JP2008296224A - Nitrogen oxide removing catalyst, nitrogen oxide removing method using it, and nitrogen oxide removing device - Google Patents

Nitrogen oxide removing catalyst, nitrogen oxide removing method using it, and nitrogen oxide removing device Download PDF

Info

Publication number
JP2008296224A
JP2008296224A JP2008224485A JP2008224485A JP2008296224A JP 2008296224 A JP2008296224 A JP 2008296224A JP 2008224485 A JP2008224485 A JP 2008224485A JP 2008224485 A JP2008224485 A JP 2008224485A JP 2008296224 A JP2008296224 A JP 2008296224A
Authority
JP
Japan
Prior art keywords
catalyst
nitrogen oxide
oxide
nitrogen
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008224485A
Other languages
Japanese (ja)
Inventor
Takayuki Mori
高行 森
Ryohei Kozuka
良平 小塚
Nobuya Iwami
暢也 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Roki Co Ltd
Original Assignee
Tokyo Roki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Roki Co Ltd filed Critical Tokyo Roki Co Ltd
Priority to JP2008224485A priority Critical patent/JP2008296224A/en
Publication of JP2008296224A publication Critical patent/JP2008296224A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitrogen oxide removing catalyst capable of reducing/denitrating nitrogen oxide at high efficiency, a nitrogen oxide removing method using the catalyst, and a nitrogen oxide removing apparatus provided with the catalyst. <P>SOLUTION: The nitrogen oxide removing catalyst contains at least tungsten oxide-zirconia type composite oxide and cerium as active ingredients. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、窒素酸化物浄化触媒、並びにそれを用いた窒素酸化物の浄化方法及び窒素酸化物浄化装置に関する。   The present invention relates to a nitrogen oxide purification catalyst, a nitrogen oxide purification method and a nitrogen oxide purification apparatus using the same.

従来、窒素酸化物を浄化(除去)させるために、窒素酸化物をアンモニアの存在下で酸化チタン及び酸化バナジウムを主成分とする触媒と接触させて還元脱硝する技術(下式(1)及び(2)などを参照)が用いられている(例えば、特許文献1参照)。
式(1)・・・NO+2NH+1/2O→3/2N+3H
式(2)・・・NO+NH+1/4O→N+3/2H
特開平7−275656号公報
Conventionally, in order to purify (remove) nitrogen oxides, a technique for reducing denitration by bringing nitrogen oxides into contact with a catalyst mainly composed of titanium oxide and vanadium oxide in the presence of ammonia (the following formulas (1) and ( 2) etc.) is used (for example, see Patent Document 1).
Formula (1) ... NO 2 + 2NH 3 + 1 / 2O 2 → 3 / 2N 2 + 3H 2 O
Formula (2) ... NO + NH 3 + 1 / 4O 2 → N 2 + 3 / 2H 2 O
JP-A-7-275656

しかしながら、上記触媒に含まれているバナジウムはその有害性が指摘されており、触媒成分の排出による環境問題が懸念されている。   However, the vanadium contained in the above catalyst has been pointed out to be harmful, and there are concerns about environmental problems due to the discharge of catalyst components.

また、上記触媒は窒素酸化物を完全に還元脱硝することができず、より効率の高い触媒の開発が求められている。   Further, the above catalyst cannot completely reduce denitration of nitrogen oxides, and development of a more efficient catalyst is demanded.

そこで本発明は、窒素酸化物を高い効率で還元脱硝することが可能な、窒素酸化物浄化触媒、その触媒を用いた窒素酸化物浄化方法、及び、その触媒を備えた窒素酸化物浄化装置を提供することを目的とする。   Therefore, the present invention provides a nitrogen oxide purification catalyst, a nitrogen oxide purification method using the catalyst, and a nitrogen oxide purification apparatus equipped with the catalyst, capable of reducing and denitrating nitrogen oxide with high efficiency. The purpose is to provide.

本発明者らは、酸化タングステン−ジルコニア型複合酸化物にセリウムを添加することにより得られた触媒(以下「Ce-W-Zr系触媒」と称する。)を用いて、アンモニア選択還元脱硝反応を行ったところ、窒素酸化物を効率よく浄化できることを見出した。   The present inventors performed ammonia selective reduction denitration reaction using a catalyst obtained by adding cerium to tungsten oxide-zirconia type composite oxide (hereinafter referred to as “Ce—W—Zr catalyst”). As a result, it was found that nitrogen oxides can be efficiently purified.

また、本発明者らは、チタニア−ジルコニア型複合酸化物にセリウム及び硫黄を添加することにより得られた触媒(以下「Ce-Ti-SO4-Zr系触媒」と称する。)とFe-Si-Al系触媒との混合触媒を用いて、アンモニア選択還元脱硝反応を行ったところ、Ce-Ti-SO4-Zr系触媒を単独で用いた場合に比べ、窒素酸化物をさらに効率よく浄化できることを見出した。このようにして、本発明者らは本発明を完成するに至った。 In addition, the present inventors have prepared a catalyst obtained by adding cerium and sulfur to a titania-zirconia composite oxide (hereinafter referred to as “Ce—Ti—SO 4 —Zr catalyst”) and Fe—Si. Nitrogen oxide can be purified more efficiently than when Ce-Ti-SO 4 -Zr catalyst is used alone when ammonia selective reduction denitration reaction is performed using a mixed catalyst with Al-Al catalyst. I found. Thus, the present inventors have completed the present invention.

すなわち、本発明の窒素酸化物浄化触媒は、少なくとも、酸化タングステン−ジルコニア型複合酸化物と、セリウムと、を有効成分として含有することを特徴とする。   That is, the nitrogen oxide purification catalyst of the present invention is characterized by containing at least a tungsten oxide-zirconia type composite oxide and cerium as active ingredients.

