JPS61180487A - Amorphous silicon solar cell - Google Patents

Amorphous silicon solar cell

Info

Publication number
JPS61180487A
JPS61180487A JP60021337A JP2133785A JPS61180487A JP S61180487 A JPS61180487 A JP S61180487A JP 60021337 A JP60021337 A JP 60021337A JP 2133785 A JP2133785 A JP 2133785A JP S61180487 A JPS61180487 A JP S61180487A
Authority
JP
Japan
Prior art keywords
light
film
solar cell
amorphous silicon
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60021337A
Other languages
Japanese (ja)
Inventor
Tomohiko Nakanishi
友彦 中西
Tadashi Hattori
正 服部
Shinya Mizuki
水木 伸也
Fumio Obara
文雄 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP60021337A priority Critical patent/JPS61180487A/en
Publication of JPS61180487A publication Critical patent/JPS61180487A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To reduce the reflection factor of incident light and to improve the transducing efficiency of the solar cell, by providing with a light-transmitting insulator film having a refractive index different from that of the light- transmitting insulator substrate, between the substrate and a light-transmitting conductive film. CONSTITUTION:After a light-transmitting insulator film 1 is evaporated on a light-transmitting insulator substrate 5, an In2O3-SnO2 (ITO) film 2 is formed as a light-transmitting conductive film by a sputtering apparatus. Using plasma CVD, on the ITO film 2 a P-type amorphous silicon film 31, I-type amorphous silicon film 32, and N-type amorphous silicon film 33 are sequentially deposited. As a final step, an Al electrode 4 is evaporated on the N-type silicon film 33. The refractive index of the insulator film 1 is made larger than that of the substrate 5. Thus, the reflection factor of incident light can be decreased to improve the transducing efficiency of the solar cell.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、非晶質シリコン太陽電池の反射防止に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to antireflection of amorphous silicon solar cells.

(従来の技術) 従来のアモルファスシリコン太陽電池は、In2O3−
3nO,等の透明電極付ガラス基板の上にp型アモルフ
ァスシリコン層、i型アモルファスシリコン層、n型ア
モルファスシリコンを順に積層し最後に裏面電極を蒸着
させた構造となっている。
(Prior art) Conventional amorphous silicon solar cells are made of In2O3-
It has a structure in which a p-type amorphous silicon layer, an i-type amorphous silicon layer, and an n-type amorphous silicon are sequentially laminated on a glass substrate with a transparent electrode such as 3nO, and finally a back electrode is deposited.

(発明が解決しようとする問題点) 上記従来の太陽電池では、一般に入射光の20〜40%
は反射され、入射エネルギーの損失となっているため、
反射率を低下させることが望まれている。そこで従来は
、透明電極を構成するInz03 3nOg  (以下
ITOと称する)の膜は、屈折率が約2であり、入射光
に対する反射防止機能を有するため、ITO膜厚を調整
して、反射率を低下させる検討がなされているが、充分
な反射率低減効果が得られていない。またITOは、p
型非晶質シリコン層に接触しており、電極としての機能
を必要とするため、反射率を低下させるため膜厚を変化
させると、例えば膜厚を薄くすると、電気抵抗が増加し
、太陽電池の変換効率を低下させてしまう場合がある。
(Problems to be Solved by the Invention) In the conventional solar cells mentioned above, generally 20 to 40% of the incident light
is reflected and results in a loss of incident energy, so
It is desired to reduce the reflectance. Conventionally, the Inz03 3nOg (hereinafter referred to as ITO) film that constitutes the transparent electrode has a refractive index of about 2 and has an antireflection function against incident light, so the ITO film thickness has been adjusted to reduce the reflectance. Studies have been made to reduce the reflectance, but a sufficient reflectance reduction effect has not been obtained. Also, ITO is p
It is in contact with the amorphous silicon layer and needs to function as an electrode, so if the film thickness is changed to reduce the reflectance, for example, if the film thickness is made thinner, the electrical resistance will increase and the solar cell may reduce the conversion efficiency.

