JPH01226111A - Voltage-dependent non-linearity resistor ceramic composition - Google Patents

Voltage-dependent non-linearity resistor ceramic composition

Info

Publication number
JPH01226111A
JPH01226111A JP63052829A JP5282988A JPH01226111A JP H01226111 A JPH01226111 A JP H01226111A JP 63052829 A JP63052829 A JP 63052829A JP 5282988 A JP5282988 A JP 5282988A JP H01226111 A JPH01226111 A JP H01226111A
Authority
JP
Japan
Prior art keywords
voltage
ceramic composition
mol
resistor ceramic
srtio3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63052829A
Other languages
Japanese (ja)
Inventor
Keiichi Noi
野井 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63052829A priority Critical patent/JPH01226111A/en
Publication of JPH01226111A publication Critical patent/JPH01226111A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase dielectric constant, voltage non-linearity index, surge withstand amount, etc., by incorporating a third element ThN2 in a voltage- dependent non-linear resistor ceramic composition consisting of the main element of a first element SrTiO3 and metal oxide of a second element. CONSTITUTION:A third element ThN2 of 0.001-5.000mol% is contained within a voltage-dependent non-linear resistor ceramic composition consisting of the main element of a first element of 90.000-99.998mol% and the metal oxide of a second element of 0.001-5.000mol%. The first element consists of at least one type out of SrTiO3, CaXSr1-XTiO3 (0.001<=X<=0.5), BaySr1-yTiO3 (0.001<=y<=0.5), MgzSr1-ZTiO3 (0.001<=Z<=0.5). The second constituent consists of at least one type out of Nb2O5, Ta2O5, WO3, Dy2O3, Y2O3, La2O3, CeO2, Sm2O3 Pr6O11, and Nd2O3. It allows the dielectric constant, voltage non-linear index, surge withstand amount, etc., to be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気機得、電子機器で発生する異常高電圧、ノ
イズ、静電気から半導体及び回路を保護するためのコン
デンサ特性とバリスタ特性を有する電圧依存性非直@低
抗体磁器Mi説物知関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to voltage dependence devices having capacitor characteristics and varistor characteristics for protecting semiconductors and circuits from abnormal high voltages, noise, and static electricity generated in electrical equipment and electronic equipment. It is related to non-direct @ low antibody porcelain Mi theory.

従来の技術 従来、各種電気機2;、電子機器だおける異常高直圧の
吸収、ノイズの除去、火花消去、静電気対策Oために電
圧依存性非直線抵抗%住を有するSiCバリスタや、Z
nO系バリスタなどが使用されていた。このようなバリ
スタの覗圧−亀流特性は近似的に次式のように表すこと
ができる。
Conventional technology Conventionally, SiC varistors with voltage-dependent non-linear resistance and Z
nO type varistors were used. The viewing pressure-tortoise current characteristic of such a varistor can be expressed approximately as shown in the following equation.

I=(V/C)a ここで、工は電流、Vは1E圧、Cはバリスタ固有の定
数、αは直圧非直線指数である。
I=(V/C)a Here, engineering is current, V is 1E voltage, C is a constant specific to the varistor, and α is a direct pressure nonlinear index.

SiCバリスタのαは2〜7程度、ZnO系バリスタで
はαが60にもおよぶものがある。このようなバリスタ
は比較的高い電圧の吸収には優れた性能を有しているが
、誘電率が低く、固有の静電容量が小さいため、バリス
タ直圧以下の比較的低い(圧の吸収に対してはほとんど
効果を示さず、また誘電損失−δが6〜10%と大きい
The α of SiC varistors is about 2 to 7, and the α of some ZnO-based varistors is as high as 60. Although such varistors have excellent performance in absorbing relatively high voltages, their low dielectric constant and small inherent capacitance prevent them from absorbing relatively low (pressures) below the varistor direct pressure. It shows almost no effect on the surface, and the dielectric loss -δ is as large as 6 to 10%.

一方、これらの低電圧のノイズなどの除去には見かけの
誘電率が6×104桿度で、―δが1に前後の半導体コ
ンデンサが利用されている。しかし、このような半導体
コンデンサはサージなどによりある限度以上の電圧また
は電流が印加されると、破壊したシしてコンデンサとし
ての機能2果たさなくなったりする。
On the other hand, semiconductor capacitors with an apparent dielectric constant of 6×10 4 degrees and −δ of around 1 are used to remove these low-voltage noises. However, if a voltage or current exceeding a certain limit is applied to such a semiconductor capacitor due to a surge or the like, it may break down and no longer function as a capacitor.

