachloride (anhydrous) vapor, water vapor, oxygen gas, 1,1-difluoroethane gas, and nitrogen gas. Formed. The thickness of the obtained 5n02 film was 450 nm.

このようにして得られた基板を用いて、以下の手順で非
晶質シリコンルミn層4を作製した。モノシラン(Si
H4)  ガスを主成分とする原料ガスを用いて170
Pa程度の圧力下で容量結合型高周波グロー放電装置に
より、 (1)p型半導体層(ホウ素ドープのa−3iC:H1
約15nm厚) (2)i型半導体層(a−8i:H1約500nm厚) (3)n型半導体層(リンドープのマイクロクリスタリ
ンSt (μc−Si):H,約50nm厚)を形成し
た。引続き、抵抗加熱型の真空蒸着装置を用いて、上記
基板上に背面電極となる金属アルミニラム膜5を約20
0nm形成した。
Using the substrate obtained in this manner, an amorphous silicon luminium n-layer 4 was produced in the following procedure. Monosilane (Si
H4) 170 using a raw material gas whose main component is gas
Using a capacitively coupled high-frequency glow discharge device under a pressure of approximately Pa, (1) p-type semiconductor layer (boron-doped a-3iC: H1
(2) An i-type semiconductor layer (a-8i: H1, approximately 500 nm thick) (3) An n-type semiconductor layer (phosphorus-doped microcrystalline St (μc-Si): H, approximately 50 nm thick) was formed. Subsequently, using a resistance heating type vacuum evaporation device, about 2000 ml of metal aluminum membrane film 5, which will become a back electrode, is deposited on the substrate.
A thickness of 0 nm was formed.

また、比較のために、ソーダライムガラス板にフッ化マ
グネシウム膜を形成しない基板についても、上記と同様
の方法で第2図に示す構造を有する非晶質シリコン太陽
電池を作製した。それぞれの太陽電池の緒特性について
、その相対値を第1表に示す。
For comparison, an amorphous silicon solar cell having the structure shown in FIG. 2 was also fabricated in the same manner as above using a soda lime glass plate on which no magnesium fluoride film was formed. Table 1 shows the relative values of the characteristics of each solar cell.

第1表 以上の結果から、本発明により作製した非晶質シリコン
太陽電池は、短絡電流及びF、F、が向上しており、充
電変換効率が著しく高まっている。
From the results shown in Table 1 and above, the amorphous silicon solar cell produced according to the present invention has improved short circuit current and F, F, and has significantly increased charge conversion efficiency.

[発明の効果コ 本発明によれば実施例からも明らかなとうり、従来の非
晶質シリコン太陽電池の製造工程に新たな工程を追加す
ることなく、充電変換効率を高めることができる。従っ
て、本発明は薄膜太陽電池の製造方法として好適である
[Effects of the Invention] According to the present invention, as is clear from the examples, the charge conversion efficiency can be increased without adding any new steps to the conventional manufacturing process of amorphous silicon solar cells. Therefore, the present invention is suitable as a method for manufacturing thin film solar cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により作製した非晶質太陽電池の断面図
である。第2図は従来の技術により作製された非晶質シ
リコン太陽電池の断面図である。 1・・・透光性絶縁基板 2・・・透光性絶縁膜(拡散防止膜) 3・・・透明導電膜 4・・・充電変換層 5・・・金属電極 6・・・入射光 7・・・透光性絶縁膜(反射防止膜) 特許出願人  日本板硝子株式会社
FIG. 1 is a cross-sectional view of an amorphous solar cell manufactured according to the present invention. FIG. 2 is a cross-sectional view of an amorphous silicon solar cell manufactured by a conventional technique. 1... Transparent insulating substrate 2... Transparent insulating film (diffusion prevention film) 3... Transparent conductive film 4... Charge conversion layer 5... Metal electrode 6... Incident light 7 ...Transparent insulating film (anti-reflection film) Patent applicant Nippon Sheet Glass Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)透光性絶縁基板上に、その基板よりも屈折率の小
さな透光性絶縁膜を両面同時に形成する工程と、少なく
とも該基板側に透明導電膜を用いた半導体充電変換層を
形成する工程とからなる薄膜太陽電池の製造方法。
(1) Step of simultaneously forming a light-transmitting insulating film having a refractive index smaller than that of the substrate on both sides of the light-transmitting insulating substrate, and forming a semiconductor charge conversion layer using a transparent conductive film at least on the substrate side. A method for manufacturing a thin film solar cell, which comprises steps.
(2)前記透光性絶縁基板がガラス基板であり、前記透
光性絶縁膜がフッ化マグネシウムを主成分とする膜であ
る特許請求の範囲第1項記載の薄膜太陽電池の製造方法
(2) The method for manufacturing a thin film solar cell according to claim 1, wherein the light-transmitting insulating substrate is a glass substrate, and the light-transmitting insulating film is a film containing magnesium fluoride as a main component.
(3)前記透光性絶縁膜の形成方法が、ディッピング法
である特許請求の範囲第1項または第2項記載の薄膜太
陽電池の製造方法。
(3) The method for manufacturing a thin film solar cell according to claim 1 or 2, wherein the method for forming the transparent insulating film is a dipping method.
JP63064388A 1988-03-17 1988-03-17 Manufacture of thin film solar cell Pending JPH01236661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63064388A JPH01236661A (en) 1988-03-17 1988-03-17 Manufacture of thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63064388A JPH01236661A (en) 1988-03-17 1988-03-17 Manufacture of thin film solar cell