本発明の窒素酸化物浄化触媒は、さらに硫黄又はリンを含有することを特徴とする。   The nitrogen oxide purification catalyst of the present invention further contains sulfur or phosphorus.

本発明の窒素酸化物浄化触媒は、少なくとも、酸化タングステン−ジルコニア型複合酸化物と、セリウムと、を有効成分として含有する第一の複合体と、シリカ、アルミナ、チタニア、ジルコニア、及び酸化タングステンから選ばれる1又は2以上の酸化物と、希土類金属又は遷移金属と、を有効成分として含有する第二の複合体と、を有し、前記第一の複合体と前記第二の複合体とは活性種成分が異なることを特徴とする。   The nitrogen oxide purification catalyst of the present invention comprises at least a first composite containing tungsten oxide-zirconia type composite oxide and cerium as active ingredients, silica, alumina, titania, zirconia, and tungsten oxide. A second composite containing one or two or more selected oxides and a rare earth metal or a transition metal as an active ingredient, wherein the first composite and the second composite are The active species component is different.

本発明の窒素酸化物浄化触媒は、前記第二の複合体における複合酸化物が、シリカ−アルミナ型複合酸化物であることを特徴とする。   The nitrogen oxide purification catalyst of the present invention is characterized in that the complex oxide in the second complex is a silica-alumina complex oxide.

本発明の窒素酸化物浄化触媒は、前記第二の複合体は担体基材に担持されており、前記第一の複合体は前記第二の複合体に担持されていることを特徴とする。   The nitrogen oxide purification catalyst of the present invention is characterized in that the second complex is supported on a carrier substrate, and the first complex is supported on the second complex.

本発明の窒素酸化物の浄化方法は、窒素酸化物浄化触媒に窒素酸化物とアンモニアとを接触させて、還元脱硝することを特徴とする。   The nitrogen oxide purification method of the present invention is characterized in that nitrogen oxide and ammonia are brought into contact with a nitrogen oxide purification catalyst to perform reductive denitration.

本発明の窒素酸化物浄化装置は、窒素酸化物浄化触媒を備えることを特徴とする。   The nitrogen oxide purification apparatus of the present invention is characterized by including a nitrogen oxide purification catalyst.

本発明によれば、窒素酸化物を高い効率で還元脱硝することが可能な、窒素酸化物浄化触媒、その触媒を用いた窒素酸化物浄化方法、及び、その触媒を備えた窒素酸化物浄化装置を提供することができる。   According to the present invention, a nitrogen oxide purification catalyst capable of reducing and denitrating nitrogen oxide with high efficiency, a nitrogen oxide purification method using the catalyst, and a nitrogen oxide purification apparatus including the catalyst Can be provided.

上記知見に基づき完成した本発明を実施するための形態を、実施例を挙げながら詳細に説明する。まず、本発明に係る窒素酸化物浄化触媒について説明する。   An embodiment for carrying out the present invention completed based on the above knowledge will be described in detail with reference to examples. First, the nitrogen oxide purification catalyst according to the present invention will be described.

===窒素酸化物浄化触媒について===
本発明に係る窒素酸化物浄化触媒は、少なくとも、酸化タングステン−ジルコニア型複合酸化物と、セリウムと、を有効成分として含有するものである。セリウムの含有率は2wt%〜50wt%の範囲内であることが好ましい。
=== About the nitrogen oxide purification catalyst ===
The nitrogen oxide purification catalyst according to the present invention contains at least a tungsten oxide-zirconia type composite oxide and cerium as active ingredients. The content of cerium is preferably in the range of 2 wt% to 50 wt%.

また、本発明に係る窒素酸化物浄化触媒に含ませる酸化タングステン−ジルコニア型複合酸化物は、タングステンとジルコニアとのモル組成比(W:Zr)が1:20〜1:5の範囲内であるものが好ましい。   Moreover, the tungsten oxide-zirconia type composite oxide contained in the nitrogen oxide purification catalyst according to the present invention has a molar composition ratio (W: Zr) of tungsten and zirconia in the range of 1:20 to 1: 5. Those are preferred.

また、本発明に係る窒素酸化物浄化触媒は、少なくとも、酸化タングステン−ジルコニア型複合酸化物と、セリウムと、を有効成分として含有する第一の複合体と、シリカ、アルミナ、チタニア、ジルコニア、及び酸化タングステンから選ばれる1又は2以上の酸化物と、希土類金属又は遷移金属と、を有効成分として含有する第二の複合体と、を有し、前記第一の複合体と前記第二の複合体とは活性種成分が異なるものである。   Further, the nitrogen oxide purification catalyst according to the present invention includes at least a first composite containing tungsten oxide-zirconia type composite oxide and cerium as active ingredients, silica, alumina, titania, zirconia, and A second composite containing one or more oxides selected from tungsten oxide and a rare earth metal or a transition metal as active ingredients, the first composite and the second composite The active species component is different from the body.

第二の複合体における複合酸化物は、シリカ−アルミナ型複合酸化物であることが好ましく、このシリカ−アルミナ型複合酸化物における珪素とアルミニウムのモル組成比(Si:Al)は、5:1〜500:1の範囲内であることが好ましい。   The composite oxide in the second composite is preferably a silica-alumina composite oxide, and the molar composition ratio (Si: Al) of silicon and aluminum in the silica-alumina composite oxide is 5: 1. It is preferably within the range of ˜500: 1.

前記遷移金属としては、第一遷移金属元素(21Sc〜29Cu)、第二遷移金属元素(39Y〜47Ag)、及び第三遷移金属元素(72Hf〜79Au)がつくる単体のうち、銅(Cu)、コバルト(Co)、ニッケル(Ni)マンガン(Mn)、クロム(Cr)、バナジウム(V)などの有害性金属を除くものであればどのようなものでもよい。なお、本発明に係る窒素酸化物浄化触媒における遷移金属又は希土類金属は、2wt%〜50wt%の範囲内で含まれていることが好ましい。 Among the transition metals, the first transition metal element ( 21 Sc to 29 Cu), the second transition metal element ( 39 Y to 47 Ag), and the third transition metal element ( 72 Hf to 79 Au) are used. Any other material may be used as long as it excludes harmful metals such as copper (Cu), cobalt (Co), nickel (Ni) manganese (Mn), chromium (Cr), and vanadium (V). In addition, it is preferable that the transition metal or rare earth metal in the nitrogen oxide purification catalyst according to the present invention is included in the range of 2 wt% to 50 wt%.