そこで最近になって5rTiO,を主成分とし、バリス
タ特注とコンデンサ特性の両方の機能を有するものが開
発され、マイクロコンピュータなどの電子機4における
IC、LSIなどの半導体素子の保護に使用されている
Therefore, recently, a product containing 5rTiO as the main component and having both the functions of a custom varistor and a capacitor has been developed, and is used to protect semiconductor elements such as ICs and LSIs in electronic devices such as microcomputers. .

発明が解決しようとする課題 上記の5rTiO,を主成分とするバリスタはZnO系
バリスタに比べ誘t=iが、約10音と大きいが、電圧
非直線溶a(α)やサージ耐量が小さく、粒内抵抗が高
゛ハため、高@彼のノイズなどを十分に吸収できないと
いった欠点を有していた。
Problems to be Solved by the Invention The above-mentioned 5rTiO-based varistor has a large induction t=i of about 10 tones compared to the ZnO-based varistor, but its voltage nonlinear melting a(α) and surge resistance are small. Since the intragranular resistance was high, it had the disadvantage of not being able to absorb noise sufficiently.

そこで本発明では、誘電率が大きく、αが大きいと共て
、サージ、耐量が大きく、粒内抵抗が低い電圧依存叶非
直線低抗1本磁器組成物を提供することを目的とする。
Therefore, an object of the present invention is to provide a voltage-dependent, non-linear, low-resistance porcelain composition that has a large dielectric constant, a large α, a large surge resistance, and a low intragranular resistance.

課題を解決するための手段 り記の間頂点を解決するために本発明では、5rTiO
3,Fe2O3,CaXSr、xTiO,(2)SrT
iO3,CaxSr1−xTiO3(0.001≦x≦
0.5)。
Means for Solving the Problems In order to solve the apex, in the present invention, 5rTiO
3, Fe2O3, CaXSr, xTiO, (2) SrT
iO3, CaxSr1-xTiO3 (0.001≦x≦
0.5).

BaySrl−y Tie、 (2)SrTiO3,C
axSr1−xTiO3(0.001≦y≦0.5)。
BaySrl-y Tie, (2) SrTiO3,C
axSr1-xTiO3 (0.001≦y≦0.5).

Mg、Sr、−zTie、 (2)SrTiO3,Ca
xSr1−xTiO3(0.0CN≦z≦0.5) C
以下第三成分と呼ぶ)のうち少なくとも1種類以上を8
0−000〜99−997 m OIY;、 N b 
20 s 、 T a 2Q 5゜wo、 、 D72
0. 、τ20. 、 La2O3,CeO2,Sm2
0.。
Mg, Sr, -zTie, (2) SrTiO3, Ca
xSr1-xTiO3 (0.0CN≦z≦0.5) C
At least one or more of the following (hereinafter referred to as the third component)
0-000~99-997 m OIY;, Nb
20 s, Ta 2Q 5゜wo, , D72
0. , τ20. , La2O3, CeO2, Sm2
0. .

Pr60.、 、 Nd2O,(以下第二成分と呼ぶ)
のうち少なくとも1種類以上を0.001〜s、ooQ
mo6%ThN2(以下第三成分と呼ぶ)を0.001
 〜es、ooomol1%含有してなるか、または上
記第一。
Pr60. , , Nd2O, (hereinafter referred to as the second component)
At least one type of 0.001~s, ooQ
mo6% ThN2 (hereinafter referred to as the third component) is 0.001
~es, containing 1% ooomol, or the first above.

第二及び第三成分の上に、さらにム120..5b20
.。
On top of the second and third components, an additional 120. .. 5b20
.. .

!3ao 、 BeO、PbO、B20.、 CeO2
,0r20. 。
! 3ao, BeO, PbO, B20. , CeO2
,0r20. .

Fe2O3,CdO、K2O、CaO、Co20. 、
 CuO。
Fe2O3, CdO, K2O, CaO, Co20. ,
CuO.

Cu2O、Li□O、MgO、MnO2,MoO3、N
a2O。
Cu2O, Li□O, MgO, MnO2, MoO3, N
a2O.

