JPH01224047A - Decomposition catalyst for nitrogen oxide - Google Patents

Decomposition catalyst for nitrogen oxide

Info

Publication number
JPH01224047A
JPH01224047A JP63049074A JP4907488A JPH01224047A JP H01224047 A JPH01224047 A JP H01224047A JP 63049074 A JP63049074 A JP 63049074A JP 4907488 A JP4907488 A JP 4907488A JP H01224047 A JPH01224047 A JP H01224047A
Authority
JP
Japan
Prior art keywords
catalyst
silver
oxide
metal
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63049074A
Other languages
Japanese (ja)
Other versions
JPH0442064B2 (en
Inventor
Hideaki Hamada
秀昭 浜田
Yoshiaki Kindaichi
嘉昭 金田一
Tatsuhiko Ito
伊藤 建彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63049074A priority Critical patent/JPH01224047A/en
Publication of JPH01224047A publication Critical patent/JPH01224047A/en
Publication of JPH0442064B2 publication Critical patent/JPH0442064B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To substantially improve NO decomposition activity by utilizing a metallic oxide catalyst incorporating a silver as a promoter in the metallic oxide catalyst decomposing NO contained in exhaust gas. CONSTITUTION:In a catalyst directly decomposing and reducing nitrogen oxide contained in exhaust gas, the metal oxide having NO decomposition activity, especially oxide of cobalt, iron or nickel is utilized as a main catalytic metal and silver is utilized as a promoter. The aq. soln. of a precipitant such as sodium carbonate is dropt into the mixed aq. soln. incorporating main catalytic metal and silver, and precipitate is prepared and separated. The catalyst obtained by such a way is substantially improved in NO decomposition activity and contributes to the clarification of the atmosphere.

Description

【発明の詳細な説明】 本発明は、各種排気ガス中の健康に有害な窒素酸化物(
−酸化窒素以下Noという。)を直接分解し低減する触
媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to eliminate nitrogen oxides (
- Nitrogen oxide is referred to as No. ) is related to a catalyst that directly decomposes and reduces

従来、触媒を用い排気ガス中のNoを低減する方法は知
られている0例えば、ガソリンエンジンからの排気ガス
中のNoを同じに存在する一酸化炭素、炭化水素との反
応により還元し除去する方法は三元触媒法としてすでに
ガソリン自動車で実用されている。また、ボイラーなど
の大型定置式排出源からの排気ガスについてはアンモニ
アを外部から添加しNoを低減する選択的No還元法が
稼動しておりある程度の効果をあげている。しかながら
、前者の方法は酸素濃度の極めて低いガソリンエンジン
からの排気ガスにのみ適用可能であm−上困難である。
Conventionally, methods for reducing No in exhaust gas using catalysts are known. For example, No in exhaust gas from a gasoline engine is reduced and removed by reaction with carbon monoxide and hydrocarbons that are also present. The method is already in practical use in gasoline-powered vehicles as a three-way catalyst method. In addition, for exhaust gas from large stationary sources such as boilers, a selective NO reduction method in which ammonia is added externally to reduce NO is in operation and has been effective to some extent. However, the former method is only applicable to exhaust gas from a gasoline engine with an extremely low oxygen concentration, and is difficult to apply.

従って、小型ディーゼルエンジ二゛1 −ンなどの排気ガス中のNoを除去することは技術的に
不可能であった。
Therefore, it has been technically impossible to remove No from the exhaust gas of small diesel engines and the like.

これに対してNOを直接触媒により無害な窒素あるいは
亜酸化窒素と酸素に分解する方法はどのような排出源に
対しても適用できる点で理想的である。No直接分解触
媒としてはすでに白金などの貴金属担持触媒やいくつか
の金属酸化物触媒が活性であることは公知である(J、
W、Hightower、戸′Catalytic C
hemistry  of Nitrogen  0x
ides”(Edit。
On the other hand, a method of directly decomposing NO into harmless nitrogen or nitrous oxide and oxygen using a catalyst is ideal in that it can be applied to any emission source. It is already known that noble metal supported catalysts such as platinum and some metal oxide catalysts are active as No direct decomposition catalysts (J,
W, Hightower, Catalytic C
hemistry of Nitrogen 0x
ides” (Edit.

by R,L、に11m1sch and J、G、L
arson)、Plenum Press。
by R,L, ni11m1sch and J,G,L
arson), Plenum Press.