なお、2以上の複合体を有する窒素酸化物浄化触媒において、これら複合体の重量比は窒素酸化物をより高い効率で浄化することが可能な数値であれば特に制限されるものではないが、一方の複合体がセリウム及びチタニア−ジルコニア型複合酸化物を有し、他方の複合体が鉄及びシリカ−アルミナ型複合酸化物を有するものである場合には、前者の複合体と後者の複合体との重量比が0.2:0.8〜0.8:0.2の範囲内であることが好ましい。   In the nitrogen oxide purification catalyst having two or more composites, the weight ratio of these composites is not particularly limited as long as it is a numerical value capable of purifying nitrogen oxide with higher efficiency. When one composite has cerium and titania-zirconia type composite oxide, and the other composite has iron and silica-alumina type composite oxide, the former composite and the latter composite are used. Is preferably in the range of 0.2: 0.8 to 0.8: 0.2.

本発明に係る窒素酸化物浄化触媒に含まれる複合体は、さらに硫黄又はリンを含有していてもよい。複合体における硫黄又はリンの含有率は、10wt%以下であることが好ましく、0.5wt%〜10%以下の範囲内であることがより好ましい。   The composite contained in the nitrogen oxide purification catalyst according to the present invention may further contain sulfur or phosphorus. The content of sulfur or phosphorus in the composite is preferably 10 wt% or less, and more preferably in the range of 0.5 wt% to 10%.

===他の実施形態について===
上述のように、本発明に係る窒素酸化物浄化触媒は窒素酸化物を高い効率で浄化することができることから、本発明に係る窒素酸化物浄化触媒を用いた窒素酸化物浄化方法や、本発明に係る窒素酸化物浄化触媒を備えた窒素酸化物浄化装置は、例えば、ディーゼル、石炭などの燃料を燃焼させた際に発生する排ガス中の窒素酸化物を浄化するのに有用である。
=== About other embodiments ===
As described above, since the nitrogen oxide purification catalyst according to the present invention can purify nitrogen oxide with high efficiency, the nitrogen oxide purification method using the nitrogen oxide purification catalyst according to the present invention, and the present invention The nitrogen oxide purification apparatus including the nitrogen oxide purification catalyst according to the present invention is useful for purifying nitrogen oxides in exhaust gas generated when a fuel such as diesel or coal is burned.

なお、本発明に係る窒素酸化物浄化方法又は窒素酸化物浄化装置において、窒素酸化物を浄化するために脱硝還元剤の添加(注入)が必要となるが、添加する脱硝還元剤の添加量としては、窒素酸化物を還元分解するのに必要な量であれば特に制限されるものではない。脱硝還元剤としては、アンモニア、アンモニア水(安水)、液化アンモニアなどのアンモニア源を用いることとしてもよいが、アンモニアを生成することができるアンモニア前駆体を用いることとしてもよい。アンモニア前駆体は、例えば、熱分解によりアンモニアを生成することができる尿素、尿素水などである。なお、環境などの面から尿素や尿素水を脱硝還元剤として用いることが好ましい。   In addition, in the nitrogen oxide purification method or the nitrogen oxide purification apparatus according to the present invention, it is necessary to add (inject) a denitration reducing agent in order to purify the nitrogen oxide. Is not particularly limited as long as it is an amount necessary for reductive decomposition of nitrogen oxides. As the denitration reducing agent, an ammonia source such as ammonia, aqueous ammonia (aqueous water) or liquefied ammonia may be used, but an ammonia precursor capable of generating ammonia may be used. The ammonia precursor is, for example, urea or urea water that can generate ammonia by thermal decomposition. Note that it is preferable to use urea or urea water as a denitration reducing agent from the viewpoint of environment and the like.

脱硝還元剤の注入量としては、窒素酸化物を還元分解するのに必要な量であれば特に制限されるものではなく、窒素酸化物の量及び、触媒の浄化性能等、特性に応じた量を注入することが好ましい。このように脱硝還元剤の量を調節して添加することにより、窒素酸化物を高い効率で浄化することができるようになる。   The injection amount of the denitration reducing agent is not particularly limited as long as it is an amount necessary for reductive decomposition of nitrogen oxides, and the amount according to characteristics such as the amount of nitrogen oxides and the purification performance of the catalyst. Is preferably injected. Thus, by adjusting and adding the amount of the denitration reducing agent, nitrogen oxides can be purified with high efficiency.

また、本発明に係る窒素酸化物浄化方法又は窒素酸化物浄化装置において、還元脱硝する際の反応温度としては、150℃〜500℃の範囲内であることが好ましく、アンモニア還元触媒がアンモニアを効率よく吸着させる点で185℃〜500℃の範囲内であることが特に好ましく、窒素酸化物を効率よく浄化することができる点で220℃〜500℃の範囲内であることが最も好ましい。なお、尿素を添加してアンモニアを生成させる場合には、還元脱硝する際の反応温度はアンモニアを効率よく生成できる点で170℃〜250℃の範囲内であることが好ましい。   Further, in the nitrogen oxide purification method or nitrogen oxide purification apparatus according to the present invention, the reaction temperature at the time of reductive denitration is preferably within a range of 150 ° C. to 500 ° C., and the ammonia reduction catalyst efficiently converts ammonia. It is particularly preferably in the range of 185 ° C. to 500 ° C. in terms of good adsorption, and most preferably in the range of 220 ° C. to 500 ° C. in terms of efficiently purifying nitrogen oxides. In addition, when adding urea and producing | generating ammonia, it is preferable that the reaction temperature at the time of reductive denitration exists in the range of 170 to 250 degreeC at the point which can produce | generate ammonia efficiently.