NiO、Rh O、5ea2. AJ20 、5in2
. SiCISrO、Tl2O,ThN2. Tie2
. V2O5,Bi2O3゜ffo、 、 ZnO、Z
rO2,5nO2(以下第四成分と呼ぶ)のうち少なく
とも1種類以上を。、Oo1〜10.000 no1%
含有してなる成圧依存性非直線低抗体@器組成物を得る
ことにょシ間厘を解決しようとするものである。
NiO, RhO, 5ea2. AJ20, 5in2
.. SiCISrO, Tl2O, ThN2. Tie2
.. V2O5, Bi2O3゜ffo, , ZnO, Z
At least one type of rO2, 5nO2 (hereinafter referred to as the fourth component). , Oo1~10.000 no1%
The object of the present invention is to solve the problems of obtaining a pressure-dependent nonlinear low antibody composition containing the present invention.

作用 上記発明において第一成分は主成分であシ、第三成分は
主に半導体化を促進する金4俊化、吻である。また、第
三成分は誘電−8及び粒内抵抗の改善に寄与するもので
あシ、第四成分は誘【勲α、サージ耐量の改善に寄与す
るものである。特に、第三成分は素子全体に均一に分散
し、添on時点では窒化物であるが、梁元尭戎後に空気
中で熱処理することにより浚化物に変わり電子を放出す
る。
Function: In the above invention, the first component is the main component, and the third component is a metal chloride which mainly promotes semiconductor formation. Further, the third component contributes to improving dielectric -8 and intragranular resistance, and the fourth component contributes to improving dielectric strength α and surge resistance. In particular, the third component is uniformly dispersed throughout the device, and is a nitride at the time of addition, but when heat-treated in air after drying, it changes into a dredged material and emits electrons.

すなわち、粒界部分では拡散してきた多量の浚素により
設化吻が形成され、放出された電子は酸素イオンに油浸
され粒界は絶縁化される。一方、粒子内部は酸素の拡散
が起こりにくいため大部分のThN 2が窒化物のまま
で存在し、仮に粒子内部まで酸素が拡散してきても窒化
物の原子価が変わることによって電子を放出するため、
酸化:(よる高抵抗化を抑制する作用をする。このだめ
粒子内部を低抵抗にすることができる。
That is, a large amount of diffused dren forms an insulating proboscis at the grain boundary, and the emitted electrons are immersed in oxygen ions, thereby insulating the grain boundary. On the other hand, most of ThN2 exists in the form of nitride because it is difficult for oxygen to diffuse inside the particle, and even if oxygen diffuses into the inside of the particle, the valence of the nitride changes and electrons are emitted. ,
Oxidation: (Acts to suppress the increase in resistance due to oxidation. This can lower the resistance inside the particles.

実泡例 以下に本発明を実施例を挙げて具体的に説明する。Actual foam example The present invention will be specifically described below with reference to Examples.

まず、5rCO3,Fe2O3,CaC2)SrTiO
3,CaxSr1−xTiO3(0.、BaC2)Sr
TiO3,CaxSr1−xTiO3(0.、MgC2
)SrTiO3,CaxSr1−xTiO3(0.。
First, 5rCO3, Fe2O3, CaC2)SrTiO
3, CaxSr1-xTiO3(0., BaC2)Sr
TiO3, CaxSr1-xTiO3(0., MgC2
) SrTiO3, CaxSr1-xTiO3 (0.

