JPH01228167A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01228167A
JPH01228167A JP5358688A JP5358688A JPH01228167A JP H01228167 A JPH01228167 A JP H01228167A JP 5358688 A JP5358688 A JP 5358688A JP 5358688 A JP5358688 A JP 5358688A JP H01228167 A JPH01228167 A JP H01228167A
Authority
JP
Japan
Prior art keywords
type
region
aluminum
electrode
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5358688A
Other languages
Japanese (ja)
Other versions
JP2707576B2 (en
Inventor
Yoshizo Hagimoto
萩本 佳三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63053586A priority Critical patent/JP2707576B2/en
Publication of JPH01228167A publication Critical patent/JPH01228167A/en
Application granted granted Critical
Publication of JP2707576B2 publication Critical patent/JP2707576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce parasitic resistance and to prevent performance characteristics abnormalities by a method wherein the outer section of a part, which is in contact with an aluminum electrode, of a high concentration diffusion region, formed on a semiconductor substrate is subjected to etching for the formation of a step-like abruptness near the contact. CONSTITUTION:The surface of a P-type semiconductor substrate 1 is subjected to etching, except for regions for contact with aluminum electrodes 7, 8 respectively for N<+>-type source and drain regions 3, 4, and except for their outer circumferences, for the production of step-like abruptnesses 3a, 4a surrounding the N<+>-type regions 3, 4, respectively. Stepped oxide films 5 are next provided along the abruptnesses 3a, 4a, for the suppression of aluminum atom contaminated regions from being formed within an N<+>-type region 2. This design protects electrode sections from possible characteristics abnormalities inserting polycrystalline silicon between the aluminum electrodes 7, 8, which reduces J-FET parasitic resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に電極形成部位における
特性異常を防止する構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and more particularly to a structure for preventing characteristic abnormalities at electrode formation sites.

〔従来の技術〕[Conventional technology]

従来、高周波増幅あるいは高周波発振用途に使用される
トランジスタは、利得帯域幅積を高めるため、微細なパ
ターン構造を採用し集積密度を上げるための工夫がされ
ている。
Conventionally, transistors used for high frequency amplification or high frequency oscillation have adopted fine pattern structures to increase the integration density in order to increase the gain bandwidth product.

第3図は、従来の高周波増幅用のNチャネル接合型FE
T (J−FET)の縦断面図であり、P型ソース領域
としてのP型半導体基板lにN型領域2を形成し、更に
その略中央にP型ゲート領域6を形成している。また、
このP型ゲート領域6を挾んだ位置に、夫々N゛型ソー
ス領域3とN゛型ドレイン領域4を形成し、夫々ソース
N゛型ポリシリコン層9.ドレインN゛型ポリシリコン
層10を介してアルミニウムソース電極7.アルミニウ
ムドレイン電極8を電気接続している。なお、5は酸化
膜である。
Figure 3 shows a conventional N-channel junction type FE for high frequency amplification.
1 is a vertical cross-sectional view of a T (J-FET), in which an N-type region 2 is formed in a P-type semiconductor substrate l as a P-type source region, and a P-type gate region 6 is further formed approximately in the center thereof. Also,
An N' type source region 3 and an N' type drain region 4 are formed at positions sandwiching this P type gate region 6, respectively, and a source N' type polysilicon layer 9. Aluminum source electrode 7. via drain N-type polysilicon layer 10. An aluminum drain electrode 8 is electrically connected. Note that 5 is an oxide film.

ここで、−例としてP型ゲートtJ域6の幅W。Here, as an example, the width W of the P-type gate tJ region 6.

は1〜1.5μm、N”″型ソース領域3およびN4型
ドレイン領域4のコンタクト寸法Wcは1〜2μm、N
”型ソース領域3およびN+型トドレイン領域4各拡散
領域と酸化膜5のオーバーラツプ寸法りは0.2〜0.
5μm程度である。
is 1 to 1.5 μm, the contact dimension Wc of the N"" type source region 3 and the N4 type drain region 4 is 1 to 2 μm, N
The overlap size between each diffusion region of the "type source region 3 and N+ type drain region 4 and the oxide film 5 is 0.2 to 0.2".
It is about 5 μm.