さらに、本発明に係る窒素酸化物浄化方法又は窒素酸化物浄化装置において、窒素酸化物浄化装置に導入する窒素酸化物の空間速度は、5,000/h〜200,000/hの範囲内であることが好ましく、10,000/h〜50,000/hの範囲内であることが特に好ましい。   Furthermore, in the nitrogen oxide purification method or the nitrogen oxide purification device according to the present invention, the space velocity of the nitrogen oxide introduced into the nitrogen oxide purification device is within the range of 5,000 / h to 200,000 / h. It is preferable that it is within a range of 10,000 / h to 50,000 / h.

以下に本発明を実施例によって具体的に説明する。なお、これらの実施例は本発明を説明するためのものであって、本発明の範囲を限定するものではない。   Hereinafter, the present invention will be specifically described by way of examples. These examples are for explaining the present invention, and do not limit the scope of the present invention.

[参考例1]
<Ce-Ti-SO4-Zr系触媒の製造>
100gのZrの塩(硫酸ジルコニウム)、50gのTiの塩(塩化チタン)、及び50gのCeの塩(硝酸セリウム)を1Lの水に溶解した混合水溶液を調製後、アルカリ溶液(アンモニア水)を加え中和し濾取した。その後、400℃以上で焼成し粉砕することにより、粉末を得た。その後、この粉末がCe-Ti-SO4-Zr系触媒であるかどうかを確認した(図1参照)。
[Reference Example 1]
<Manufacture of Ce-Ti-SO 4 -Zr catalyst>
After preparing a mixed aqueous solution in which 100 g of Zr salt (zirconium sulfate), 50 g of Ti salt (titanium chloride), and 50 g of Ce salt (cerium nitrate) were dissolved in 1 L of water, an alkaline solution (ammonia water) was added. The mixture was neutralized and collected by filtration. Then, powder was obtained by baking at 400 degreeC or more and grind | pulverizing. Thereafter, it was confirmed whether this powder was a Ce—Ti—SO 4 —Zr catalyst (see FIG. 1).

[参考例2]
<Fe-Si-Al系触媒の製造>
シリカ−アルミナからなる多孔質酸化物(モル組成比=40/1)1000gに、硝酸鉄水溶液(500Lの水に1000gの硝酸鉄を溶解)を攪拌しながら徐々に滴下した。得られたパウダーを120℃で乾燥後、450℃で2時間焼成し、粉末を得た。その後、この粉末がFe-Si-Al系触媒であるかどうかを確認した(図2参照)。
[Reference Example 2]
<Manufacture of Fe-Si-Al catalyst>
An aqueous iron nitrate solution (1000 g of iron nitrate dissolved in 500 L of water) was gradually added dropwise to 1000 g of a porous oxide composed of silica-alumina (molar composition ratio = 40/1) with stirring. The obtained powder was dried at 120 ° C. and then calcined at 450 ° C. for 2 hours to obtain a powder. Then, it was confirmed whether this powder was a Fe-Si-Al type catalyst (refer FIG. 2).

[実施例3]
<Ce-W-Zr系触媒の製造>
100gのZrの塩(硫酸ジルコニウム)、及び50gのCeの塩(硝酸セリウム)を1Lの水に溶解した混合水溶液を調製し、アルカリ溶液(アンモニア水)を加え中和し濾取した。その後、15gのタングステン酸アンモニウムを含浸し、400℃以上で焼成し粉砕することにより、粉末を得た。その後、この粉末がCe-Ti-SO4-Zr系触媒であるかどうかを確認した(図3参照)。
[Example 3]
<Manufacture of Ce-W-Zr catalyst>
A mixed aqueous solution in which 100 g of Zr salt (zirconium sulfate) and 50 g of Ce salt (cerium nitrate) were dissolved in 1 L of water was prepared, neutralized by adding an alkaline solution (aqueous ammonia) and collected by filtration. Thereafter, 15 g of ammonium tungstate was impregnated, fired at 400 ° C. or higher and pulverized to obtain a powder. Thereafter, it was confirmed whether this powder was a Ce—Ti—SO 4 —Zr catalyst (see FIG. 3).

<尿素の熱分解反応テスト>
従来のV2O5−TiO2系触媒雰囲気下で尿素(還元脱硝剤)を熱分解(加水分解)させると、アンモニア以外に副生成物を生成することが知られている。そこで、尿素の熱分解において本発明に係る窒素酸化物浄化触媒を用いると副生成物が生成されるかどうかを調べてみた。
参考例1により得られたCe-Ti-SO4-Zr系触媒粉末0.1gを尿素水溶液(2.5Wt%)0.2mlに含浸後、乾燥したものを用意し、TPD(昇温脱離法:Temperature Programmed Desorption)−Massにより、昇温時に熱分解で生じるガス成分を測定した。なお、昇温条件は+10℃/分とした。また、TPD−Mass分析は大気条件下で100℃〜300℃の範囲で行った。
その結果を図4に示す。図4に示すように、従来のV2O5−TiO2系触媒は、150℃〜250℃の反応温度条件下において、尿素を熱分解させてアンモニア(△)を生成させるとともに、副生成物(▲)を生成した。しかしながら、Ce-Ti-SO4-Zr系触媒は、どの反応温度条件下においても、副生成物(●)を生成すること無しにアンモニア(○)のみを生成することがわかった。このことから、アンモニア還元触媒は、触媒活性性能の向上に有用であることが明らかとなった。
<Thermal decomposition reaction test of urea>
It is known that when urea (reductive denitration agent) is thermally decomposed (hydrolyzed) in a conventional V 2 O 5 —TiO 2 catalyst atmosphere, a by-product is generated in addition to ammonia. Therefore, it was examined whether or not a by-product is produced when the nitrogen oxide purification catalyst according to the present invention is used in the thermal decomposition of urea.
After impregnating 0.1 ml of Ce-Ti-SO 4 -Zr-based catalyst powder obtained in Reference Example 1 with 0.2 ml of urea aqueous solution (2.5 Wt%), prepare a dried one, and TPD (thermal desorption) Method: Temperature Programmed Desorption) -Mass was used to measure gas components generated by thermal decomposition at elevated temperature. The temperature raising condition was + 10 ° C./min. Moreover, the TPD-Mass analysis was performed in the range of 100 ° C. to 300 ° C. under atmospheric conditions.
The result is shown in FIG. As shown in FIG. 4, the conventional V 2 O 5 —TiO 2 -based catalyst generates ammonia (Δ) by thermally decomposing urea under reaction temperature conditions of 150 ° C. to 250 ° C., and a by-product. (▲) was generated. However, it was found that the Ce—Ti—SO 4 —Zr catalyst produced only ammonia (◯) without producing a by-product (●) under any reaction temperature conditions. From this, it became clear that the ammonia reduction catalyst is useful for improving the catalytic activity performance.