TiO2を下記の第1表に示す組成化になるように秤量
し、ボールミルなどで404間混合成、乾燥した後、1
000℃で15侍間坂・尭する。こうして得られた仮焼
物’7CMo2Nと悉加吻を下肥の瀉1表に示す組成化
になるように秤量し、ボールミルなどで24時間混合し
、乾栗した後、ポリビニルアルコールなどの有機バイン
ダーをIQwt%添加して造粒した後、1 (t/、f
fl )のプレス圧力で10φX1(Iff)  の円
板状に成形する。次いで、空気中で1060℃、1時間
坂尭[悦バインダーを行った後、N2:H2=9:1の
混合ガス中で1400℃、6寺I司尭成する。さらに、
空気中で1080℃、14時間暁成し、このようにして
得られた第1図、第2図に示す暁詰体1の両平面に外周
を残すようにしてムgなどの導電性ペーストをスクリー
ン印刷などによシ塗布し、600 ’C16分間・暁成
し、電血2.3を形成する。次に、図示してはいないが
半田などによりリード線を取付け、エポキシなどの樹、
指と塗装する。このようにして得られた素子の特性を以
下の第2表に示す。
Weigh TiO2 so that it has the composition shown in Table 1 below, mix it in a ball mill etc. for 404 minutes, dry it, and then
15 Samurai slopes and slopes at 000℃. The thus obtained calcined product '7CMo2N and the whole mixture were weighed so as to have the composition shown in Table 1, mixed in a ball mill for 24 hours, dried, and then mixed with an organic binder such as polyvinyl alcohol. After adding IQwt% and granulating, 1 (t/, f
It is molded into a disk shape of 10φX1 (Iff) with a press pressure of fl ). Then, after applying a binder at 1060° C. for 1 hour in air, the mixture was heated at 1400° C. in a mixed gas of N2:H2=9:1. moreover,
A conductive paste such as mug was applied to both planes of the thus-obtained material 1 shown in FIGS. Apply by screen printing or the like and heat at 600'C for 16 minutes to form electrolyte 2.3. Next, although not shown, attach the lead wires with solder, etc., and
Paint with fingers. The characteristics of the device thus obtained are shown in Table 2 below.

なお、第2表において誘電率ε)ま1に庵での静氾容軟
から計…したものであり、粒内抵抗XSRは埃呈周波数
でのインピーダンスにより評:11iL、αはa = 
1 / Log (vjomA / v+mh )(た
だし、vlmA I ■10mAは1mム、10mムの
電流を流した時に素子の両端にかかる電圧である)で評
1凸した。また、サージ1廿量はパルス性の電流を印加
した後のvimlの変化が±10%以内である時の最大
のパルス性電流[直により評価している。
In addition, in Table 2, the dielectric constant ε) is calculated from the static flood capacity at the hermitage, and the intragranular resistance XSR is estimated by the impedance at the dust frequency: 11iL, α is a =
1/Log (vjomA/v+mh) (however, vlmA I 10 mA is the voltage applied to both ends of the element when a current of 1 mm and 10 mm is passed). In addition, the amount of one surge is evaluated by the maximum pulse current [directly] when the change in viml after applying the pulse current is within ±10%.

(以下余白) また、第一成分の5rTiO3,Fe2O3,CaxS
r、−xTiO。
(Left below) Also, the first component 5rTiO3, Fe2O3, CaxS
r, -xTiO.

(2)SrTiO3,CaxSr1−xTiO3(0.
001≦x≦o、s > 、 BaySr、−yTie
(2) SrTiO3, CaxSr1-xTiO3 (0.
001≦x≦o, s>, BaySr, -yTie
.

(2)SrTiO3,CaxSr1−xTiO3(0.
001≦y≦0.5 )、Mg2Sr、−2Tie。
(2) SrTiO3, CaxSr1-xTiO3 (0.
001≦y≦0.5), Mg2Sr, -2Tie.

(2)SrTiO3,CaxSr1−xTiO3(0.
001≦z≦0.6)のX、、7.2(7)、@il’
i硯定したのは、0.001未満では効果?示さず、0
.6を戎えると粒成喝及び半導本化が抑制され特注が劣
化するためである。さらに、第二成分ばo、ool m
ol!%末繭では効果を示さず、6.000mol%を
越えると粒界に偏析して粒界の高抵抗化?抑制し、粒界
に第二用を形1戊するため特性が劣化することになる。
(2) SrTiO3, CaxSr1-xTiO3 (0.
001≦z≦0.6), , 7.2 (7), @il'
Is it effective if it is less than 0.001? Not shown, 0
.. This is because if the number 6 is removed, granulation and semi-conducting will be suppressed and the custom-made product will deteriorate. Furthermore, the second component o, ool m
ol! % end cocoon does not show any effect, and when it exceeds 6.000 mol%, it segregates at the grain boundaries and increases the resistance of the grain boundaries. This results in deterioration of properties due to the formation of a secondary structure at the grain boundaries.