そこで、本発明は、上記点に鑑み、入射光の反射率を低
下させ、太陽電池の変換効率を向上させることを解決す
べき技術課題とする。
Therefore, in view of the above points, the present invention aims to reduce the reflectance of incident light and improve the conversion efficiency of a solar cell.

(問題点を解決するための手段) 本発明では、上記技術課題を達成するために、透光性絶
縁基板に透光性導電膜と、pin型非晶質シリコン層と
を積層してなる太陽電池において、前記透光性絶縁基板
と、透光性導電膜の間に前記透光性絶縁基板および前記
透光性導電膜に対して屈折率の異なる透光性絶縁膜を設
けるという技術手段を採用する。
(Means for Solving the Problems) In order to achieve the above-mentioned technical problem, the present invention provides a solar cell comprising a transparent conductive film and a pin-type amorphous silicon layer laminated on a transparent insulating substrate. In the battery, a technical means is provided in which a light-transmitting insulating film having a different refractive index with respect to the light-transmitting insulating substrate and the light-transmitting conductive film is provided between the light-transmitting insulating substrate and the light-transmitting conductive film. adopt.

(作 用) 上記技術手段を採用することにより、太陽電池への入射
光は、透光性絶縁基板、透光性絶縁膜、透光性導電膜を
順に通過する際に屈折しpin型非晶質シリコン層に達
し、pin型非晶質シリコン層によって光電変換され、
pin型非晶質シリコン層両端には起電力が生ずる。
(Function) By adopting the above technical means, the incident light to the solar cell is refracted when passing through the transparent insulating substrate, the transparent insulating film, and the transparent conductive film in order, resulting in pin-type amorphous light. reaches the crystalline silicon layer, is photoelectrically converted by the pin-type amorphous silicon layer,
An electromotive force is generated at both ends of the pin type amorphous silicon layer.

ここで、透光性絶縁膜の屈折率は、透光性絶縁基板およ
び透光性導電線膜の屈折率と異なるため、屈折率の差に
よって透光性絶縁膜がない場合に比べて光の干渉が大き
くなり、可視域での反射率が低下する。従って、入射光
のうち太陽電池に吸収される光量が増加し、光電変換量
が増加する。しかも、上記透光性絶縁膜、pin型非晶
質シリコン層に対しては通電関係にないため、導電率を
低下させることはない。また、透光性導電膜は、膜厚が
薄いため、この部分を通過する際の光の減衰量も非常に
小さい。
Here, the refractive index of the light-transmitting insulating film is different from that of the light-transmitting insulating substrate and the light-transmitting conductive wire film, so the difference in refractive index causes the light to emit more light than in the case without the light-transmitting insulating film. Interference increases and reflectance in the visible range decreases. Therefore, the amount of incident light absorbed by the solar cell increases, and the amount of photoelectric conversion increases. Moreover, since there is no current-carrying relationship with the light-transmitting insulating film and the pin-type amorphous silicon layer, the conductivity will not be reduced. Furthermore, since the transparent conductive film is thin, the amount of attenuation of light when passing through this portion is also very small.

(発明の効果) 従って、本発明の太陽電池全体としては、従来に比べ変
換効率が向上し、光エネルギーを有効に゛活用できる。
(Effects of the Invention) Therefore, the solar cell of the present invention as a whole has improved conversion efficiency compared to the conventional solar cell, and can effectively utilize light energy.

また、光の反射率が低下するため、防眩効果が大きく、
実用上非常に有効である。
In addition, since the reflectance of light is reduced, the anti-glare effect is large.
It is very effective in practice.

(実施例) 以下、本発明を図示の実施例に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on illustrated embodiments.