New York(1975)、p、63)−更に、あ
る種のペロブスカイト系複合酸化物触媒(新重光、化学
技術研究所報告、 75.83(1980))や金属担
持ゼオライト触媒(岩本正和、 J、Che+s、So
c、、Chem、Commun、、1986.1272
)がNo分解活性を示すことも知られている。しかしな
がら、実際の排気ガスの浄化に使用するためには触媒活
性が低く実用化の見通しがな一果について鋭意研究を重
ねた結果、銀を助触媒とすることによってNo分解活性
が大幅に向上することを見い出し本発明を成すに至った
New York (1975), p. 63) - Furthermore, certain perovskite complex oxide catalysts (Shinjumitsu, Chemical Technology Research Institute Report, 75.83 (1980)) and metal-supported zeolite catalysts (Masakazu Iwamoto, J. Che+s, So
c,,Chem,Commun,, 1986.1272
) is also known to exhibit No decomposition activity. However, the catalytic activity is too low for use in actual exhaust gas purification, and there is no prospect of practical application.As a result of intensive research, we found that the use of silver as a cocatalyst significantly improves the No decomposition activity. This discovery led to the completion of the present invention.

すなわち、本発明方法は各種排気ガス中のN。That is, the method of the present invention can reduce N in various exhaust gases.

を分解低減する触媒として、−助触媒として銀を含有す
る金属酸化物触媒を用いる方法である。N。
This method uses a metal oxide catalyst containing silver as a co-catalyst. N.

の分解のために通常不活性とされる前述の元素を助触媒
として用いるという事情は極めて驚くべきことであり予
見されなかったことであった。
The situation of using the aforementioned elements, which are normally inert for the decomposition of , as cocatalysts, was quite surprising and unforeseen.

本発明で用いる酸化物触媒の主触媒金属としては通常N
o分解活性を有する金属の酸化物であればどのようなも
のであってもよく、例えば第1、第2、第3周期の遷移
金属酸化物をあげることができる。なかでも本来比較的
高い触媒活性を有するコバルト、鉄、ニッケルの酸化物
が好ましい。
The main catalyst metal of the oxide catalyst used in the present invention is usually N.
o Any metal oxide having decomposition activity may be used, such as first, second, and third period transition metal oxides. Among these, cobalt, iron, and nickel oxides, which inherently have relatively high catalytic activity, are preferred.

本発明のための触媒は銀を含有する酸化物系触媒であれ
ばいかなる方法で調製したものであって、I E:成分を含む化合物を混練して処理し調製する混線一
法、両成分を含む溶液に沈殿剤を加えて得られる固形物
を処理し調製する共沈法などが用いられるが、共沈法が
最も適当である。また場合によっては反応に不活性な担
体を用いてもよい。触媒中の助触媒金属である銀の主触
媒金属に対する比率は広い範囲で変えることができる。
The catalyst for the present invention can be prepared by any method as long as it is an oxide catalyst containing silver. A coprecipitation method is used, in which a solid is prepared by adding a precipitant to a solution containing the precipitate, and the coprecipitation method is most suitable. In some cases, a carrier inert to the reaction may be used. The ratio of promoter metal silver to main catalyst metal in the catalyst can vary within a wide range.

一般的には0゜1〜50%、好ましくは1〜30%の値
である。
Generally, the value is 0.1 to 50%, preferably 1 to 30%.

共沈法で本発明方法の触媒を作るための主触媒金属及び
助触媒の銀の出発物質は水に可溶なものであればいかな
る種類の化合物であってもよく、例えば硝酸塩、有機酸
塩、ハロゲン化物、各種錯化合物が用いられる。触媒製
造のためには主触媒金属と銀を含む混合水溶液に沈殿剤
の水溶液を滴下してまず固形物を得る。水溶液の金属濃
度はいかなる値でもよい、沈殿剤としてはアルカリ性物
質が適当で例えば炭酸ナトリウム、炭酸水素ナトリウム
、炭酸カリウム、炭酸水素カリウム、水酸4ムなどが用
いられる。沈殿剤の量は沈殿が完全に■ られた固形物は濾過し水でよく洗浄、乾燥し、最後に空
気気流中で焼成して触媒が得られる。空気焼成温度は2
00℃〜900℃の間、好ましくは300℃〜700℃
である。
The starting materials for the main catalytic metal and co-catalyst silver for producing the catalyst of the present method by coprecipitation may be any type of compound as long as it is soluble in water, such as nitrates, organic acid salts, etc. , halides, and various complex compounds are used. To produce a catalyst, a solid substance is first obtained by dropping an aqueous solution of a precipitant into a mixed aqueous solution containing the main catalyst metal and silver. The metal concentration of the aqueous solution may be of any value, and alkaline substances are suitable as the precipitant, such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, and hydroxide. The amount of precipitant is determined by (1) The solid material from which the precipitation has been completely removed is filtered, thoroughly washed with water, dried, and finally calcined in a stream of air to obtain a catalyst. Air firing temperature is 2
Between 00°C and 900°C, preferably between 300°C and 700°C
It is.