ここで、ソース電極及びドレイン電極に夫々ポリシリコ
ン層9.10を設けているのは次の理由による。
Here, the reason why polysilicon layers 9 and 10 are provided on the source electrode and the drain electrode, respectively, is as follows.

即ち、第4図に示すように、N゛型ソース領域3(又は
N4型ドレイン領域4)に、アルミニウムソース電極7
(又はアルミニウムドレイン電極8)を直接接続する場
合には、オーミック性を高めるため350〜460″b ロイ処理が行われる。この際、オーバラップ寸法りが0
.2〜0.5μmと狭いため、アルミニウムがN型領域
2と酸化膜5との界面に進行しやすく、N型領域2にア
ルミニウム原子進入領域Xが形成されることがある。こ
のアルミニウム原子進入領域XがN型領域2に形成され
ると、耐電圧劣化等の特性異常が起こり易くなる。
That is, as shown in FIG.
(or the aluminum drain electrode 8), a 350-460"b alloy treatment is performed to improve ohmic properties. At this time, the overlap dimension is 0.
.. Since the thickness is as narrow as 2 to 0.5 μm, aluminum tends to advance to the interface between the N-type region 2 and the oxide film 5, and an aluminum atom penetration region X may be formed in the N-type region 2. When this aluminum atom penetration region X is formed in the N-type region 2, abnormalities in characteristics such as withstand voltage deterioration are likely to occur.

このため、従来ではソース、ドレインの各N型領域とア
ルミニウム電極との間に夫々ポリシリコン19.10を
介在させ、ナルミニラム電極とN型領域との間のN゛型
領領域寸法を長く取ることによりアルミニウム原子の進
入を抑制している。
For this reason, in the past, polysilicon 19.10 was interposed between each N-type region of the source and drain and the aluminum electrode, and the size of the N-type region between the N-type region and the N-type region was made long. This suppresses the entry of aluminum atoms.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の構成では、アルミニウム電極とN゛型領
領域の間に介挿されているポリシリコン層9,10は単
結晶シリコンに比べて結晶配列が不規則であるため、同
じ不純物濃度でも抵抗率が高くなり、J−FETの寄生
抵抗が大きくなりソース・ドレイン間の抵抗が大きくな
ったり、利得帯域幅積が低下し、高周波増幅用J−FE
Tとしての特性が損なわれるという問題がある。
In the conventional configuration described above, the polysilicon layers 9 and 10 interposed between the aluminum electrode and the N-type region have irregular crystal alignment compared to single-crystal silicon, so the resistance is low even with the same impurity concentration. The parasitic resistance of the J-FET increases, the resistance between the source and drain increases, the gain bandwidth product decreases, and the J-FE for high frequency amplification increases.
There is a problem that the characteristics as T are impaired.

本発明はこのような特性の劣化を防止して、利得帯域幅
積を改善した半導体装置を提供することを目的としてい
る。
An object of the present invention is to prevent such deterioration of characteristics and provide a semiconductor device with improved gain-bandwidth product.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、半導体基板に形成した高濃度拡
散領域にアルミニウム電極を接触形成した電極構造を有
する半導体装置において、高濃度拡散領域のアルミニウ
ム電極と接触される部分の外側をエツチングし、この接
触部分の周囲に階段状の段部を形成している。
The semiconductor device of the present invention has an electrode structure in which an aluminum electrode is formed in contact with a high concentration diffusion region formed on a semiconductor substrate. A stepped portion is formed around the contact portion.