第1図は本発明の太陽電池の断面図を示す。以下本図を
用いて本発明の第1実施例について説明する。第1図に
おいて符号5は、透光性絶縁基板の1例である屈折率1
.53の透明ガラス基板で、この上に電子ビーム蒸着装
置により、透光性絶縁膜の1例である屈折率1.36の
M g F z膜1を1103nの厚さに蒸着する。次
にスパッター装置により、In−3n金属をターゲット
として透光性導電膜の1例であるInzOi  SnO
□透明電極(ITO)2を約60nmの厚さに形成する
FIG. 1 shows a cross-sectional view of the solar cell of the present invention. A first embodiment of the present invention will be described below using this figure. In FIG. 1, reference numeral 5 indicates a refractive index of 1, which is an example of a translucent insulating substrate.
.. A transparent glass substrate No. 53 is used, and an M g F z film 1 having a refractive index of 1.36, which is an example of a transparent insulating film, is deposited thereon to a thickness of 1103 nm using an electron beam evaporation apparatus. Next, using a sputtering device, InzOi SnO, which is an example of a transparent conductive film, was formed using In-3n metal as a target.
□A transparent electrode (ITO) 2 is formed to a thickness of about 60 nm.

このITO膜2の屈折率は1.85であった。次にMg
F、膜1およびIT○膜2が形成されたガラス基板5を
プラスマCVD装置にセットしp型アモルファスシリコ
ン膜31 (屈折率2.64)を次の条件でITO膜2
の上に堆積させる。
The refractive index of this ITO film 2 was 1.85. Next, Mg
F, the glass substrate 5 on which the film 1 and the IT○ film 2 are formed is set in a plasma CVD apparatus, and the p-type amorphous silicon film 31 (refractive index 2.64) is coated with the ITO film 2 under the following conditions.
deposit on top of.

使用ガス: 10%    S i Ha / Ht   30SC
CM10%    CH4/ B2    70SCC
M500 ppm  B2 Hb /H230SCCM
圧   力  :    1.2   Torr電  
 力  :     2QW 基板温度 :250℃ 膜   厚  :     20nm 次に、i型アモルファスシリコン膜32 (屈折率4.
35)を上記p型シリコン膜31に堆積させる。その時
の条件は次の通りである。
Gas used: 10% Si Ha / Ht 30SC
CM10% CH4/B2 70SCC
M500 ppm B2 Hb /H230SCCM
Pressure: 1.2 Torr
Power: 2QW Substrate temperature: 250°C Film thickness: 20nm Next, an i-type amorphous silicon film 32 (refractive index 4.
35) is deposited on the p-type silicon film 31. The conditions at that time are as follows.

使用ガス :10%S i H4/ Hz 60SCC
M圧   力  :    0.9 TOrr電   
力  =    35 v 基板温度 =250℃ 膜   厚  :    500nm 次に、n型アモルファスシリコン膜33をi型シリコン
膜32に堆積させる。その条件は次の通りである。
Gas used: 10% Si H4/Hz 60SCC
M pressure: 0.9 Torr voltage
Force = 35 v Substrate temperature = 250° C. Film thickness: 500 nm Next, an n-type amorphous silicon film 33 is deposited on the i-type silicon film 32 . The conditions are as follows.

使用ガス :10%S I Ha / Hz 35SC
CM500 ppm P H3/HE 35SCCM圧
   力  :    1.OTorr電   力  
:    160W 基板温度 :250℃ 膜   厚  :    30nm これによって、第1図に示すpin型アモルファス(非
晶質)シリコン層3が形成される。
Gas used: 10% SI Ha / Hz 35SC
CM500 ppm PH3/HE 35SCCM Pressure: 1. OTorr power
: 160 W Substrate temperature: 250° C. Film thickness: 30 nm As a result, a pin type amorphous silicon layer 3 shown in FIG. 1 is formed.

最後に、A!電極4を上記n型シリコン膜33に110
0nの厚さに電子ビーム蒸着装置により蒸着する。
Finally, A! The electrode 4 is attached to the n-type silicon film 33 at 110
It is deposited to a thickness of 0 nm using an electron beam evaporator.

この構成にて第1図に示すような太陽電池が出来上がる
With this configuration, a solar cell as shown in FIG. 1 is completed.