本発明方法の実施のためには、Noを含むガスを触媒上
に導く。反応温度は一般に300℃〜900℃の間、好
ましくは400℃〜700℃である。
To carry out the method of the invention, a gas containing No is passed over the catalyst. The reaction temperature is generally between 300°C and 900°C, preferably between 400°C and 700°C.

温度は高いほどNoの分解率が高いが、温度が高すぎる
と触媒の劣化が起こり好ましくないのでこの両者の因子
を考慮して決めるのが合理的である。
The higher the temperature, the higher the decomposition rate of No. However, if the temperature is too high, the catalyst will deteriorate, which is undesirable, so it is reasonable to decide by taking both of these factors into consideration.

本発明の方法によれば、従来のNo分解触媒の活性を大
きく上回る触媒をW8製することによって触媒による低
減が困難であった種々の排気ガス中のNoを分解除去す
ることができ、大気の浄化に」1 一実施例1 硝酸コバルト(Co(NOi)z・6HzO) 20−
37 gと硝酸銀(AgNOW 0 、60 gを純水
に溶解して100 m Qとし、マグネチックスターラ
ーで攪拌しながら炭酸ナトリウム(Na2Go3) 8
 、50 gの50mQ水溶液を1時間で滴下し沈殿を
生成させた。更に1時間攪拌した後、遠心分離機で沈殿
を分離した。得られた固形物は純水で5回以上洗浄した
後、乾燥器中100℃で終夜乾燥して粉砕し、空気気流
中で焼成して触媒を調製した。焼成条件は100℃〜3
00℃まで毎分1℃、300℃〜400℃まで毎分4.
3℃で昇温し、400℃に4時間保った。この場合の銀
のコバルトに対するモル比は1/20である。
According to the method of the present invention, by using a W8 catalyst that greatly exceeds the activity of conventional No decomposition catalysts, it is possible to decompose and remove No in various exhaust gases, which was difficult to reduce with catalysts, and to reduce the amount of No in the atmosphere. For purification” 1 Example 1 Cobalt nitrate (Co(NOi)z・6HzO) 20-
Dissolve 37 g of silver nitrate (AgNOW 0 ) and 60 g of silver nitrate (AgNOW 0 ) in pure water to make 100 mQ, and add sodium carbonate (Na2Go3) 8 while stirring with a magnetic stirrer.
, 50 g of 50mQ aqueous solution was added dropwise over 1 hour to form a precipitate. After stirring for an additional hour, the precipitate was separated using a centrifuge. The obtained solid was washed with pure water five times or more, dried overnight at 100° C. in a drier, pulverized, and calcined in an air stream to prepare a catalyst. Firing conditions are 100℃~3
1°C per minute up to 00°C, 4°C per minute from 300°C to 400°C.
The temperature was raised to 3°C and kept at 400°C for 4 hours. In this case, the molar ratio of silver to cobalt is 1/20.

このようにして調製した酸化コバルト−銀触媒を1gと
り常圧流通式反応装置に充填し、温度を上げながらNO
3,13%を含むヘリウムガスを一比較例1 市販の99.9%三二酸化コバルトを3gとってこれを
触媒とし実施例1と同様にしてNoの分解率を調べた結
果を比較例1として表1に示した。
1 g of the cobalt-silver oxide catalyst prepared in this way was charged into a normal pressure flow reactor, and while the temperature was raised, NO
Comparative Example 1: Using 3g of commercially available 99.9% cobalt sesquioxide as a catalyst, the decomposition rate of No was investigated in the same manner as in Example 1. It is shown in Table 1.

触媒量を考慮すると実施例1のコバルト−銀触媒の活性
が高いことが明らかである。
Considering the amount of catalyst, it is clear that the cobalt-silver catalyst of Example 1 has high activity.

比較例2 実施例1と同様にして銀を含まない酸化コバルト単独触
媒を調製し、1gとって反応を行なった結果を比較例2
として表1に示した。実施例1と比べると銀を複合させ
ることにより活性が大きく向上していることがわかる。
Comparative Example 2 A cobalt oxide single catalyst containing no silver was prepared in the same manner as in Example 1, and 1 g was used for a reaction. The results are shown in Comparative Example 2.
It is shown in Table 1. It can be seen that compared to Example 1, the activity is greatly improved by combining silver.