Publications (1)

Publication Number Publication Date
JPH01236661A true JPH01236661A (en) 1989-09-21

Family

ID=13256889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63064388A Pending JPH01236661A (en) 1988-03-17 1988-03-17 Manufacture of thin film solar cell

Country Status (1)

Country Link
JP (1) JPH01236661A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010562A1 (en) * 1991-11-18 1993-05-27 United Solar Systems Corporation Protective layer for the back reflector of a photovoltaic device
EP1054455A2 (en) * 1999-05-18 2000-11-22 Nippon Sheet Glass Co., Ltd. Photoelectric conversion device and substrate for photoelectric conversion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210676A (en) * 1981-06-22 1982-12-24 Hoya Corp Substrate for electrode
JPS61180487A (en) * 1985-02-05 1986-08-13 Nippon Soken Inc Amorphous silicon solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210676A (en) * 1981-06-22 1982-12-24 Hoya Corp Substrate for electrode
JPS61180487A (en) * 1985-02-05 1986-08-13 Nippon Soken Inc Amorphous silicon solar cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010562A1 (en) * 1991-11-18 1993-05-27 United Solar Systems Corporation Protective layer for the back reflector of a photovoltaic device
US5221854A (en) * 1991-11-18 1993-06-22 United Solar Systems Corporation Protective layer for the back reflector of a photovoltaic device
EP1054455A2 (en) * 1999-05-18 2000-11-22 Nippon Sheet Glass Co., Ltd. Photoelectric conversion device and substrate for photoelectric conversion device
EP1054455A3 (en) * 1999-05-18 2004-04-14 Nippon Sheet Glass Co., Ltd. Photoelectric conversion device and substrate for photoelectric conversion device
EP1533850A2 (en) * 1999-05-18 2005-05-25 Nippon Sheet Glass Company, Limited Photoelectric conversion device and substrate for photoelectric conversion device
EP1533850A3 (en) * 1999-05-18 2005-08-10 Nippon Sheet Glass Company, Limited Photoelectric conversion device and substrate for photoelectric conversion device

Similar Documents

Publication Publication Date Title
US8022291B2 (en) Method of making front electrode of photovoltaic device having etched surface and corresponding photovoltaic device
US4808462A (en) Solar cell substrate
JP2003069061A (en) Laminated photovoltaic transducer device
KR20030081662A (en) Solar cell with double layer antireflection coating
JP2003142709A (en) Laminated solar battery and method for manufacturing the same
JP3801342B2 (en) Solar cell substrate, manufacturing method thereof, and semiconductor element
JP7109833B2 (en) SEMI-LAYER FLEXIBLE SILICON-BASED THIN-FILM SOLAR CELL AND MANUFACTURING METHOD THEREOF
JPH04127580A (en) Multi-junction type amorphous silicon solar cell
US4922218A (en) Photovoltaic device
CN102969390A (en) Windowing process of solar crystalline silicon battery
TWI650872B (en) Solar cell and its manufacturing method, solar cell module and solar cell power generation system
JP3776606B2 (en) Method for producing transparent electrode substrate
CN108365025B (en) Double-sided PERC battery and preparation method thereof
JPH01236661A (en) Manufacture of thin film solar cell
CN105405910A (en) Heterojunction solar cell, preparation method thereof and solar cell module
WO2018179656A1 (en) Solar cell, solar cell module, and solar cell manufacturing method
JPH05129640A (en) Solar cell and manufacture thereof
JP2003273382A (en) Solar cell element
JPH0766437A (en) Manufacture of substrate for photoelectric transducer
JP3382141B2 (en) Photoelectric conversion element
RU2024112C1 (en) Thin-film photoelectric transducer and its manufacturing process
TWI701845B (en) Solar cell structure and method for manufacturing oxide layer of solar cell
JP2002222969A (en) Laminated solar battery
CN218160413U (en) N-type TOPCON battery and photovoltaic module
JPS59152676A (en) Amorphous silicon photovoltaic element