上記pin型アモルファスシリコン層3において、光電
変換はi型シリコン層32が担っており、p型シリコン
層31、n型9937層33は欠陥準位が多いために光
電変換にはほとんど寄与しない。p型シリコン層31及
びn型9937層33の膜厚は、拡散電位を保つに十分
で、抵抗増加による太陽電池のFFの低下や光吸収を抑
制できるようにできるだけ薄く選ぶ必要がある。それに
対してi型シリコン層32は厚いほど光吸収量を多くで
きるが、厚すぎると電界の弱い領域が生じて直列抵抗増
加の原因となったり、キャリアの収集効率の低下を生じ
る。これらの要因を考慮し最適化を図る必要がある。
In the pin-type amorphous silicon layer 3, the i-type silicon layer 32 is responsible for photoelectric conversion, and the p-type silicon layer 31 and the n-type 9937 layer 33 have many defect levels and therefore hardly contribute to photoelectric conversion. The film thicknesses of the p-type silicon layer 31 and the n-type 9937 layer 33 need to be selected to be as thin as possible so as to be sufficient to maintain the diffusion potential and to suppress a decrease in the FF of the solar cell due to an increase in resistance and light absorption. On the other hand, the thicker the i-type silicon layer 32 is, the more light it can absorb; however, if it is too thick, a region with a weak electric field will occur, causing an increase in series resistance and a decrease in carrier collection efficiency. It is necessary to take these factors into consideration for optimization.

透明電極2の膜厚は反射防止条件(n d =λ/4)
を満たすように決定される。膜厚が厚いと抵抗が小さく
なり有利であるが、光の透過量やコストの問題が生じる
ため好ましくない。そのため本発明では60nmとした
The film thickness of the transparent electrode 2 is determined according to the antireflection condition (nd = λ/4)
determined to satisfy. A thick film is advantageous because it reduces resistance, but it is not preferable because it causes problems in the amount of light transmitted and cost. Therefore, in the present invention, it is set to 60 nm.

次に、上記構成を有する太陽電池の作用について説明す
る。
Next, the operation of the solar cell having the above configuration will be explained.

上記電池において、ガラス基板5.MgF2゜および透
明電極2を介して非晶質シリコン膜3に光入射を行なう
と透明電極2とA1電極4との間に光起電圧が発生する
In the above battery, a glass substrate 5. When light is incident on the amorphous silicon film 3 through MgF2° and the transparent electrode 2, a photoelectromotive voltage is generated between the transparent electrode 2 and the A1 electrode 4.

本発明者等の行なった測定によれば、この太陽電池は太
陽光AMI下において、開放電圧0.83■、短絡電流
13.5mA/cm2.FF=0.62、光電変換効率
η=6.92%の優れた特性を示した。
According to measurements carried out by the present inventors, this solar cell had an open circuit voltage of 0.83 mm and a short circuit current of 13.5 mA/cm2 under sunlight AMI. It exhibited excellent characteristics with FF=0.62 and photoelectric conversion efficiency η=6.92%.

本第1実施例の太陽電池の反射特性を測定した結果を第
2図の曲線aに示す。なお、第2図の横軸は入射光の波
長を示し、縦軸は入射光に対する太陽電池の反射率を示
す。
Curve a in FIG. 2 shows the results of measuring the reflection characteristics of the solar cell of this first example. Note that the horizontal axis in FIG. 2 indicates the wavelength of incident light, and the vertical axis indicates the reflectance of the solar cell with respect to the incident light.

第2図かられかるように、本実施例の太陽電池は入射光
の波長が560nm付近で反射率の極小ピークを有する
。本例では入射光の波長が560nmの場合、反射率は
3%であった。つまり、この波長での入射光のうち、9
7%が太陽電池に吸収されたことになる。しかも、本例
のアモルファスシリコンでは、可視領域で変換効率が大
きくなる特性のため、非常に効率のよい光電変換が可能
となる。
As can be seen from FIG. 2, the solar cell of this example has a minimal peak of reflectance when the wavelength of incident light is around 560 nm. In this example, when the wavelength of the incident light was 560 nm, the reflectance was 3%. In other words, of the incident light at this wavelength, 9
This means that 7% was absorbed by the solar cells. Moreover, since the amorphous silicon of this example has a characteristic that the conversion efficiency is high in the visible region, extremely efficient photoelectric conversion is possible.