表1 実施例2 硝酸鉄(Fe(No、)、・9H20) 28 、28
 gと硝酸銀0.60gを純水に溶解して150mQと
し、マグネチソクスターラーで攪拌しながら炭酸ナトリ
ウム13.50gの100 m Q水溶液を1時間で滴
下し沈殿を生成させた。更に1時間攪拌した後、遠心分
離機で沈殿を分離した。得られた固形物は純水で5回以
上洗浄した後、乾燥器中100℃で終夜乾燥して粉砕し
、空気気流中で焼成して酸化鉄−銀触媒を調製した。焼
成条件は実施例1と同様である。
Table 1 Example 2 Iron nitrate (Fe(No, ), 9H20) 28, 28
g and 0.60 g of silver nitrate were dissolved in pure water to make 150 mQ, and while stirring with a magnetic stirrer, a 100 mQ aqueous solution of 13.50 g of sodium carbonate was added dropwise over 1 hour to form a precipitate. After stirring for an additional hour, the precipitate was separated using a centrifuge. The obtained solid was washed with pure water five times or more, dried overnight at 100° C. in a drier, pulverized, and calcined in an air stream to prepare an iron-silver oxide catalyst. The firing conditions were the same as in Example 1.

このようにして調製した触媒を2gとり常圧流通式反応
装置に充填し、温度を上げながら3.13%のNoを含
むヘリウムガスを毎分30mQ流して反応させNoの分
解率を調べた。その結果は、実施例2として表2に示し
た。
2 g of the thus prepared catalyst was charged into a normal pressure flow reactor, and while the temperature was raised, helium gas containing 3.13% No was flowed at 30 mQ per minute for reaction, and the decomposition rate of No was investigated. The results are shown in Table 2 as Example 2.

比較例3 市販の99.9%の酸化第2鉄を2gとってこれを触媒
とし実施例2と同様にしてNoの分解率を調べた結果を
比較例3として表2に示した。
Comparative Example 3 The decomposition rate of No was investigated in the same manner as in Example 2 using 2 g of commercially available 99.9% ferric oxide as a catalyst. The results are shown in Table 2 as Comparative Example 3.

表2 実施例3 硝酸ニッケル(Nl (NO3)2・6H20) 20
 、36 gと硝酸銀0.60gを純水に溶解して10
0mQとし、マグネチックスターラーで攪拌しながら炭
酸ナトリウム8.50gの50mQ水溶液を1時間で滴
下し沈殿を生成させた。更に1時間攪拌した後、遠心分
離機で沈殿を分離した。得られた固形物は純水で5回以
上洗浄した後、乾燥器中100℃で終夜乾燥して粉砕し
、空気気流中で焼成して酸化ニッケルー銀触媒を調製し
た。焼成条件は実施例1と同様である。
Table 2 Example 3 Nickel nitrate (Nl (NO3)2.6H20) 20
, 36 g and 0.60 g of silver nitrate were dissolved in pure water and 10
The solution was adjusted to 0 mQ, and a 50 mQ aqueous solution of 8.50 g of sodium carbonate was added dropwise over 1 hour while stirring with a magnetic stirrer to form a precipitate. After stirring for an additional hour, the precipitate was separated using a centrifuge. The obtained solid was washed with pure water five times or more, dried overnight at 100° C. in a drier, pulverized, and calcined in an air stream to prepare a nickel-silver oxide catalyst. The firing conditions were the same as in Example 1.

このようにして調製した触媒を2gとり常圧流通式反応
装置に充填し、温度を上げながら3.13%のNOを流
して分解率を調べた。その結果は、実施例3として表3
に示した。
2 g of the catalyst thus prepared was charged into a normal pressure flow reactor, and 3.13% NO was passed through the reactor while increasing the temperature to examine the decomposition rate. The results are shown in Table 3 as Example 3.
It was shown to.

比較例4 市販の99.9%酸化ニッケルを2gとってこれを触媒
とし実施例4と同様にしてNOの分解率を調べた結果を
比較例4として表3に示した。
Comparative Example 4 The NO decomposition rate was investigated in the same manner as in Example 4 using 2 g of commercially available 99.9% nickel oxide as a catalyst, and the results are shown in Table 3 as Comparative Example 4.