[参考例5]
<脱硝反応テスト1>
参考例1により得られたCe-Ti-SO4-Zr系触媒について、脱硝反応テストを以下の条件により行った。直径25mmφ、長さ50mmのハニカム担体に触媒担持し、反応ガスとして、Oが10%、NOとNOはそれぞれ150ppm、HOは5%、残りは窒素からなるガスを用い、空間速度(SV)が50000/hの条件で導入した。触媒入口温度は、150℃〜400℃の範囲で行った。また、比較対照として、V2O5−TiO2系触媒を用いて同様の実験を行った。それらの結果を図5に示す。
図5に示すように、Ce-Ti-SO4-Zr系触媒(○)は、V2O5−TiO2系触媒(●)に比べて高い効率で窒素酸化物を浄化できることがわかった。
[Reference Example 5]
<Denitration test 1>
The Ce—Ti—SO 4 —Zr catalyst obtained in Reference Example 1 was subjected to a denitration reaction test under the following conditions. The catalyst is supported on a honeycomb carrier having a diameter of 25 mmφ and a length of 50 mm, and the reaction velocity is 10% O 2 , NO and NO 2 are each 150 ppm, H 2 O is 5%, and the rest is nitrogen. (SV) was introduced under the condition of 50000 / h. The catalyst inlet temperature was in the range of 150 ° C to 400 ° C. As a comparative control, a similar experiment was performed using a V 2 O 5 —TiO 2 catalyst. The results are shown in FIG.
As shown in FIG. 5, it was found that the Ce—Ti—SO 4 —Zr-based catalyst (◯) can purify nitrogen oxides with higher efficiency than the V 2 O 5 —TiO 2 -based catalyst (●).

[参考例6]
<脱硝反応テスト2>
SCR入口温度に対する窒素酸化物の浄化率を調べるために、φ7.5”×7”(5L)のSCR触媒サイズのCe-Ti-SO4-Zr系触媒を5L−NAエンジンの排気マフラーに装着し、SCR触媒前段部にPt系酸化触媒(Pt−アルミナ触媒;東京濾器株式会社製)を装着して実機定常評価試験を行った。その結果を図6に示す。
図6に示すように、Ce-Ti-SO4-Zr系触媒はSCR入口温度がおよそ220℃以上において80%以上の窒素酸化物を浄化できることがわかった。
[Reference Example 6]
<Denitration test 2>
In order to investigate the purification rate of nitrogen oxides relative to the SCR inlet temperature, a Ce-Ti-SO 4 -Zr catalyst with a SCR catalyst size of φ7.5 ”× 7” (5L) is installed in the exhaust muffler of a 5L-NA engine. Then, a Pt-based oxidation catalyst (Pt-alumina catalyst; manufactured by Tokyo Filter Co., Ltd.) was attached to the front part of the SCR catalyst, and an actual machine steady state evaluation test was performed. The result is shown in FIG.
As shown in FIG. 6, it was found that the Ce—Ti—SO 4 —Zr-based catalyst can purify 80% or more of nitrogen oxides at an SCR inlet temperature of about 220 ° C. or more.

[実施例7]
<脱硝反応テスト5>
実施例3により得られたCe-W-Zr系触媒について、参考例5に記載の方法と同様に脱硝反応テストを行った。なお、触媒入口温度は150℃〜400℃の範囲で触媒評価をした。それらの結果を図7に示す。
図7に示すように、Ce-W-Zr系触媒(○)は、250℃〜400℃の反応温度でV2O5−TiO2系触媒(●)より高い効率で窒素酸化物を浄化できることがわかった。
[Example 7]
<Denitration test 5>
The Ce—W—Zr-based catalyst obtained in Example 3 was subjected to a denitration reaction test in the same manner as described in Reference Example 5. The catalyst inlet temperature was in the range of 150 ° C to 400 ° C. The results are shown in FIG.
As shown in FIG. 7, the Ce—W—Zr catalyst (◯) can purify nitrogen oxides at a reaction temperature of 250 ° C. to 400 ° C. with higher efficiency than the V 2 O 5 —TiO 2 catalyst (●). I understood.