また、人間の眼の比視感度は、波長560nmの時にピ
ークをとることが知られているので、本例の太陽電池を
、各種機器の電源として使用すれば、使用者は、まぶし
さを感じることなく使用できる。特に、自動車用機器の
電源として使用する場合、ドライバーへの防眩作用が大
きいため、自動車走行時の安全性を高めることができる
Furthermore, it is known that the specific luminous efficiency of the human eye peaks at a wavelength of 560 nm, so if the solar cell of this example is used as a power source for various devices, the user will experience glare. It can be used without any problems. In particular, when used as a power source for automobile equipment, it has a large anti-glare effect on the driver, so it can improve safety when driving the car.

第3図はMgF、膜1の膜厚を変化させた時の波長40
0nmから800nmにおける平均反射率を示す。
Figure 3 shows MgF, wavelength 40 when the film thickness of film 1 is changed.
Average reflectance from 0 nm to 800 nm is shown.

この第3図から、MgF、膜1の膜厚が変化しても、4
00nmから800nmの平均反射率はほとんど変化し
ないことがわかる。しかし、光の減衰等を考慮すれば、
膜厚はできるだけ薄い方が好ましい。なお、本第1実施
例では、MgF、の膜厚を1103nとしているため平
均反射率は13%となった。
From this figure 3, even if the thickness of MgF film 1 changes, 4
It can be seen that the average reflectance from 00 nm to 800 nm hardly changes. However, if we consider the attenuation of light,
It is preferable that the film thickness be as thin as possible. In this first example, the average reflectance was 13% because the MgF film thickness was 1103 nm.

次に、上記第1実施例に対する第1比較例について説明
する。本例では、第1図に示す太陽電池において、Mg
F、膜1がない太陽電池の特性について調べた。それに
よると、この太陽電池は太陽光AMI下において、開放
電圧o、 s o v、短絡電流13.3mA/cm”
 、FF−0,62,光電変換効率η=6.60%特性
を示した。
Next, a first comparative example with respect to the first example will be described. In this example, in the solar cell shown in FIG.
F. The characteristics of a solar cell without film 1 were investigated. According to it, this solar cell has an open circuit voltage o, s ov, and a short circuit current of 13.3 mA/cm under sunlight AMI.
, FF-0,62, photoelectric conversion efficiency η=6.60% characteristics.

また、第2図において、本例の太陽電池の入射光波長に
対する反射率を示すものが曲線すである。
Further, in FIG. 2, a curve shows the reflectance of the solar cell of this example with respect to the wavelength of incident light.

本例に波長が560nmでの反射率は、8%でしり上述
の第1実施例より高いことがわかる。この第2図かられ
かるように、波長が約450nmから750 nmの間
では、第1実施例の反射率が第1比較例より低くなって
いる。
It can be seen that the reflectance of this example at a wavelength of 560 nm is 8%, which is higher than that of the first example described above. As can be seen from FIG. 2, the reflectance of the first example is lower than that of the first comparative example in the wavelength range of about 450 nm to 750 nm.

なお、第1比較例の400〜800nmでの平均反射率
は8%であった。しかし、560nmでの反射率が第1
実施例のものより大きいため、変換効率は第1実施例よ
り低くなっている。
Note that the average reflectance of the first comparative example at 400 to 800 nm was 8%. However, the reflectance at 560 nm is the first
Since it is larger than that of the example, the conversion efficiency is lower than that of the first example.

次に、第2比較例について説明する。本例では第1実施
例とほぼ同様のpinへテロ接合構造太陽電池において
、透光性絶縁膜1を透明ガラス基板5より大きい屈折率
1.63.膜厚86nmのAl103膜とした太陽電池
とする。
Next, a second comparative example will be explained. In this example, in a solar cell with a pin heterojunction structure similar to that of the first example, the light-transmitting insulating film 1 has a refractive index of 1.63, which is larger than that of the transparent glass substrate 5. A solar cell is made of an Al103 film with a thickness of 86 nm.