表3Table 3

Claims (3)

【特許請求の範囲】[Claims] (1)銀を助触媒金属として含む金属酸化物触媒を用い
て窒素酸化物を分解する方法。
(1) A method of decomposing nitrogen oxides using a metal oxide catalyst containing silver as a promoter metal.
(2)金属酸化物触媒の主触媒金属としてコバルト、鉄
、ニッケルを用いる特許請求の範囲第1項の方法。
(2) The method according to claim 1, in which cobalt, iron, or nickel is used as the main catalyst metal of the metal oxide catalyst.
(3)触媒を、主触媒金属塩と銀の塩を含む混合水溶液
に沈殿剤を滴下して得られる固形物を処理して調製する
特許請求の範囲第1項または第2項の方法。
(3) The method according to claim 1 or 2, wherein the catalyst is prepared by treating a solid obtained by dropping a precipitant into a mixed aqueous solution containing a main catalyst metal salt and a silver salt.
JP63049074A 1988-03-02 1988-03-02 Decomposition catalyst for nitrogen oxide Granted JPH01224047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63049074A JPH01224047A (en) 1988-03-02 1988-03-02 Decomposition catalyst for nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63049074A JPH01224047A (en) 1988-03-02 1988-03-02 Decomposition catalyst for nitrogen oxide

Publications (2)

Publication Number Publication Date
JPH01224047A true JPH01224047A (en) 1989-09-07
JPH0442064B2 JPH0442064B2 (en) 1992-07-10

Family

ID=12820936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63049074A Granted JPH01224047A (en) 1988-03-02 1988-03-02 Decomposition catalyst for nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH01224047A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953156A (en) * 1972-09-27 1974-05-23
JPS5035083A (en) * 1973-08-01 1975-04-03
JPS513391A (en) * 1974-06-29 1976-01-12 Asahi Chemical Ind
JPS5116271A (en) * 1974-07-31 1976-02-09 Asahi Chemical Ind
JPS51140870A (en) * 1975-05-30 1976-12-04 Sumitomo Heavy Ind Ltd An exhaust gas treatment process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953156A (en) * 1972-09-27 1974-05-23
JPS5035083A (en) * 1973-08-01 1975-04-03
JPS513391A (en) * 1974-06-29 1976-01-12 Asahi Chemical Ind
JPS5116271A (en) * 1974-07-31 1976-02-09 Asahi Chemical Ind
JPS51140870A (en) * 1975-05-30 1976-12-04 Sumitomo Heavy Ind Ltd An exhaust gas treatment process

Also Published As

Publication number Publication date
JPH0442064B2 (en) 1992-07-10

Similar Documents

Publication Publication Date Title
JP3429967B2 (en) Oxygen storage cerium-based composite oxide
US5516741A (en) Reduced chlorine containing platinum catalysts
CN113751023B (en) Bimetallic-based catalyst for low-temperature high-selectivity catalytic oxidation of ammonia, preparation method and application thereof
JP2008296224A (en) Nitrogen oxide removing catalyst, nitrogen oxide removing method using it, and nitrogen oxide removing device
JPH09501348A (en) Base metal catalysts and catalyst supports for automobile exhaust gas purification and a further two-step process.
JPH01224047A (en) Decomposition catalyst for nitrogen oxide
JPH04281846A (en) Gold catalyst for removal of nitrogen oxide and method for removing nitrogen oxide
JPH06262079A (en) Catalyst for nitrogen oxide purification and nitrogen oxide purification
JPH0435744A (en) Catalytic body for purification of exhaust gas
JP3298133B2 (en) Method for producing zeolite containing cobalt and palladium and method for purifying exhaust gas
US3855389A (en) Method of treating exhaust gases of internal combustion engines
JPS61274729A (en) Removal of hydrogen cyanide in exhaust gas
JP3721112B2 (en) Method for catalytic reduction of nitrogen oxides and catalyst therefor
JPH0290947A (en) Manufacture of catalyst for exhaust gas purification
JPH0753976A (en) Oxidation of methane
JP3711363B2 (en) Nitrogen oxide catalytic reduction removal catalyst and nitrogen oxide catalytic reduction removal method
JPH0474536A (en) Catalyst for decomposing nitrogen oxide
JP3302036B2 (en) Nitrogen oxide removal method
JPH1066867A (en) Catalyst for cleaning exhaust gas and method for cleaning exhaust gas by the catalyst
JPH05154349A (en) Method and catalyst for removing nitrogen oxide in combustion exhaust gas
JP2007075774A (en) Catalyst for catalytically reducing and removing nitrogen oxide
JPH0563222B2 (en)
JP3711361B2 (en) Nitrogen oxide catalytic reduction removal catalyst and method for producing the same
JPH0751542A (en) Purification of exhaust gas
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term