[参考例8]
<アンモニア吸着テスト>
参考例2により得られたFe-Si-Al系触媒及び比較品(V2O5−TiO2系触媒)を用いたTPD−Mass分析により、アンモニア昇温脱離スペクトルを測定した。なお、昇温速度は+10℃/分とした。また、TPD−Mass分析はヘリウム雰囲気下で100℃〜500℃の範囲で行った。その結果を図8に示す。
図8に示すように、Fe-Si-Al系触媒(○)は、比較品(●)に比べ、低温から高温においてアンモニアを保持できることがわかった。このことから、Fe-Si-Al系触媒は触媒活性性能向上に寄与するものと考えられる。
[Reference Example 8]
<Ammonia adsorption test>
An ammonia temperature-programmed desorption spectrum was measured by TPD-Mass analysis using the Fe—Si—Al catalyst obtained in Reference Example 2 and a comparative product (V 2 O 5 —TiO 2 catalyst). The temperature rising rate was + 10 ° C./min. TPD-Mass analysis was performed in a range of 100 ° C. to 500 ° C. in a helium atmosphere. The result is shown in FIG.
As shown in FIG. 8, it was found that the Fe—Si—Al-based catalyst (◯) can hold ammonia from a low temperature to a high temperature as compared with the comparative product (●). From this, it is considered that the Fe—Si—Al catalyst contributes to the improvement of the catalytic activity performance.

[参考例9]
<脱硝反応テスト3>
参考例2により得られたFe-Si-Al系触媒について、参考例5に記載の方法と同様に脱硝反応テストを行った。なお、触媒入口温度は150℃〜400℃の範囲で触媒評価をした。それらの結果を図9に示す。
図9に示すように、Fe-Si-Al系触媒(○)は、V2O5−TiO2系触媒(●)に比べ窒素酸化物を高い効率で浄化できることがわかった。
また、参考例8及び参考例9の結果から、アンモニアの吸着性が高い触媒は、脱硝反応を促進し、窒素酸化物の浄化効率を高めているものと考えられる。従って、窒素酸化物の浄化効率が高いCe-Ti-SO4-Zr系触媒はアンモニアの吸着性が優れているものと考えられる。
[Reference Example 9]
<Denitration test 3>
The Fe—Si—Al catalyst obtained in Reference Example 2 was subjected to a denitration reaction test in the same manner as described in Reference Example 5. The catalyst inlet temperature was in the range of 150 ° C to 400 ° C. The results are shown in FIG.
As shown in FIG. 9, it was found that the Fe—Si—Al-based catalyst (◯) can purify nitrogen oxides with higher efficiency than the V 2 O 5 —TiO 2 -based catalyst (●).
Further, from the results of Reference Example 8 and Reference Example 9, it is considered that the catalyst having a high ammonia adsorptivity promotes the denitration reaction and increases the purification efficiency of nitrogen oxides. Therefore, it is considered that the Ce—Ti—SO 4 —Zr-based catalyst having high nitrogen oxide purification efficiency is excellent in ammonia adsorption.

[参考例10]
<脱硝反応テスト6>
次に、Ce-Ti-SO4-Zr系触媒とFe-Si-Al系触媒との混合触媒が、窒素酸化物の浄化効率に与える影響を調べるため、φ7.5”×7”(5L)のSCR触媒サイズのCe-Ti-SO4-Zr系触媒及びFe-Si-Al系触媒の混合触媒(材料担持比率(Ce-Ti-SO4-Zr系触媒/Fe-Si-Al系触媒)は1/2)を用いて参考例6に記載の方法に準じて実機定常評価試験を行った。その結果を図10に示す。
図10に示すように、SCR温度が250℃以上において混合触媒(△)は、Ce-Ti-SO4-Zr系触媒(◆)やFe-Si-Al系触媒(■)を単品で用いた場合に比べて、窒素酸化物をより効率よく浄化できることがわかった。また、以上のことから、Fe-Si-Al系触媒の上にCe-Ti-SO4-Zr系触媒を担持することにより、シリカ−アルミナ材の高温排ガスアタックを抑制することができ、耐熱性が改善できるものと考えられる。
[Reference Example 10]
<Denitration test 6>
Next, in order to investigate the effect of the mixed catalyst of Ce-Ti-SO 4 -Zr catalyst and Fe-Si-Al catalyst on the purification efficiency of nitrogen oxides, φ7.5 "x 7" (5L) Of SCR catalyst size of Ce-Ti-SO 4 -Zr catalyst and Fe-Si-Al catalyst (material loading ratio (Ce-Ti-SO 4 -Zr catalyst / Fe-Si-Al catalyst)) Was subjected to a real machine steady state evaluation test according to the method described in Reference Example 6. The result is shown in FIG.
As shown in FIG. 10, Ce-Ti-SO 4 -Zr-based catalyst (♦) and Fe-Si-Al-based catalyst (■) were used individually as the mixed catalyst (△) when the SCR temperature was 250 ° C or higher. It was found that nitrogen oxides can be purified more efficiently than in the case. From the above, by supporting the Ce-Ti-SO 4 -Zr catalyst on the Fe-Si-Al catalyst, high-temperature exhaust gas attack of the silica-alumina material can be suppressed, and the heat resistance Can be improved.