この太陽電池は太陽光AMI下において、開放電圧0.
72V、短絡電流7.5mA/cm2.FF−0,66
、光電変換効率η=3.6%の特性を示した。
This solar cell has an open circuit voltage of 0.
72V, short circuit current 7.5mA/cm2. FF-0,66
, the photoelectric conversion efficiency η=3.6%.

また、第2図において、本例の太陽電池の入射光波長に
対する反射率を示すものが曲線Cであり、波長が約44
0nm 〜790nmの間では、第1実施例および第1
比較例に比べて高い反射率となっていることがわかる。
In addition, in FIG. 2, curve C shows the reflectance of the solar cell of this example with respect to the wavelength of incident light, and the wavelength is approximately 44
Between 0 nm and 790 nm, the first example and the first example
It can be seen that the reflectance is higher than that of the comparative example.

なお、本例の太陽電池の波長560nmでの反射率は1
2%であり、波長が400nm〜800nmでの平均反
射率は14%であった。なお、第4図にA It z 
Oyの膜厚を変化させた時の第2比較例における太陽電
池の入射波長400nm〜800nmでの平均反射率を
示す。
Note that the reflectance of the solar cell in this example at a wavelength of 560 nm is 1
2%, and the average reflectance at a wavelength of 400 nm to 800 nm was 14%. In addition, A It z is shown in Fig. 4.
The average reflectance at an incident wavelength of 400 nm to 800 nm of the solar cell in the second comparative example when the Oy film thickness is changed is shown.

この測定結果かられかるように、特にアモルファスシリ
コン太陽電池の反射防止に関しては、透光性絶縁膜l、
透明電極2.p型アモルファスシリコン[31の屈折率
と膜厚が問題となる。その中でも、透光性絶縁膜1の屈
折率が重要で、本発明者等によれば、ガラス基板5の屈
折率より小さい透光性絶縁膜を用いれば、反射率を低下
できることが確認できた。
As can be seen from these measurement results, especially regarding anti-reflection of amorphous silicon solar cells, transparent insulating films l,
Transparent electrode 2. The refractive index and film thickness of p-type amorphous silicon [31] are problematic. Among these, the refractive index of the transparent insulating film 1 is important, and the inventors have confirmed that the reflectance can be reduced by using a transparent insulating film with a smaller refractive index than the glass substrate 5. .

この理由は、本発明者によれば、次のように推察される
According to the present inventor, the reason for this is inferred as follows.

つまり、透明電極2の例であるInz on −5no
2の屈折率は、透明ガラス基板5より大きいため、第2
比較例のように、透光性絶縁膜1の屈折率を透明ガラス
基板5より大きくすると、透光性絶縁膜1の屈折率と透
明電極2との屈折率の差が小さくなる。しかし、第1実
施例によれば、透光性絶縁膜1の屈折率は透明ガラス基
板5より小さいため、透光性絶縁膜1と透明電極2との
屈折率の差が大きくなり、これによって光の干渉が促進
され、反射率が低下するものと考えられる。
In other words, Inz on -5no which is an example of the transparent electrode 2
Since the refractive index of the second transparent glass substrate 5 is larger than that of the transparent glass substrate 5, the second
As in the comparative example, when the refractive index of the light-transmitting insulating film 1 is made larger than that of the transparent glass substrate 5, the difference between the refractive index of the light-transmitting insulating film 1 and the refractive index of the transparent electrode 2 becomes smaller. However, according to the first embodiment, since the refractive index of the transparent insulating film 1 is smaller than that of the transparent glass substrate 5, the difference in refractive index between the transparent insulating film 1 and the transparent electrode 2 becomes large. It is thought that the interference of light is promoted and the reflectance is reduced.

次に本発明の第2実施例について説明する。Next, a second embodiment of the present invention will be described.

本実施例では、第1実施例と同様のpin型へテロ接合
構造太陽電池において、透光性絶縁膜1をMgF2より
屈折率の小さい屈折率1.24.膜厚113nmのCa
F、とした太陽電池とする。
In this example, in a pin-type heterojunction structure solar cell similar to that of the first example, the transparent insulating film 1 has a refractive index of 1.24, which is smaller than MgF2. Ca with a film thickness of 113 nm
Assume that the solar cell is F.