〔作用〕[Effect]

上述した構成では、アルミニウム電極を高能動拡散領域
に直接接触させた構造を取りながらも、階段状の段部に
より高濃度拡散領域におけるアルミニウム電極と半導体
基板側との寸法を長くし、半導体基板側へのアルミニウ
ム原子の進入を抑制する。
In the above configuration, although the aluminum electrode is in direct contact with the highly active diffusion region, the dimension between the aluminum electrode and the semiconductor substrate side in the high concentration diffusion region is lengthened by the stepped portion, and the dimension between the aluminum electrode and the semiconductor substrate side in the high concentration diffusion region is lengthened. Suppresses the entry of aluminum atoms into.

(実施例) 次に、本発明を図面を参照して説明する。(Example) Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of a first embodiment of the present invention.

P型ゲー)iiJI域としてのP型半導体基板1にN型
領域2を形成し、その略中夫にP型ゲート領域6を形成
している。これらのP型ゲート領域2.6は図外の拡散
層あるいはアルミニウム電極で電気的に同電位に接続さ
れている。前記N型領域2には、P型ゲーHM域6を挟
んでN゛゛ソース領域3及びN゛゛ドレイン領域を形成
し、かつ各領域には酸化膜5に開設した窓を通して夫々
アルミニウムソース電極7及びアルミニウムドレイン電
極8をオーミック接触により形成している。
An N-type region 2 is formed in a P-type semiconductor substrate 1 as a P-type gate region, and a P-type gate region 6 is formed approximately in the middle of the N-type region 2. These P-type gate regions 2.6 are electrically connected to the same potential by a diffusion layer or an aluminum electrode (not shown). In the N-type region 2, an N'' source region 3 and an N'' drain region are formed with a P-type HM region 6 in between, and an aluminum source electrode 7 and an aluminum source electrode 7 are formed in each region through a window formed in the oxide film 5. The aluminum drain electrode 8 is formed by ohmic contact.

ここで、前記P型半導体基板1は、N゛゛ソース領域3
及びN゛型トドレイン領域4夫々アルミニウム電極7.
8とのコンタクトを取る領域及びその外側部分を残して
他の表面を深さdでエツチングしており、結果的に各N
゛型領領域、4の周囲に階段状の段部3a、4aを形成
している。そして、前記酸化膜5もこの段部3a、4a
に沿って階段状に形成している。
Here, the P-type semiconductor substrate 1 has an N source region 3.
and an aluminum electrode 7. and N-type drain region 4, respectively.
The other surface is etched to a depth d, leaving the area for contact with 8 and its outer part, and as a result, each N
Stair-like step portions 3a and 4a are formed around the ゛-shaped area 4. The oxide film 5 also has these step portions 3a, 4a.
It is shaped like a staircase.

したがって、この段部3a、4aにより、各N゛型領領
域、4では、アルミニウム電極7.8からN型領域2に
到るまでの寸法は、各N゛型領領域。
Therefore, due to the step portions 3a and 4a, in each N-type region 4, the dimension from the aluminum electrode 7.8 to the N-type region 2 is the same as that of each N-type region.

4のオーバラップ寸法りとエツチング深さdの和よりも
長くなり、N型領域2内にアルミニウム原子進入領域が
形成されることが抑制される。これにより、N+型領領
域アルミニウム電極との間にポリシリコンを介在させな
くても電極部における特性異常の発生を抑止でき、J−
FETの寄生抵抗を低減し、利得帯域幅積を改善した高
特性の半導体装置を得ることができる。
4 and the etching depth d, and the formation of an aluminum atom intrusion region in the N-type region 2 is suppressed. As a result, it is possible to suppress the occurrence of characteristic abnormalities in the electrode part without interposing polysilicon between the N+ type region aluminum electrode and the J-
It is possible to obtain a semiconductor device with high characteristics in which the parasitic resistance of the FET is reduced and the gain bandwidth product is improved.

なお、アルミニウム電極7.8からN型領域2に到る長
さを太き(するためには、エツチングの深さdはなるべ
く大きくし、かつN゛型領領域オーバラップ寸法りを大
きくすることが好ましい。
Note that in order to increase the length from the aluminum electrode 7.8 to the N-type region 2, the etching depth d must be as large as possible and the overlap dimension of the N-type region must be increased. is preferred.