そして、第二成分は0.001mol%未満では効果を
示さず、s、ooomo/%を越えると粒界に第二相を
形成するため特性が劣化することになる。また、第V5
A成分は0.001 nod%未膚で・、−i効果を示
さず、s、o o o no/にを越えると粒界に第二
相を形成し粒成長が抑制され、粒界の抵抗は高くなるが
7位界の1嘔が厚くなるため、静心容量が小さくなると
共にバリスタ電圧が高くなり、サージに対して弱くなる
ことになる。
If the second component is less than 0.001 mol %, it will not be effective, and if it exceeds s,oomo/%, a second phase will be formed at the grain boundaries, resulting in deterioration of the properties. Also, Chapter V5
The A component does not exhibit the -i effect at 0.001 nod%, and when it exceeds s, o o o no/, a second phase is formed at the grain boundaries, grain growth is suppressed, and the resistance of the grain boundaries is reduced. becomes higher, but the 7th field becomes thicker, so the static capacitance becomes smaller and the varistor voltage becomes higher, making it weaker against surges.

なお、本実危例では一部の添加物の組み合わせについて
のみ示したが請求の範囲内であれば、その他の添bl]
物の組み合わ亡についても同様の効果があることを確認
した。
Although this practical example only shows some combinations of additives, other attachments may be included if they are within the scope of the claims.
It was confirmed that a similar effect exists for the combination of objects.

発明の効果 以上に示したように本発明によれば、誘電率ε、姓圧非
直線指数aが大きく、粒内抵抗が小さいため、高周1皮
のノイズを吸収すると共に、サージ電流が印加された後
の発熱が少なAため、素子の劣化が小さく、サージ耐量
が大きくなるという効果が得られる。
Effects of the Invention As shown above, according to the present invention, the dielectric constant ε, the pressure non-linearity index a are large, and the intragranular resistance is small, so that it is possible to absorb high-frequency noise and suppress surge currents. Since A generates less heat after being exposed to heat, it is possible to achieve the effects of less deterioration of the element and increased surge resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による素子を示す平面図、第2図は本発
明による素子を示を断面図である。 1・・・・・・焼皓体、2.3・・・・・電圧。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名焼結
体 ?電極
FIG. 1 is a plan view showing an element according to the invention, and FIG. 2 is a sectional view showing the element according to the invention. 1...Acinated body, 2.3...Voltage. Name of agent: Patent attorney Toshio Nakao and one other person Sintered body? electrode

Claims (2)