この太陽電池は太陽光AMI下において、開放電圧0.
81V、短絡電流13.4mA/cm2.FF = 0
.63、光電変換効率η=6.84%の特性を示した。
This solar cell has an open circuit voltage of 0.
81V, short circuit current 13.4mA/cm2. FF = 0
.. 63, exhibited a photoelectric conversion efficiency of η=6.84%.

また、第2図において、本例の太陽電池の入射光波長に
対する反射率を示すものが曲線!であり、波長560n
mでの反射率は1.8%であった。しかし、波長が56
0nmをはずれると急激に大きくなり、結局波長だ40
0nm〜8 Q Onmの間での平均反射率は12%と
なる。
Also, in Fig. 2, the curve shows the reflectance of the solar cell of this example with respect to the wavelength of incident light! and the wavelength is 560n
The reflectance at m was 1.8%. However, the wavelength is 56
When it goes beyond 0nm, it suddenly becomes larger, and in the end it's the wavelength40
The average reflectance between 0 nm and 8 Q Onm is 12%.

なお、第5図にCaF、の膜厚を変化させた時の第2実
施例における太陽電池の入射光波長400nm〜800
nmでの平均反射率を示す。
In addition, FIG. 5 shows the incident light wavelength of 400 nm to 800 nm of the solar cell in the second example when the film thickness of CaF is changed.
Average reflectance in nm is shown.

上記実施例においては、透光性絶縁膜1を蒸着により作
成したが、スパッタ法、イオンブレーティング法で作成
しても、その屈折率がガラス基板5より小さくて透光性
であれば何ら問題はない。
In the above embodiment, the transparent insulating film 1 was created by vapor deposition, but there is no problem even if it is created by sputtering or ion blating as long as the refractive index is lower than that of the glass substrate 5 and it is transparent. There isn't.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の太陽電池の断面図、第2図は入射光の
波長に対する反射率の変化を示す本発明および比較例の
特性図、第3図は本発明の第1実施例の透光性絶縁膜に
対する平均反射率の変化を示す特性図、第4図は第2比
較例の透光性絶縁膜に対する平均反射率の変化を示す特
性図、第5図は本発明の第2実施例の透光性絶縁膜に対
する平均反射率の変化を示す特性図である。 1・・・透光性絶縁膜、2・・・透光性導電膜、3・・
・アモルファスシリコン層、31・・・p型アモルファ
スシリコン層、32・・・n型アモルファスシリコン層
、33・・・n型アモルファスシリコン層、4・・・イ
背面電極、5・・・透光性絶縁基板。 代理人弁理士  岡 部   隆 第2図 3fL表(nm) 第3図 MgF2,1giル(nm) 第5図 0     100   200    :100  
  400CAF2 ch 媒)’Il−(nm )第
4図
FIG. 1 is a cross-sectional view of the solar cell of the present invention, FIG. 2 is a characteristic diagram of the present invention and a comparative example showing changes in reflectance with respect to the wavelength of incident light, and FIG. 3 is a transparent diagram of the first embodiment of the present invention. FIG. 4 is a characteristic diagram showing the change in average reflectance for the light-transmitting insulating film of the second comparative example, and FIG. 5 is a characteristic diagram showing the change in average reflectance for the light-transmitting insulating film of the second comparative example. FIG. 3 is a characteristic diagram showing changes in average reflectance for an example translucent insulating film. 1... Transparent insulating film, 2... Transparent conductive film, 3...
・Amorphous silicon layer, 31...p-type amorphous silicon layer, 32...n-type amorphous silicon layer, 33...n-type amorphous silicon layer, 4...i back electrode, 5...translucent property Insulated substrate. Representative Patent Attorney Takashi Okabe Fig. 2 3fL table (nm) Fig. 3 MgF2,1gil (nm) Fig. 5 0 100 200 :100
400CAF2 ch medium)'Il-(nm) Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)透光性絶縁基板に透光性導電膜と、pin型非晶
質シリコン層とを積層してなる太陽電池において、 前記透光性絶縁基板と、透光性導電膜の間に前記透光性
絶縁基板および前記透光性導電膜に対して屈折率の異な
る透光性絶縁膜を設けることを特徴とする非晶質シリコ
ン太陽電池。
(1) In a solar cell formed by laminating a transparent conductive film and a pin-type amorphous silicon layer on a transparent insulating substrate, the above-mentioned An amorphous silicon solar cell characterized in that a transparent insulating film having a different refractive index is provided to a transparent insulating substrate and the transparent conductive film.
(2)前記透光性絶縁膜の屈折率は、前記透光性絶縁基
板の屈折率よりも小さく、かつ前記透光性導電膜の屈折
率は前記透光性絶縁基板の屈折率より大きいことを特徴
とする特許請求の範囲第1項記載の非晶質シリコン太陽
電池。
(2) The refractive index of the light-transmitting insulating film is smaller than the refractive index of the light-transmitting insulating substrate, and the refractive index of the light-transmitting conductive film is larger than the refractive index of the light-transmitting insulating substrate. An amorphous silicon solar cell according to claim 1, characterized in that:
JP60021337A 1985-02-05 1985-02-05 Amorphous silicon solar cell Pending JPS61180487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60021337A JPS61180487A (en) 1985-02-05 1985-02-05 Amorphous silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60021337A JPS61180487A (en) 1985-02-05 1985-02-05 Amorphous silicon solar cell