参考例1により製造されたCe-Ti-SO4-Zr系触媒のX線回析結果を示す図である。 4 is a diagram showing an X-ray diffraction result of a Ce—Ti—SO 4 —Zr-based catalyst produced according to Reference Example 1. FIG. 参考例2により製造されたFe-Si-Al系触媒のX線回析結果を示す図である。FIG. 4 is a diagram showing an X-ray diffraction result of an Fe—Si—Al catalyst produced according to Reference Example 2. 実施例3により製造されたCe-W-Zr系触媒のX線回析結果を示す図である。FIG. 4 is a diagram showing an X-ray diffraction result of a Ce—W—Zr-based catalyst produced according to Example 3. 参考例1により製造されたCe-Ti-SO4-Zr系触媒が尿素の熱分解に与える影響を調べた結果を示す図である。Is a graph showing a result of Ce-Ti-SO 4 -Zr catalyst prepared in Reference Example 1 was examined the influence of the thermal decomposition of urea. 参考例1により得られたCe-Ti-SO4-Zr系触媒(○)についてNOx浄化特性をV2O5−TiO2系触媒(●)と比較した結果を示す図である。It is a diagram showing the results of a comparison of the NOx purification characteristic and V 2 O 5 -TiO 2 based catalyst (●) for Ce-Ti-SO 4 -Zr catalyst obtained in Reference Example 1 (○). 参考例1により得られたCe-Ti-SO4-Zr系触媒を用いた実機定常評価試験により、NOx浄化特性を調べた結果を示す図である。The actual steady evaluation test using Ce-Ti-SO 4 -Zr catalyst obtained in Reference Example 1, showing the results of examining the NOx purification characteristic. 実施例3により得られたCe-W-Zr系触媒(○)についてNOx浄化特性をV2O5−TiO2系触媒(●)と比較した結果を示す図である。Is a graph showing a result of NOx purification characteristic of the Ce-W-Zr based catalyst obtained in Example 3 (○) were compared with V 2 O 5 -TiO 2 based catalyst (●). 参考例2により得られたFe-Si-Al系触媒(○)についてアンモニア吸着特性をV2O5−TiO2系触媒(●)と比較した結果を示す図である。Is a graph showing a result of ammonia adsorption characteristic for Fe-Si-Al-based catalyst obtained in Reference Example 2 (○) were compared with V 2 O 5 -TiO 2 based catalyst (●). 参考例2により得られたFe-Si-Al系触媒(○)についてNOx浄化特性をV2O5−TiO2系触媒(●)と比較した結果を示す図である。Is a graph showing a result of NOx purification characteristic of the Fe-Si-Al-based catalyst obtained in Reference Example 2 (○) were compared with V 2 O 5 -TiO 2 based catalyst (●). Ce-Ti-SO4-Zr系触媒とFe-Si-Al系触媒との混合触媒を用いた実機定常評価試験により、NOx浄化特性を調べた結果を示す図である。The actual steady evaluation test using the mixed catalyst of the Ce-Ti-SO 4 -Zr based catalyst and Fe-Si-Al-based catalysts, is a graph showing the results of examining the NOx purification characteristic.

Claims (7)

少なくとも、酸化タングステン−ジルコニア型複合酸化物と、セリウムと、を有効成分として含有することを特徴とする窒素酸化物浄化触媒。   A nitrogen oxide purification catalyst comprising at least tungsten oxide-zirconia type composite oxide and cerium as active ingredients. さらに硫黄又はリンを含有することを特徴とする請求項1又は2に記載の窒素酸化物浄化触媒。   Furthermore, sulfur or phosphorus is contained, The nitrogen oxide purification catalyst of Claim 1 or 2 characterized by the above-mentioned. 少なくとも、酸化タングステン−ジルコニア型複合酸化物と、セリウムと、を有効成分として含有する第一の複合体と、
シリカ、アルミナ、チタニア、ジルコニア、及び酸化タングステンから選ばれる1又は2以上の酸化物と、希土類金属又は遷移金属と、を有効成分として含有する第二の複合体と、を有し、前記第一の複合体と前記第二の複合体とは活性種成分が異なることを特徴とする窒素酸化物浄化触媒。
A first composite containing at least a tungsten oxide-zirconia composite oxide and cerium as active ingredients;
A second composite containing one or more oxides selected from silica, alumina, titania, zirconia, and tungsten oxide, and a rare earth metal or a transition metal as active ingredients, A nitrogen oxide purifying catalyst characterized in that the active complex component is different between the composite of the above and the second composite.
前記第二の複合体における複合酸化物が、シリカ−アルミナ型複合酸化物であることを特徴とする請求項3に記載の窒素酸化物浄化触媒。   The nitrogen oxide purification catalyst according to claim 3, wherein the complex oxide in the second complex is a silica-alumina complex oxide. 前記第二の複合体は担体基材に担持されており、
前記第一の複合体は前記第二の複合体に担持されていることを特徴とする請求項3又は4に記載の窒素酸化物浄化触媒。
The second composite is supported on a carrier substrate;
The nitrogen oxide purification catalyst according to claim 3 or 4, wherein the first complex is supported on the second complex.
請求項1〜5のいずれかに記載の窒素酸化物浄化触媒に窒素酸化物とアンモニアとを接触させて、還元脱硝することを特徴とする窒素酸化物の浄化方法。   A method for purifying nitrogen oxides, wherein the nitrogen oxide purifying catalyst according to any one of claims 1 to 5 is brought into contact with nitrogen oxides and ammonia to perform denitration. 請求項1〜5のいずれかに記載の窒素酸化物浄化触媒を備えることを特徴とする窒素酸化物浄化装置。   A nitrogen oxide purification apparatus comprising the nitrogen oxide purification catalyst according to any one of claims 1 to 5.
JP2008224485A 2008-09-02 2008-09-02 Nitrogen oxide removing catalyst, nitrogen oxide removing method using it, and nitrogen oxide removing device Pending JP2008296224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224485A JP2008296224A (en) 2008-09-02 2008-09-02 Nitrogen oxide removing catalyst, nitrogen oxide removing method using it, and nitrogen oxide removing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224485A JP2008296224A (en) 2008-09-02 2008-09-02 Nitrogen oxide removing catalyst, nitrogen oxide removing method using it, and nitrogen oxide removing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004055352A Division JP2005238196A (en) 2004-02-27 2004-02-27 Catalyst for cleaning nitrogen oxide, cleaning method for nitrogen oxide using it and nitrogen oxide cleaning apparatus

Publications (1)

Publication Number Publication Date
JP2008296224A true JP2008296224A (en) 2008-12-11

Family

ID=40170242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224485A Pending JP2008296224A (en) 2008-09-02 2008-09-02 Nitrogen oxide removing catalyst, nitrogen oxide removing method using it, and nitrogen oxide removing device

Country Status (1)