第2図は本発明の第2実施例の縦断面図であり、ここで
は本発明を高周波バイポーラトランジスタに応用した例
である。P型コレクタ領域11.N型ベース領域12.
P+型エミッタ領域13でPNPI−ランジスタを構成
し、ベース電極14.エミッタ電極15はアルミニウム
等の金属で構成している。
FIG. 2 is a longitudinal sectional view of a second embodiment of the present invention, which is an example in which the present invention is applied to a high frequency bipolar transistor. P-type collector region 11. N-type base region 12.
The P+ type emitter region 13 constitutes a PNPI- transistor, and the base electrode 14. The emitter electrode 15 is made of metal such as aluminum.

ここでは、P1型エミッタ領域13を残して他の部分を
エツチングし、P゛゛エミッタ領域13の周辺部に段部
13aを形成し、この段部13aでアルミニウムエミッ
タ電極15からN型ベース領域12に到る寸法を長く設
定している。
Here, the P1 type emitter region 13 is left and the other parts are etched to form a step 13a around the P1 emitter region 13, and this step 13a connects the aluminum emitter electrode 15 to the N type base region 12. The dimensions are set long enough to reach the desired size.

この構成では、P゛゛エミッタ領域13に隣接されるN
型ベース領域12におけるアルミニウム原子進入領域を
ポリシリコンを介在させることなく防止でき、寄生抵抗
を低減して高特性のバイポーラトランジスタを構成でき
る。
In this configuration, N is adjacent to the P emitter region 13.
It is possible to prevent aluminum atoms from penetrating into the mold base region 12 without intervening polysilicon, thereby reducing parasitic resistance and constructing a bipolar transistor with high characteristics.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、半導体基板に形成した高
濃度拡散領域のアルミニウム電極と接触される部分の外
側をエツチングし、この接触部分の周囲に階段状の段部
を形成しているので、アルミニウム電極を高能動拡散領
域に直接接触させた構造を取りながらも、階段状の段部
により高濃度拡散9M域におけるアルミニウム電極と半
導体基板側との寸法を長くして半導体基板側へのアルミ
ニウム原子の進入を抑制し、寄生抵抗を低減するととも
に特性異常の発生を防止できる効果がある。
As explained above, in the present invention, the outside of the portion of the high-concentration diffusion region formed on the semiconductor substrate that comes into contact with the aluminum electrode is etched, and a stepped portion is formed around this contact portion. Although the aluminum electrode is in direct contact with the highly active diffusion region, the step-like step increases the dimension between the aluminum electrode and the semiconductor substrate side in the high concentration diffusion 9M region, allowing aluminum atoms to reach the semiconductor substrate side. This has the effect of suppressing the intrusion of particles, reducing parasitic resistance, and preventing the occurrence of characteristic abnormalities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を高周波増幅用J−FETに適用した第
1実施例の縦断面図、第2図は本発明をバイポーラトラ
ンジスタに適用した第2実施例の縦断面図、第3図は従
来の高周波増幅用J−FETの縦断面図、第4図はポリ
シリコン層を設けない場合の不具合を説明するための縦
断面図である。 1・・・P型ゲートjiff域(P型半導体基板)、2
・・・N型領域、3・・・N゛゛ソース領域、3a・・
・段部、4・・・N゛型トドレイン領域4a・・・段部
、5・・・酸化膜、6・・・P型ゲート領域、7・・・
アルミニウムソース電極、8・・・アルミニウムドレイ
ン電極、9・・・ソースN“型ポリシリコン層、10・
・・ドレインN゛型ポリシリコン層、11・・・P型コ
レクタ領域、12・・・N型ベース領域、13・・・P
゛゛エミッタ領域、13a・・・段部、14・・・ベー
ス電極、15・・・エミッタ電極。 第3図 第4図
FIG. 1 is a vertical cross-sectional view of a first embodiment in which the present invention is applied to a J-FET for high frequency amplification, FIG. 2 is a vertical cross-sectional view of a second embodiment in which the present invention is applied to a bipolar transistor, and FIG. FIG. 4 is a vertical cross-sectional view of a conventional J-FET for high frequency amplification, and is a vertical cross-sectional view for explaining a problem when a polysilicon layer is not provided. 1...P-type gate jiff region (P-type semiconductor substrate), 2
...N-type region, 3...N゛゛source region, 3a...
- Step part, 4...N'' type drain region 4a... Step part, 5... Oxide film, 6... P type gate region, 7...
Aluminum source electrode, 8... Aluminum drain electrode, 9... Source N" type polysilicon layer, 10.
...Drain N-type polysilicon layer, 11...P-type collector region, 12...N-type base region, 13...P
゛゛Emitter region, 13a... step portion, 14... base electrode, 15... emitter electrode. Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板に形成した高濃度拡散領域にアルミニウ
ム電極を接触形成した電極構造を有する半導体装置にお
いて、前記高濃度拡散領域のアルミニウム電極と接触さ
れる部分の外側をエッチングし、この接触部分の周囲に
階段状の段部を形成したことを特徴とする半導体装置。
1. In a semiconductor device having an electrode structure in which an aluminum electrode is formed in contact with a high concentration diffusion region formed on a semiconductor substrate, the outside of the portion of the high concentration diffusion region that is in contact with the aluminum electrode is etched, and the area around this contact portion is etched. A semiconductor device characterized in that a stepped portion is formed in the semiconductor device.
JP63053586A 1988-03-09 1988-03-09 Semiconductor device Expired - Lifetime JP2707576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053586A JP2707576B2 (en) 1988-03-09 1988-03-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053586A JP2707576B2 (en) 1988-03-09 1988-03-09 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH01228167A true JPH01228167A (en) 1989-09-12
JP2707576B2 JP2707576B2 (en) 1998-01-28