Publications (1)

Publication Number Publication Date
JPS61180487A true JPS61180487A (en) 1986-08-13

Family

ID=12052303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60021337A Pending JPS61180487A (en) 1985-02-05 1985-02-05 Amorphous silicon solar cell

Country Status (1)

Country Link
JP (1) JPS61180487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236661A (en) * 1988-03-17 1989-09-21 Nippon Sheet Glass Co Ltd Manufacture of thin film solar cell
WO1993010562A1 (en) * 1991-11-18 1993-05-27 United Solar Systems Corporation Protective layer for the back reflector of a photovoltaic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236661A (en) * 1988-03-17 1989-09-21 Nippon Sheet Glass Co Ltd Manufacture of thin film solar cell
WO1993010562A1 (en) * 1991-11-18 1993-05-27 United Solar Systems Corporation Protective layer for the back reflector of a photovoltaic device
US5221854A (en) * 1991-11-18 1993-06-22 United Solar Systems Corporation Protective layer for the back reflector of a photovoltaic device

Similar Documents

Publication Publication Date Title
RU2423755C2 (en) Front contact with adjacent intermediate layer(s) for use in photoelectric devices and method of making said contact
US4272641A (en) Tandem junction amorphous silicon solar cells
KR100237661B1 (en) Back reflector layer, method for forming it, and photovoltaic element using it and manufacturing method thereof
JP2589462B2 (en) Photoelectric device
JP4222500B2 (en) Silicon-based thin film photoelectric conversion device
US8133747B2 (en) Textured rear electrode structure for use in photovoltaic device such as CIGS/CIS solar cell
JP4940309B2 (en) Solar cell
JPWO2006057160A1 (en) Thin film photoelectric converter
WO2009116578A1 (en) Solar cell
US4772335A (en) Photovoltaic device responsive to ultraviolet radiation
JPH10117006A (en) Thin-film photoelectric conversion device
JP2008270562A (en) Multi-junction type solar cell
JP2002118273A (en) Integrated hybrid thin film photoelectric conversion device
JPH07321362A (en) Photovoltaic device
JP3025392B2 (en) Thin film solar cell and manufacturing method
JPS61180487A (en) Amorphous silicon solar cell
GB2047463A (en) Amorphous silicon solar cells
JPH0125235B2 (en)
JPH05145096A (en) Transmission type solar cell
JPH05275725A (en) Photovoltaic device and its manufacture
JP3196155B2 (en) Photovoltaic device
JPH05145095A (en) Photovoltaic element
JP2003008036A (en) Solar battery and its manufacturing method
JPS5975679A (en) Photoelectromotive force generating device
JP2002222969A (en) Laminated solar battery