【特許請求の範囲】[Claims] (1)SrTiO_3,Ca_xSr_1_−_xTi
O_3(0.001≦x≦0.5),Ba_ySr_1
_−_yTiO_3(0.001≦y≦0.5),Mg
_zSr_1_−_zTiO_3(0.001≦z≦0
.5)のうち少なくとも1種類以上を90.000〜9
9.998mol%,Nb_2O_5,Ta_2O_5
,WO_3,Dy_2O_3,Y_2O_3,La_2
O_3,CeO_2,Sm_2O_3,Pr_6O_1
_1,Nd_2O_3のうち少なくとも1種類以上を0
.001〜5.000mol%,ThN_2を0.00
1〜6.000mol%含有してなる電圧依存性非直線
抵抗体磁器組成物。
(1) SrTiO_3, Ca_xSr_1_-_xTi
O_3 (0.001≦x≦0.5), Ba_ySr_1
____yTiO_3 (0.001≦y≦0.5), Mg
_zSr_1_−_zTiO_3 (0.001≦z≦0
.. 90.000 to 9 for at least one of the following
9.998mol%, Nb_2O_5, Ta_2O_5
, WO_3, Dy_2O_3, Y_2O_3, La_2
O_3, CeO_2, Sm_2O_3, Pr_6O_1
At least one of _1, Nd_2O_3 is 0
.. 001-5.000 mol%, ThN_2 0.00
A voltage-dependent nonlinear resistor ceramic composition containing 1 to 6.000 mol%.
(2)SrTiO_3,Ca_xSr_1_−_xTi
O_3(0.001≦x≦0.5),Ba_ySr_1
_−_yTiO_3(0.001≦y≦0.5),Mg
_zSr_1_−_zTiO_3(0.001≦z≦0
.6)のうち少なくとも1種類以上を80.000〜9
9.997mol%,Nb_2O_5,Ta_2O_5
,WO_3,Dy_2O_3,Y_2O_3,La_2
O_3,CeO_2,Sm_2O_3,Pr_6O_1
_1,Nd_2O_3のうち少なくとも1種類以上を0
.001〜5.000mol%、ThN_2を0.00
1〜5.000mol%,Al_2O_3,Sb_2O
_3,BaO,BeO,PbO,B_2O_3,CeO
_2,Cr_2O_3,Fe_2O_3,CdO,K_
2O,CaO,Co_2O_3,CuO,Cu_2O,
Li_2O,MgO,MnO_2,MoO_3,Na_
2O,NiO,Rh_2O_3,SeO_2,Ag_2
O,SiO_2,SiC,SrO,Tl_2O,ThO
_2,TiO_2,V_2O_5,Bi_2O_3,W
O_3,ZnO,ZrO_2,SnO_2のうち少なく
とも1種類以上を0.001〜10.000mol%含
有してなる電圧依存性非直線抵抗本磁器組成物。
(2) SrTiO_3, Ca_xSr_1_-_xTi
O_3 (0.001≦x≦0.5), Ba_ySr_1
____yTiO_3 (0.001≦y≦0.5), Mg
_zSr_1_−_zTiO_3 (0.001≦z≦0
.. 6) at least one type from 80,000 to 9
9.997mol%, Nb_2O_5, Ta_2O_5
, WO_3, Dy_2O_3, Y_2O_3, La_2
O_3, CeO_2, Sm_2O_3, Pr_6O_1
At least one of _1, Nd_2O_3 is 0
.. 001-5.000 mol%, ThN_2 0.00
1 to 5.000 mol%, Al_2O_3, Sb_2O
_3, BaO, BeO, PbO, B_2O_3, CeO
_2, Cr_2O_3, Fe_2O_3, CdO, K_
2O, CaO, Co_2O_3, CuO, Cu_2O,
Li_2O, MgO, MnO_2, MoO_3, Na_
2O, NiO, Rh_2O_3, SeO_2, Ag_2
O, SiO_2, SiC, SrO, Tl_2O, ThO
_2, TiO_2, V_2O_5, Bi_2O_3, W
The present voltage-dependent nonlinear resistance ceramic composition contains 0.001 to 10.000 mol% of at least one of O_3, ZnO, ZrO_2, and SnO_2.
JP63052829A 1988-03-07 1988-03-07 Voltage-dependent non-linearity resistor ceramic composition Pending JPH01226111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63052829A JPH01226111A (en) 1988-03-07 1988-03-07 Voltage-dependent non-linearity resistor ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63052829A JPH01226111A (en) 1988-03-07 1988-03-07 Voltage-dependent non-linearity resistor ceramic composition

Publications (1)

Publication Number Publication Date
JPH01226111A true JPH01226111A (en) 1989-09-08

Family

ID=12925736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63052829A Pending JPH01226111A (en) 1988-03-07 1988-03-07 Voltage-dependent non-linearity resistor ceramic composition

Country Status (1)

Country Link
JP (1) JPH01226111A (en)

Similar Documents

Publication Publication Date Title
JP2789714B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2830322B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2727693B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2800268B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2808775B2 (en) Varistor manufacturing method
JP2808777B2 (en) Varistor manufacturing method
JPH01226111A (en) Voltage-dependent non-linearity resistor ceramic composition
JP2830321B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2822612B2 (en) Varistor manufacturing method
JP2808778B2 (en) Varistor manufacturing method
JP2789675B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2789676B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2789674B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2548277B2 (en) Voltage-dependent nonlinear resistor porcelain composition
JP2548279B2 (en) Voltage-dependent nonlinear resistor porcelain composition
JPH01175702A (en) Voltage-dependent non-linear resistor having porcelain composition
JPS63215017A (en) Voltage-dependent nonlinear resistor porcelain compound
JPH01226120A (en) Voltage-dependent non-linear resistor ceramic composition
JPH01226110A (en) Voltage-dependent non-linearity resistor ceramic composition
JPS63215014A (en) Voltage-dependent nonlinear resistor porcelain compound
JPH01226119A (en) Voltage-dependent non-linear resistor ceramic composition
JPH01226115A (en) Voltage-dependent non-linearity resistor ceramic composition
JPS63215001A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215019A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63296310A (en) Voltage dependency nonlinear resistor porcelain composition