Family

ID=12946960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053586A Expired - Lifetime JP2707576B2 (en) 1988-03-09 1988-03-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2707576B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514541A (en) * 1978-07-19 1980-02-01 Nippon Hoso Kyokai <Nhk> Magnetic recording and reproducing system
JPS62209855A (en) * 1986-03-10 1987-09-16 Agency Of Ind Science & Technol Semiconductor element using silicon carbide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514541A (en) * 1978-07-19 1980-02-01 Nippon Hoso Kyokai <Nhk> Magnetic recording and reproducing system
JPS62209855A (en) * 1986-03-10 1987-09-16 Agency Of Ind Science & Technol Semiconductor element using silicon carbide

Also Published As

Publication number Publication date
JP2707576B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
JP3223329B2 (en) Method of manufacturing MOSFET
JP2934325B2 (en) Semiconductor device and manufacturing method thereof
JPH07283414A (en) Mos-type semiconductor device
JP3316537B2 (en) Method for manufacturing field effect transistor
JP2882291B2 (en) High breakdown voltage diode and method of manufacturing the same
JPH01228167A (en) Semiconductor device
JP3211529B2 (en) Vertical MIS transistor
JPS62274778A (en) Semiconductor device
JPS63164477A (en) Manufacture of field effect transistor with self-aligning gate
JPH051083Y2 (en)
JP3005349B2 (en) Junction type field effect transistor
JP3130645B2 (en) High voltage MOS transistor
JP2003338510A (en) Compound field effect semiconductor device
JPH0346980B2 (en)
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JPH067556B2 (en) MIS type semiconductor device
JP3149513B2 (en) Semiconductor device
JP3052019B2 (en) Integrated circuit device
JPH0548088A (en) Mis transistor
JPH0618200B2 (en) Method of manufacturing lateral transistor semiconductor device
JPH051084Y2 (en)
JPS61172371A (en) Semiconductor device
JP3229041B2 (en) Field effect transistor
JPS63131579A (en) Semiconductor device
JPS627710B2 (en)