Country Link
JP (1) JP2008296224A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506724A (en) * 2006-10-19 2010-03-04 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Ce-Zr-R-O catalyst, article containing Ce-Zr-R-O catalyst, and method for producing and using the Ce-Zr-R-O catalyst
WO2011118777A1 (en) 2010-03-26 2011-09-29 株式会社 キャタラー Exhaust gas purification system
CN105728026A (en) * 2016-02-02 2016-07-06 无锡威孚环保催化剂有限公司 Diesel vehicle platinum-based oxidation catalyst and preparation method thereof
CN105797767A (en) * 2016-03-14 2016-07-27 无锡威孚环保催化剂有限公司 Diesel vehicle oxidized form catalyst having low temperature activity and preparation method thereof
CN109513438A (en) * 2018-11-21 2019-03-26 南京工业大学 Environment-friendly high-temperature denitration catalyst and preparation method thereof
CN111974399A (en) * 2020-08-18 2020-11-24 山东大学 Red mud-based SCR denitration catalyst and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152742A (en) * 1980-04-25 1981-11-26 Kobe Steel Ltd Catalyst composition for high-temperature waste gas denitration
JPS56152743A (en) * 1980-04-25 1981-11-26 Kobe Steel Ltd Catalyst composition for high-temperature waste gas denitration
JPS57127426A (en) * 1981-01-29 1982-08-07 Nippon Shokubai Kagaku Kogyo Co Ltd Method for removal of nitrogen oxide
JPH0256250A (en) * 1988-08-23 1990-02-26 Sakai Chem Ind Co Ltd Catalyst for removing nitrogen oxide in exhaust gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152742A (en) * 1980-04-25 1981-11-26 Kobe Steel Ltd Catalyst composition for high-temperature waste gas denitration
JPS56152743A (en) * 1980-04-25 1981-11-26 Kobe Steel Ltd Catalyst composition for high-temperature waste gas denitration
JPS57127426A (en) * 1981-01-29 1982-08-07 Nippon Shokubai Kagaku Kogyo Co Ltd Method for removal of nitrogen oxide
JPH0256250A (en) * 1988-08-23 1990-02-26 Sakai Chem Ind Co Ltd Catalyst for removing nitrogen oxide in exhaust gas

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506724A (en) * 2006-10-19 2010-03-04 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Ce-Zr-R-O catalyst, article containing Ce-Zr-R-O catalyst, and method for producing and using the Ce-Zr-R-O catalyst
WO2011118777A1 (en) 2010-03-26 2011-09-29 株式会社 キャタラー Exhaust gas purification system
US8679412B2 (en) 2010-03-26 2014-03-25 Cataler Corporation Exhaust gas-purifying system
CN105728026A (en) * 2016-02-02 2016-07-06 无锡威孚环保催化剂有限公司 Diesel vehicle platinum-based oxidation catalyst and preparation method thereof
CN105728026B (en) * 2016-02-02 2019-07-05 无锡威孚环保催化剂有限公司 Diesel vehicle platinum base oxidative catalyst and preparation method thereof
CN105797767A (en) * 2016-03-14 2016-07-27 无锡威孚环保催化剂有限公司 Diesel vehicle oxidized form catalyst having low temperature activity and preparation method thereof
CN105797767B (en) * 2016-03-14 2018-05-29 无锡威孚环保催化剂有限公司 A kind of diesel vehicle oxidation catalyst with low temperature active and preparation method thereof
CN109513438A (en) * 2018-11-21 2019-03-26 南京工业大学 Environment-friendly high-temperature denitration catalyst and preparation method thereof
CN109513438B (en) * 2018-11-21 2022-07-08 南京工业大学 Environment-friendly high-temperature denitration catalyst and preparation method thereof
CN111974399A (en) * 2020-08-18 2020-11-24 山东大学 Red mud-based SCR denitration catalyst and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2005238195A (en) Catalyst system for cleaning nitrogen oxide and nitrogen oxide cleaning method
JP5185942B2 (en) Vanadium-free catalyst for selective catalytic reduction and process for producing the same
JP5693643B2 (en) Non-zeolite base metal SCR catalyst
JP2008049290A (en) Catalyst, method and apparatus for removing nitrogen oxide
JP2008296224A (en) Nitrogen oxide removing catalyst, nitrogen oxide removing method using it, and nitrogen oxide removing device
JP2006289211A (en) Ammonia oxidation catalyst
JP2005081189A (en) Catalyst for denitrifying high temperature waste gas
JP2005238196A (en) Catalyst for cleaning nitrogen oxide, cleaning method for nitrogen oxide using it and nitrogen oxide cleaning apparatus
JPWO2013121636A1 (en) Exhaust gas purification catalyst system using base metal and its control method
KR101251499B1 (en) Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and removing method of nitrogen oxides using the same
JP5943041B2 (en) Exhaust gas purification catalyst
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP5285459B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
WO2014125934A1 (en) Exhaust gas purifying apparatus, exhaust gas purifying method and exhaust gas purifying catalyst for internal combustion engines
JPH06126177A (en) Catalyst for removing nitrous oxide in exhaust gas
JP2004074139A (en) Exhaust gas purification catalyst and purification method
JP2005238199A (en) Ammonia cleaning catalyst, cleaning method for ammonia using it and ammonia cleaning apparatus
JP2700386B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH08150336A (en) Waste gas purification material and method for purifying waste gas
JP2007075774A (en) Catalyst for catalytically reducing and removing nitrogen oxide
JPS62250947A (en) Catalyst for simultaneous treatment of nitrogen oxide and carbon monoxide
JP2009056459A (en) Catalyst and method for cleaning exhaust gas
JP2016027935A (en) Catalyst for purifying flue gas, and denitration purification method using catalyst
JPS62171750A (en) Catalyst for simultaneously treating nitrogen oxide and carbon monoxide
JP2000246112A (en) CATALYST FOR CLEANING NOx-CONTAINING EXHAUST GAS, METHOD FOR CLEANING SAME AND ITS PRODUCTION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327